钢在加热和冷却时组织转变
- 格式:ppt
- 大小:509.00 KB
- 文档页数:14
钢在冷却时的组织转变的连续冷却转变过程
钢在冷却时的组织转变是一个非常重要的过程,它决定了钢的力学性
能和使用寿命。
这个过程可以被分为三个阶段:
第一阶段:初次冷却
在初次冷却阶段,钢的组织会发生初步的变化。
当温度降到钢的临界
温度以下时,钢中的所有组织都会开始转变。
这个过程是不可逆的,
一旦开始就不能停止。
第二阶段:持续冷却
在持续冷却阶段,钢的组织会进一步变化。
随着温度的降低,钢中的
残留奥氏体会逐渐转变为贝氏体。
这个过程会在几个小时内完成,然
后钢的组织就会保持不变,直到它被重新加热。
第三阶段:再次加热
在再次加热阶段,钢的组织会重新发生变化。
当温度达到一定程度时,钢中的组织开始再次转变,从贝氏体转变为奥氏体。
这个过程同样是
不可逆的。
以上就是钢在冷却时的组织转变的连续冷却转变过程。
需要注意的是,在这个过程中,钢的组织变化是不可逆的,因此加热和冷却的过程必
须严格控制。
如果温度过高或过低,会导致钢的力学性能和使用寿命
都受到影响。
十塚尤邯I十樓碳体I珠光体庶 C (%)―-2 •奥氏体的形成钢在加热时的组织转变,主要包括奥氏体的形成和晶粒长大两个过程形核长大残余渗碳体溶解均匀化共析钢奥氏体化:热处理加热至Ac1以上时,将全部奥氏体化亚共析钢奥氏体化:原始组织为F+P,加热至Ac1以上时,P先奥氏体化,组织部分奥氏体化;加热至Ac3以上时,F奥氏体化,组织全部奥氏体化过共析钢奥氏体化:原始组织为P+Fe3C,加热至Ac1以上时,P先奥氏体化,组织部分奥氏体化;加热至Acm以上时,Fe3C奥氏体化,组织全部奥氏体化物元素(如铌、钒、钛等),会形成难熔的碳化物和氮化物颗粒,弥散分布于奥氏体晶界上,阻碍奥氏体晶粒的长大。
因此,大多数合金钢、本质细晶粒钢加热时奥氏体的晶粒一般较细。
原始组织:钢的原始晶粒越细,热处理加热后的奥氏体的晶粒越细。
二、钢在冷却时的组织转变冷却方式是决定热处理组织和性能的主要因素。
热处理冷却方式分为等温冷却和连续冷却。
()奥氏体冷却降至A i以下时(A以下温度存在的不稳定奥氏体称过冷奥氏体)将发生组织转变。
热处理中采用不同的冷却方式,过冷奥氏体将转变为不同组织,性能具有很大的差异,如下表为45钢奥氏体化后经不同方式的冷却,其性能的差异。
1 •奥氏体的等温转变奥氏体在A1线以上是稳定相,当冷却到A1线以下而又尚未转变的奥氏体称为过冷奥氏体。
这是一种不稳定的过冷组织,只要经过一段时间的等温保持,它就可以等温转变为稳定的新相。
这种转变就称为奥氏体的等温转变。
[等温冷却转变]:钢经奥氏体化后,迅速冷至临界点(Ar i或A®线以下,等温保持时过冷奥氏体发生的转变。
[等温转变曲线]:可综合反映过冷奥氏体在不同过冷度下等温温度、保持时间与转变产物所占的百分数(转变开始及转变终止)的关系曲线,称“ TTT图”,T time,T temperature,T 1ransformation ”,又称为“C 曲线”。
iio ~io^~io 3~~io 1 ~io 5z/s共析钢等温转变曲线图等温转变产物及性能:用等温转变图可分析钢在 A i 线以下不同温度进行等温转变 所获的产物。
《机械制造技术基础》教案教学内容:钢在加热和冷却时的组织转变教学方式:结合实际,由浅如深讲解教学目的:1.掌握钢在加热时组织转变——钢的奥氏体化;2.明确过冷奥氏体的等温转变;3.掌握冷奥氏体连续冷却转变。
重点、难点:钢的奥氏体化过冷奥氏体的等温转变冷奥氏体连续冷却转变教学过程:1.3 钢的热处理热处理:采用适当的方式对金属材料或工件进行加热、保温和冷却以获得预期的组织结构与性能的工艺。
热处理的分类:1.整体热处理:对工件整体进行穿透加热的热处理,如退火、正火、淬火、回火等。
2.表面热处理:仅对表面进行热处理的工艺,如火焰淬火、感应淬火等。
3.化学热处理:将工件置于适当的活性介质中加热、保温,使一种或几种元素渗入它的表层,以改变其化学成分、组织和性能的热处理,如渗碳等。
钢的热处理过程包括加热、保温和冷却三个阶段。
其主要工艺参数是加热温度、保温时间和冷却速度。
1.3.1 钢在加热和冷却时的组织转变1.3.1.1钢在加热时组织转变Fe-Fe3C相图相变点A1、A3、A cm是碳钢在极缓慢地加热或冷却情况下测定的。
但在实际生产中,加热和冷却并不是极其缓慢的,因此,钢的实际相变点都会偏离平衡相变点。
即:加热转变相变点在平衡相变点以上,而冷却转变相变点在平衡相变点以下。
通常把实际加热温度标为Ac1、Ac3、Ac cm、Ar1、Ar3、Ar cm。
如图6-1所示。
图6-1 钢在加热、冷却时的相变温度钢加热到Ac1点以上时会发生珠光体向奥氏体的转变,加热到Ac3和Ac cm以上时,便全部转变为奥氏体,这种加热转变过程称为钢的奥氏体化。
1.奥氏体的形成珠光体转变为奥氏体是一个从新结晶的过程。
由于珠光体是铁素体和渗碳体的机械混合物,铁素体与渗碳体的晶包类型不同,含碳量差别很大,转变为奥氏体必须进行晶包的改组和铁碳原子的扩散。
下面以共析钢为例说明奥氏体化大致可分为四个过程,如图4-2所示。
1)奥氏体形核奥氏体的晶核上首先在铁素体和渗碳体的相界面上形成的。
金属学与热处理---第3章钢的热处理热处理就是将钢在固态下通过加热、保温和不同的冷却方式,改变金属内部组织结构,从而获得所需性能的操作工艺,作用:它不改变工件的形状和尺寸,只改变工件的性能,如提高材料的强度和硬度,增加耐磨性,或者改善材料的塑性、韧性和加工性等。
第一节热处理的基本原理一、钢在加热时的组织转变(一)钢在加热和冷却时的相变温度铁碳合金相图中的A1、A3和Acm 线是反映不同含碳量的钢在极为缓慢加热或冷却时的相变温度。
但钢在实际加热和冷却时不可能非常缓慢,因此,钢中的相转变不能完全按铁碳合金相图中的A1、A3和Acm线,而有一定的滞后现象,即出现过热(加热时)或过冷(冷却时)现象。
加热或冷却时的速度越大,组织转变偏离平衡临界点的程度也越大。
为区别起见,把冷却时的临界点记作Ar1、Ar3 、Arcm;加热时的临界点记作Ac1、A1c3、Accm。
例如,共析钢在平衡状态下珠光体和奥氏体的转变温度为A1;冷却时奥氏体转变为珠光体的温度为Ar1;加热时珠光体转变为奥氏体的温度为Ac1。
这些临界点是正确选择钢在热处理时的加热温度和冷却时结构发生变化的温度的主要依据。
(二)奥氏体的形成共析钢在常温时具有珠光体组织,加热到Ac1以上温度时,珠光体开始转变为奥氏体。
只有使钢呈奥氏体状态,才能通过不同的冷却方式转变为不同的组织,从而获得所需要的性能。
钢在加热时的组织转变,主要包括奥氏体的形成和晶粒长大两个过程。
在铁素体和渗碳体的相界面上首先出现许多奥氏体晶核。
这是因为铁素体与渗碳体是两个具有不同晶体结构的相,在二相界面上有晶格扭曲或原子排列紊乱等缺陷,原子处于高能量状态,有利于奥氏体核形成。
奥氏体晶核形成后,便开始长大。
它是依靠铁素体向奥氏体继续转变和渗碳体不断溶入而进行的。
铁素体向奥氏体转变的速度比渗碳体溶解快,因此,铁素体消失后,仍有部分残余渗碳体,它将随着时间的延长,继续不断地向奥氏体溶解直至全部消失。
45钢加热时组织的变化
45钢在加热时,其组织会发生变化。
具体来说,45钢基体常温下由铁素体和珠光体组成,组织均匀。
当在钎焊环境下加热,当温度为840℃左右时,基体组织全部转化为奥氏体。
然而,由于隧道炉中钎焊金刚石工具加热最高温度为1080℃,这已经超过了奥氏体化的组织在继续加热过程中晶粒不断长大。
当冷却时,开始从奥氏体中析出先共析相铁素体,随着温度的降低,先共析相铁素体量不断减少,而由过冷奥氏体直接转变为极细珠光体型组织。
由于隧道炉的冷却方式是工件处于冷却水套之中缓慢前行,其冷却速度处于空冷和油冷之间,冷速较快,大部分奥氏体来不及转变铁素体,故析出的铁素体较少,珠光体型组织较多。
综上,45钢在加热时,其组织会先转化为奥氏体,然后在冷却过程中,奥氏体会转变成铁素体和珠光体。
如果冷却速度较快,则析出的铁素体会较少,珠光体型组织较多。