将军饮马问题的九种变形与习题
- 格式:doc
- 大小:582.15 KB
- 文档页数:7
将军饮马问题的11个模型及例题将军饮马问题是一个经典的逻辑问题,涉及到将军如何用有限数量的马和酒到达目的地。
本文将介绍将军饮马问题的11个模型及相应的例题。
1. 直线模型将军与目的地之间没有障碍物,可以直线前进。
此时,将军只需将马拉到目的地即可。
例题1:将军与目的地之间距离为10公里,马的速度为每小时5公里,将军能否在2小时内到达目的地?2. 单个障碍物模型在将军与目的地之间存在一个障碍物,将军可以绕过该障碍物。
例题2:将军与目的地之间距离为15公里,马的速度为每小时4公里,障碍物位于距离将军起点5公里处,将军能否在3小时内到达目的地?3. 多个障碍物模型在将军与目的地之间存在多个障碍物,将军需要逐一绕过这些障碍物。
例题3:将军与目的地之间距离为20公里,马的速度为每小时6公里,障碍物位于距离将军起点分别为5公里、10公里和15公里的位置,将军能否在4小时内到达目的地?4. 跳跃模型将军可以让马跳过障碍物,从而直接到达目的地。
例题4:将军与目的地之间距离为12公里,马的速度为每小时8公里,将军在距离起点6公里处设置一个障碍物,将军能否在2小时内到达目的地?5. 限时模型将军需要在规定的时间内到达目的地。
例题5:将军与目的地之间距离为30公里,马的速度为每小时10公里,将军需要在3小时内到达目的地,是否可能?6. 守备模型目标地点有守备军,将军需要巧妙规避守备军。
例题6:将军与目的地之间距离为25公里,马的速度为每小时7公里,目的地有一支守备军位于距离目标地点10公里处,将军能否在4小时内到达目的地?7. 短平快模型将军不借助马匹,直接徒步走到目的地。
例题7:将军与目的地之间距离为8公里,将军的步行速度为每小时2公里,将军能否在4小时内到达目的地?8. 时间窗模型将军只能在规定时间范围内到达目的地。
例题8:将军与目的地之间距离为18公里,马的速度为每小时6公里,将军需要在3小时到4小时之间到达目的地,是否可能?9. 兵变模型将军需要利用敌军马匹达到目的地。
“将军饮马”常见模型及18道典型习题何为将军饮马?2000多年以前。
古希腊的亚历山大城里住着一位睿智的数学家海伦。
一天,城里来了一位将军,听闻海伦盛名,特来向他请教一个问题。
将军说,每天早上,他都骑着马儿从营帐出发,到河边让马儿饮水,然后,再去河岸同一侧的一块草地上带着马儿去吃草,问题时,在河岸的哪个具体位置喝水,行程最短?海伦略做沉思,给出了将军最佳方案。
此之谓“将军饮马”。
最佳方案为何?且阅下文:一、将军饮马常见的5种模型:1、一动两定(和最小):如图,点A是将军和马居住的营帐,点B是一块指定的草地,一条小河L潺潺流过,P是将军带着马儿喝水的地方,P点在何处时,将军和马儿走过的路PA+PB的值最小?解析:做A点关于L的对称点A’,连接A’B,与L的交点即为P点。
为什么这时PA+PB最小?假设L上有一点M(与P点不重合)。
∵A点与A’关于L对称∴AP=A’P;AM=A’M;∴AP + BP =A’P +BP =A’B而AM + BM = A’M +MB在△A’MB中,两边之和大于第三边∴A’B < A’M +MB;而M为L上任一点(与P点不重合)。
∴动点P在A’B与L交点处时AP+BP最小。
2、一定两动:如图,点A是将军和马居住的营帐,小河L1依然像上题中一样潺潺流过,P是将军带着马儿喝水的地方,不同的是,这次吃草的地方不在是一个指定的点,而是L2所代表的一片草地,Q则是将军骑马吃草的地方,水足草饱以后,将军和马儿会再回到营帐。
那么,P点、Q点在何处时,将军走过的路AP+PQ+QA的值最小?解析:做A点关于L1的对称点A’;做A点关于L2的对称点A‘’;连接A’A‘’,与L1和L2的交点即为P、Q。
为什么此时,AP+PQ+AQ的和最小?假设L1上有点M(不与P重合)、L2上有点N(不与Q重合)。
∵A点与A’关于L1对称;A点与A‘’关于L2对称。
∴AP=A’P;AQ=A”Q;AM=A’M;AN=A”N;∴AP+PQ+AQ = A’P+PQ+A”Q =A’A”;AM+MN+AN = A’M+MN+A”N在四边形A’MNA”中:A’M+MN+A”N >A’A”∴P、Q位于A’A”与L1和L2的交点处时,AP+PQ+AQ的和最小。
女将军饮马问题的九种变形与习题女将军饮马问题是一道经典的数学问题,有许多不同的变形。
在本文中,我们将介绍九种常见的变形,并提供相应的题供读者练。
1. 基本问题问题描述女将军饮马问题的基本形式是:女将军骑着马从A地到B地,每次都喝完马槽里的水后,马会用4个钟头再到达下一个水源。
在A地到B地之间,有3个水源,每个水源的位置都相互独立,且离A地的距离依次递增。
女将军想知道她最短需要多长时间才能从A地骑到B地。
解答在基本问题中,女将军只需找到最短时间的方法来获得最优解。
我们可以使用迭代的方法来解决这个问题,不断更新最优解直到收敛。
2. 变形一:增加水源数量问题描述将基本问题中的3个水源增加到4个水源,求女将军从A地到B地的最短时间。
解答通过增加水源的数量,问题的复杂度增加了。
我们可以使用动态规划的方法来解决,将问题转化为一个多维数组的最优化搜索。
3. 变形二:不同时间到达水源问题描述将基本问题中的每个水源到达时间从4个钟头改变为不同的时间,求女将军从A地到B地的最短时间。
解答当每个水源到达时间不同的时候,我们需要考虑如何安排女将军的出发时间,以获得最短时间。
这个问题可以通过动态规划和贪心算法来解决。
4. 变形三:不同马的速度问题描述将基本问题中的马的速度从相同改为不同,求女将军从A地到B地的最短时间。
解答当马的速度不同的时候,问题变得更加复杂。
我们可以使用动态规划和二分查找等方法来解决这个问题。
5. 变形四:增加马的数量问题描述将基本问题中的女将军从一匹马增加到两匹马,求女将军从A 地到B地的最短时间。
解答通过增加马的数量,女将军可以选择不同的骑行策略来获得最短时间。
我们可以使用贪心算法和动态规划来解决这个问题。
6. 变形五:考虑马的疲劳问题问题描述将基本问题中的马的疲劳问题考虑进去,求女将军从A地到B 地的最短时间。
解答当马的疲劳问题考虑在内时,女将军需要合理安排马的休息时间,以获得最短时间。
我们可以使用动态规划和回溯算法等方法来解决这个问题。
最全“将军饮马”类问题(类型大全+分类汇编) 1.如图,直线l和l的异侧两点A.B,在直线l上求作一点P,使PA+PB最小.2.如图,直线l和l的同侧两点A.B,在直线l上求作一点P,使PA+PB最小.3.如图,点 P 是∠MON 内的一点,分离在OM,ON 上作点A,B.使△PAB 的周长最小4.如图,点P,Q为∠MON内的两点,分离在OM,ON上作点A,B.使四边形PAQB的周长最小.5.如图,点A是∠MON外的一点,在射线OM上作点P,使PA与点P到射线ON的距离之和最小6..如图,点A是∠MON内的一点,在射线OM上作点P,使PA与点P到射线ON的距离之和最小二.罕有题型三角形问题1.如图,在等边△ABC 中,AB=6,AD⊥BC,E 是AC 上的一点,M 是AD 上的一点,若AE =2,求EM+EC 的最小值A解:∵点C 关于直线AD 的对称点是点B,A∴衔接BE,交 AD 于点M,则 ME+MD 最小,过点B 作BH⊥AC 于点H, 则 EH = AH – AE = 3 – 2 =1, BH=BC2 - CH2=62 - 32 = 3 3在直角△BHE 中,BE= BH2 +HE2B=(3 3)2 + 12 = 2 72.如图,在锐角△ABC 中,AB = 4 2,∠BAC=45°,∠BAC 的等分线交BC 于点D,M.N 分离是AD 和 AB 上的动点,则 BM+MN 的最小值是. 解:作点B 关于AD 的对称点B',过点B'作B'E⊥AB 于点E,交AD 于点F,则线段B'E 的长就是BM +MN的最小值在等腰Rt△AEB'中, 依据勾股定理得到,B'E =43.如图,△ABC 中,AB=2,∠BAC=30°,若在AC.AB 上各取一点M.N,使BM+MN C解:作AB 关于AC 的对称线段AB',过点B'作 B'N⊥AB,垂足为 N,交 AC 于点M, 则 B'N = MB'+MN =MB+MN B'N 的长就是MB+MN 的最小值 则∠B'AN = 2∠BAC= 60°,AB' = AB =2,∠ANB'= 90°,∠B' =30°. ∴AN =1在直角△AB'N 中,依据勾股定理B'N=3AN2BA1.如图,正方形ABCD 的边长为8,M 在DC 上,丐DM =2,N 是AC 上的一动点,DN +MN 的最小值为_.即在直线AC 上求一点N,使 DN+MN 最小A D解:故作点D 关于AC 的对称点B,衔接BM,交 AC 于点N.则DN +MN=BN +MN=BMM线段BM的长就是DN +MN的最小值 在直角△BCM中,CM=6,BC=8,则BM=10 故DN +MN的最小值是10BC2.如图所示,正方形 ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,+PE 的和最小,则这个最小值为( )A .23B .26C .3D .6AD解:即在AC 上求一点P,使PE+PD 的值最小点 D 关于直线AC 的对称点是点B,衔接BE 交AC 于点P,则BE=PB+PE=PD+PE, BE 的长就是PD+PE 的最小值BE = AB = 2 3B C 3.在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,最小值为_㎝(成果不取近似值).解:在AC上求一点P,使PB+PQ 的值最小 ∵点 B 关于AC 的对称点是D 点,∴衔接DQ,与 AC 的交点P 就是知足前提的点DQ = PD+PQ =PB+PQ故 DQ 的长就是PB+PQ 的最小值 在直角△CDQ 中,CQ = 1 ,CD =2 依据勾股定理,得,DQ=5A D 4.如图,四边形 ABCD 是正方形, AB = 10cm,E 为边BC 的中点,P 为 BD 上的一个动点,求解:衔接AE,交BD 于点P,则AE 就是PE+PC 的最小值在直角△ABE 中,求得AE 的长为5 517171.如图,若四边形ABCD 是矩形,AB=10cm,BC =20cm,E 为边BC 上的一个动点,P 为BD 上的一个动点,求PC+PD 的最小值; C'解:作点C 关于BD 的对称点C',过点C',作C'B⊥BC,交BD 于点P,则C'E 就是PE+PC 的最小值 20AD 直角△BCD 中,CH=5直角△BCH 中,BH = 8 5△BCC'的面积为:BH×CH =160 ∴ C'E×BC =2×160则 CE' =16菱形问题1.如图,若四边形 ABCD 是菱形, AB=10cm,∠ABC=45°,E 为边BC 上的一个动点,P 为 BD 上的一个动点,求PC+PE 的最小值;解:点C 关于BD 的对称点是点A,过点A 作AE⊥BC,交BD 于点P,则AE 就是PE+PC 的最小值在等腰△EAB 中,求得AE 的长为5 2梯形问题1.已知直角梯形ABCD 中,AD ∥BC,AB ⊥BC,AD=2,BC=DC=5,点P 在BC 上秱动,则当PA+PD 取最小值时,△APD 中边AP 上的高为( )A.2B.4C.8 17D.3AD171717解:作点A 关于BC 的对称点A',衔接A'D,交BC 于点P则 A'D = PA'+PD =PA+PD A'D 的长就是PA+PD 的最小值S△APD =4在直角△ABP 中,AB = 4,BP =1 依据勾4∴AP 上的高为:2× =17 8 17 17A '圆的有关问题︵1.已知⊙O 的直径CD 为4,∠AOD 的度数为60°,点B 是AD 的中点,在直径CD 上找一点P,使BP+AP 的值最小,并 求 BP+AP 的最小值.解:在直线CD 上作一点P,使PA+PB 的值最小A作点A 关于CD 的对称点A',衔接A'B,B 交CD 于点P,则A'B 的长就是PA+PB 的最小值 衔接OA',OB,则∠A'OB=90°,CD OA' = OB =4OP 依据勾股定理,A'B = 4 22.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,P 是直径MN 上一动点,则PA +PB 的最小值为( )A 2 2B2C 1D 2解:MN 上求一点P,使 PA+PB 的值最小作点A 关于MN 的对称点A',衔接A'B,交MN 于点P,B则点P 就是所要作的点A'B 的长就是PA+PB 的最小值MN OP衔接OA'.OB,则△OA'B 是等腰直角三角形 ∴ A'B=2一次函数问题20.一次函数y=kx+b 的图象与x.y 轴分离交于点A (2,0),B (0,4). (1)求该函数的解析式;(2)O 为坐标原点,设OA.AB 的中点分离为C.D,P 为OB 上一动点,求PC +PD 的最小值,并求取得最小值时P 点 坐标. 解:(1)由题意得:0 = 2x+b,4 =b 解得k = -2,b=4, ∴ y =-2x+4(2)作点C 关于y 轴的对称点C',衔接C'D,交y 轴于点P 则 C'D = C'P+PD =PC+PD C'D 就是PC+PD 的最小值 衔接CD,则 CD = 2,CC' =2在直角△C'CD 中,依据勾股定理C'D = 22求直线C'D 的解析式,由C'(-1,0),D(1,2) ∴,有 0 = -k+b,2 =k+b 解得k = 1,b =1, ∴ y =x+1当 x = 0 时,y =1,则P(0,1)yOxABPCyBCxA O 3 b二次函数问题1.如图,在直角坐标系中,点A 的坐标为(-2,0),贯穿连接0A,将线段OA 绕原点O 顺时针扭转120.,得到线段OB. (1)求点 B 的坐标;(2)求经由 A.O.B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否消失点 C,使△BOC 周长最小?若消失求出点C 坐标;若不消失,请解释来由.解:(1)B(1, 3 )(2) y= 32 3 x2+x33(3)∵点O 关于对称轴的对称点是点A,则衔接AB, 交对称轴于点C,则△BOC 的周长最小3 y=x2+3 2 3 3 x ,当 x=-1 时,y= 3 3∴C(-1,) 32.如图,在直角坐标系中,A,B,C 的坐标分离为(-1,0),(3,0),(0,3),过 A,B,C 三点的抛物线的对称轴为直 线l,D 为直线l 上的一个动点,(1)求抛物线的解析式;(2)求当AD+CD 最小时点D 的坐标; (3)以点A 为圆心,以AD 为半径作圆A;解:(1)①证实:当AD+CD 最小时,直线BD 与圆A 相切;②写出直线BD 与圆A 相切时,点D 的另一个坐标.(2)衔接 BC,交直线 l 于点D,则 DA+DC = DB+DC =BC,BC 的长就是AD+DC 的最小值 BC :y = -x +3则直线BC 与直线x = 1 的交点D(1,2),yCD AOBx3.抛物线y=ax2+bx+c(a≠0)对称轴为x=-1,与x 轴交于A.B 两点,与y 轴交于点C,个中A(-3,0).C(0,-2) (1)求这条抛物线的函数表达式.(2)已知在对称轴上消失一点P,使得△PBC 的周长最小.要求出点P 的坐标.(3)若点D 是线段OC 上的一个动点(不与点O.点C 重合).过点D 作DE∥PC 交x 轴于点E,衔接PD.PE .设CD 的长为m,△PDE 的面积为S .求S 与m 之间的函数关系式.试解释S 是否消失最大值,若消失,要求出最大值;若不消失,请解释来由.2a =1 (1)由题意得9a-3b+c =02解得a= 34 ,b=3,c = -2c =-2∴抛物线的解析式为y= 2x2+3 4 x -2 3yEO xABDPC(2)点B 关于对称轴的对称点是点A,衔接AC 交对称轴于点P,则△PBC 的周长最小设直线AC 的解析式为y = kx+b,∵A(-3,0),C(0,-2),则 0 = -3k +b-2 =b 2解得k =-3,b =-22 ∴直线AC 的解析式为y =- 34 x –2 4把 x = -1 代入得y =-3,∴P(-1,-) 3(3)S 消失最大值OE ∵DE∥PC,∴=OAODOE ,即= OC3 2-m 2OE = 3- 3 3 m ,AE = OA –OE = m 2 2办法一,衔接OPS = S 四边形PDOE – S △OED = S △POE + S △POD –S △OED1 = ×(3-234 m)× + 2 3 1 ×(2 - m)×1-2 1 ×(3- 2 3 m)×(2 -m)23= - m2+43m =-23 3 (m-1)2+ 443 ∴,当 m = 1 时,S 最大=4办法二,S = S △OAC – S △AEP – S △OED –S △PCD3 3 = - m2 + m= 3 - (m-1)2 +3 4 2 4 4。
将军饮马问题问题概述路径最短、线段和最小、线段差最大、周长最小等一系列最值问题方法原理1.两点之间,线段最短;2.三角形两边之和大于第三边,两边之差小于第三边;3.中垂线上的点到线段两端点的距离相等;4.垂线段最短.基本模型1.已知:如图,定点A、B分布在定直线l两侧;要求:在直线l上找一点P,使PA+PB的值最小解:连接AB交直线l于点P,点P即为所求,PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP’中,AP´+BP´>AB,即AP´+BP´>AP+BP∴P为直线AB与直线l的交点时,PA+PB最小.2.已知:如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小)解:作点A关于直线l的对称点A´,连接A´B交l于P,点P即为所求;理由:根据轴对称的性质知直线l为线段AA´的中垂线,由中垂线的性质得:PA=PA´,要使PA+PB最小,则需PA´+PB值最小,从而转化为模型1.3.已知:如图,定点A、B分布在定直线l的同侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA-PB︱的值最大解:连接BA并延长,交直线l于点P,点P即为所求;理由:此时︱PA-PB︱=AB,在l上任取异于点P的一点P´,连接AP´、BP´,由三角形的三边关系知︱P´A-P´B︱<AB,即︱P´A-P´B︱<︱PA-PB︱4. 已知:如图,定点A、B分布在定直线l的两侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA-PB︱的值最大解:作点B关于直线l的对称点B´,连接B´A并延长交于点P,点P即为所求;理由:根据对称的性质知l为线段BB´的中垂线,由中垂线的性质得:PB=PB´,要使︱PA-PB︱最大,则需︱PA-PB´︱值最大,从而转化为模型3.典型例题1-1如图,直线y=2x+4与x轴、y轴分别交于点A和点B,点C、D分3别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为_________,此时PC+PD的最小值为_________.【分析】符合基本模型2的特征,作点D关于x轴的对称点D',连接CD'交x轴于点P,此时PC+PD值最小,由条件知CD为△BAO的中位线,OP为△CDD'的中位线,易求OP长,从而求出P点坐标;PC+PD的最小值即CD'长,可用勾股定理(或两点之间的距离公式,实质相同)计算.【解答】连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P ,此时PC+PD 值最小.令y=23x+4中x=0,则y=4, ∴点B 坐标(0,4);令y=23x+4中y=0,则23x+4=0,解得:x=﹣6,∴点A 的坐标为(﹣6,0).∵点C 、D 分别为线段AB 、OB 的中点,∴CD 为△BAO 的中位线, ∴CD ∥x 轴,且CD=21AO=3,∵点D ′和点D 关于x 轴对称,∴O 为DD ′的中点,D ′(0,-1),∴OP 为△CDD ′的中位线,∴OP=21CD=23,∴点P 的坐标为(﹣32,0).在Rt △CDD ′中,CD ′=22D D CD '+=2243+=5,即PC+PD 的最小值为5.【小结】还可用中点坐标公式先后求出点C 、点P 坐标;若题型变化,C 、D 不是AB 和OB 中点时,则先求直线CD ′的解析式,再求其与x 轴的交点P 的坐标.典型例题1-2如图,在平面直角坐标系中,已知点A 的坐标为(0,1),点B的坐标为(32,﹣2),点P 在直线y=﹣x 上运动,当|PA ﹣PB|最 大时点P 的坐标为_________,|PA ﹣PB|的最大值是_________.【分析】符合基本模型4的特征,作A 关于直线y=﹣x 对称点C ,连接BC ,可得直线BC 的方程;求得BC 与直线y=﹣x 的交点P 的坐标;此时|PA ﹣PB|=|PC ﹣PB|=BC 取得最大值,再用两点之间的距离公式求此最大值.【解答】作A 关于直线y=﹣x 对称点C ,易得C 的坐标为(﹣1,0);连接BC ,可得直线BC的方程为y=﹣54x ﹣54,与直线y=﹣x 联立解得交点坐标P 为(4,﹣4);此时|PA﹣PB|=|PC ﹣PB|=BC 取得最大值,最大值BC=2223)2()1(-++=241;【小结】“两点一线”大多考查基本模型2和4,需作一次对称点,连线得交点.变式训练1-1已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A (5,0),OB=4√5,点P 是对角线OB 上的一个动点,D (0,1),当CP+DP 最短时,点P 的坐标为( )A .(0,0)B .(1,12)C .(65,35)D .(107,57)变式训练1-2如图,菱形ABCD 中,对角线AC 和BD 交于点O ,AC=2,BD=2√3,E 为AB 的中点,P 为对角线AC 上一动点,则PE+PB 的最小值为__________.变式训练1-3如图,已知直线y=12x+1与y 轴交于点A ,与x 轴交于点D ,抛物线y=12x 2+bx+c 与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0).(1)求该抛物线的解析式;(2)在抛物线的对称轴上找一点M ,使|AM ﹣MC|的值最大,求出点M 的坐标.拓展模型1. 已知:如图,A 为锐角∠MON 外一定点;要求:在射线OM 上找一点P ,在射线ON 上找一点Q ,使AP+PQ 的值最小.解:过点A 作AQ ⊥ON 于点Q ,AQ 与OM 相交于点P ,此时,AP+PQ 最小;理由:AP+PQ ≧AQ ,当且仅当A 、P 、Q 三点共线时,AP+PQ 取得最小值AQ ,根据垂线段最短,当AQ ⊥ON 时,AQ 最小.2. 已知:如图,A 为锐角∠MON 内一定点;要求:在射线OM 上找一点P ,在射线ON 上找一点Q ,使AP+PQ 的值最小.解:作点A关于OM的对称点A′,过点A′作AQ⊥ON于点Q,A′Q交OM于点P,此时AP+PQ最小;理由:由轴对称的性质知AP=A′P,要使AP+PQ最小,只需A′P+PQ最小,从而转化为拓展模型13.已知:如图,A为锐角∠MON内一定点;要求:在射线OM上找一点P,在射线ON上找一点Q,使△APQ的周长最小解:分别作A点关于直线OM的对称点A1,关于ON的对称点A 2,连接 A1A2交OM于点P,交ON于点Q,点P和点Q即为所求,此时△APQ周长最小,最小值即为线段A1A2的长度;理由:由轴对称的性质知AP=A1P,AQ=A2Q,△APQ的周长AP+PQ+AQ=A1P+PQ+A2Q,当A1、P、Q、A2四点共线时,其值最小.4. 已知:如图,A、B为锐角∠MON内两个定点;要求:在OM上找一点P,在ON上找一点Q,使四边形APQB的周长最小解:作点A关于直线OM的对称点A´,作点B关于直线ON的对称点B´,连接A´B´交OM于P,交ON于Q,则点P、点Q即为所求,此时四边形APQB周长的最小值即为线段AB和A´B´的长度之和;理由:AB长为定值,由基本模型将PA转化为PA´,将QB转化为QB´,当A´、P、Q、B´四点共线时,PA´+PQ+ QB´的值最小,即PA+PQ+ QB的值最小.5.搭桥模型已知:如图,直线m∥n,A、B分别为m上方和n下方的定点,(直线AB不与m垂直)要求:在m、n之间求作垂线段PQ,使得AP+PQ+BQ最小.分析:PQ为定值,只需AP+BQ最小,可通过平移,使P、Q“接头”,转化为基本模型解:如图,将点A沿着平行于PQ的方向,向下平移至点A′,使得AA′=PQ,连接A′B交直线n于点Q,过点Q作PQ⊥n,交直线m于点P,线段PQ即为所求,此时AP+PQ+BQ最小.理由:易知四边形QPAA′为平行四边形,则QA′=PA,当B、Q、A′三点共线时,QA′+BQ最小,即AP+BQ最小,PQ长为定值,此时AP+PQ+BQ最小.6.已知:如图,定点A、B分布于直线l两侧,长度为a(a为定值)的线段PQ在l上移动(P在Q左边)要求:确定PQ的位置,使得AP+PQ+QB最小分析:PQ为定值,只需AP+QB的值最小,可通过平移,使P、Q“接头”,转化为基本模型解:将点A沿着平行于l的方向,向右移至A´,使AA´=PQ=a,连接A´B交直线l于点Q,在l上截取PQ=a(P在Q左边),则线段PQ即为所求,此时AP+PQ+QB的最小值为A´B+PQ,即A´B+a理由:易知四边形APQA´为平行四边形,则PA=QA´,当A´、Q、B三点共线时,QA´+QB最小,即PA+QB最小,又PQ长为定值此时PA+PQ+QB值最小.7.已知:如图,定点A、B分布于直线l的同侧,长度a(a为定值)的线段PQ在l上移动(P在Q左边)要求:确定PQ 的位置,使得四边形APQB 周长最小分析:AB 长度确定,只需AP+PQ+QB 最小,通过作A 点关于l 的对称点,转化为上述模型3解:作A 点关于l 的对称点A ´,将点A ´沿着平行于l的方向,向右移至A ´´,使A ´A ´´=PQ=a ,连接A ´´B交l 于Q ,在l 上截取QP=a (P 在Q 左边),线段PQ 即为所求,此时四边形APQB 周长的最小值为A ´´B+AB+PQ ,即A ´´B+AB+a典型例题2-1如图,在矩形ABCD 中,AB=10,BC=5,若点M 、N 分别是线段AC 、AB 上的两个动点,则BM+MN 的最小值为 .【分析】符合拓展模型2的特征,作点B 关于AC 的对称点E ,再过点E 作AB 的垂线段,该垂线段的长即BM+MN 的最小值,借助等面积法和相似可求其长度.【解答】作点B 关于AC 的对称点E ,再过点E 作EN ⊥AB 于N ,则BM+MN=EM+MN ,其最小值即EN 长;∵AB=10,BC=5,∴AC=22BC AB +=55,等面积法求得AC 边上的高为55510⨯=25,∴BE=45, 易知△ABC ∽△ENB ,∴,代入数据解得EN=8. 即BM+MN 的最小值为8.【小结】该类题的思路是通过作对称,将线段转化,再根据定理、公理连线或作垂线;可作定点或动点关于定直线的对称点,有些题作定点的对称点易解,有些题则作动点的对称点易解.典型例题2-2如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=,点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .B .C .6D .3【分析】符合拓展模型3的特征;作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,此时△PMN周长最小,其值为CD长;根据对称性连接OC、OD,分析条件知△OCD是顶角为120°的等腰三角形,作底边上高,易求底边CD. 【解答】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.即△PMN周长的最小值是3;故选:D.【小结】根据对称的性质,发现△OCD是顶角为120°的等腰三角形,是解题的关键,也是难点.典型例题2-3如图,已知平行四边形ABCO,以点O为原点,OC所在的直线为x轴,建立直角坐标系,AB交y轴于点D,AD=2,OC=6,∠A=60°,线段EF所在的直线为OD的垂直平分线,点P为线段EF上的动点,PM⊥x轴于点M点,点E与E′关于x轴对称,连接BP、E′M.(1)请直接写出点A坐标为,点B坐标为;(2)当BP+PM+ME′的长度最小时,请求出点P的坐标.【分析】(1)解直角三角形求出OD,BD的长即可解决;(2)符合“搭桥模型”的特征;首先证明四边形OPME′是平行四边形,可得OP=EM,PM是定值,PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,此时P点为直线OB与EF的交点,结合OB的解析式可得P点坐标;【解答】(1)在Rt△ADO中,∵∠A=60°,AD=2,∴OD=2•tan60°=2,∴A(﹣2,2),∵四边形ABCO是平行四边形,∴AB=OC=6,∴DB=6﹣2=4,∴B(4,2)(2)如图,连接OP.∵EF垂直平分线段OD,PM⊥OC,∴∠PEO=∠EOM=∠PMO=90°,∴四边形OMPE是矩形,∴PM=OE=,∵OE=OE′,∴PM=OE′,PM∥OE′,∴四边形OPME′是平行四边形,∴OP=EM,∵PM是定值,∴PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,∴当O、P、B共线时,BP+PM+ME′的长度最小,∵直线OB的解析式为y=x,∴P(2,).【小结】求没有公共端点的两条线段之和的最小值,一般通过作对称和平移(构造平行四边形)的方法,转化为基本模型.典型例题2-4如图所示,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(﹣2,0),O(0,0),B(0,4),把△AOB绕点O按顺时针方向旋转90°,得到△COD.(1)求C、D两点的坐标;(2)求经过A、B、D三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上取两点E、F(点E在点F的上方),且EF=1,使四边形ACEF的周长最小,求出E、F两点的坐标.【分析】符合拓展模型7的特征,通过作对称、平移、连线,可找出E、F点,结合直线的解析式和抛物线的对称轴可解出E、F坐标.【解答】(1)由旋转的性质可知:OC=OA=2,OD=OB=4,∴C点的坐标是(0,2),D点的坐标是(4,0),(2)设所求抛物线的解析式为y=ax2+bx+c,4a-2b+c=0由题意,得 16a+4b+c=0c=4解得a=-12,b=1,c=4,∴所求抛物线的解析式为y=-12x²+x+4;(3)只需AF+CE最短,抛物线y=-12x²+x+4的对称轴为x=1,将点A向上平移至A1(﹣2,1),则AF=A1E,作A1关于对称轴x=1的对称点A2(4,1),连接A2C,A2C与对称轴交于点E,E为所求,可求得A2C的解析式为y=-14x+2,当x=1时,y=74,∴点E的坐标为(1,74),点F的坐标为(1,34).【小结】解决此类题的套路是“对称、平移、连线”;其中,作对称和平移的顺序可互换.变式训练2-1几何模型:条件:如图1,A,B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A’,连接A’B交l于点P,即为所求.(不必证明)模型应用:(1)如图2,已知平面直角坐标系中两定点A(0,﹣1)和B(2,﹣1),P为x轴上一动点,则当PA+PB的值最小是点P的横坐标是,此时PA+PB= .(2)如图3,正方形ABCD的边长为4,E为AB的中点,P是AC上一动点,连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是.(3)如图4,在菱形ABCD中,AB=10,∠DAB=60°,P是对角线AC上一动点,E,F分别是线段AB和BC上的动点,则PE+PF的最小值是.(4)如图5,在菱形ABCD中,AB=6,∠B=60°,点G是边CD边的中点,点E.F分别是AG,AD上的两个动点,则EF+ED的最小值是.变式训练2-2如图,矩形ABCD中,AD=15,AB=10,E为AB边上一点,且DE=2AE,连接CE与对角线BD交于F;若P、Q分别为AB边和BC边上的动点,连接EP、PQ和QF;则四边形EPQF周长的最小值是___________.变式训练2-3如图,已知直线l 1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=4,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ= .变式训练2-4如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ 的周长最小,求出P、Q两点的坐标.中考真题1.要在街道旁建奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使A、B到它的距离之和最短?小聪以街道为x轴,建立了如图所示的平面直角坐标系,A点坐标为(0,3),B点坐标为(6,5),则A、B两点到奶站距离之和的最小值是.2.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A .(0,)B .(0,)C .(0,2)D .(0,)3.如图,在矩形ABCD 中,AB=5,AD=3,动点P 满足S △PAB =31S 矩形ABCD ,则点P 到A 、B 两点距离之和PA+PB 的最小值为( )A .B .C .5D .4.已知抛物线y=x 2+1具有如下性质:该抛物线上任意一点到定点F (0,2)的距离与到x轴的距离始终相等,如图,点M 的坐标为(,3),P 是抛物线y=x 2+1上一个动点,则△PMF 周长的最小值是( )A .3B .4C .5D .65.如图,点A (a ,3),B (b ,1)都在双曲线y=上,点C ,D ,分别是x 轴,y 轴上的动点,则四边形ABCD 周长的最小值为( )A .B .C .D .6.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,D 、E 分别是AB 、BC 边上的动点,则AE+DE 的最小值为( )A .B .C .5D .7.如图,Rt △ABC 中,∠BAC=90°,AB=3,AC=6,点D ,E 分别是边BC ,AC 上的动点,则DA+DE 的最小值为 .8.如图,等腰△ABC 的底边BC=20,面积为120,点F 在边BC 上,且BF=3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则△CDF 周长的最小值为 .9.如图,菱形ABCD 的边长为6,∠ABC=120°,M 是BC 边的一个三等分点,P 是对角线AC 上的动点,当PB+PM 的值最小时,PM 的长是( )A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为()A.B.C.D.611.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点.△OMN的面积为10.若动点P在x轴上,则PM+PN 的最小值是()A.6B.10 C.2D.212.如图,△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是形,P、E、F分别为线段AB、AD、DB上的任意点,则PE+PF的最小值是.13.如图,已知抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).(1)求此抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P,使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.14.如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.15.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式及顶点M的坐标;(2)连接AC、BC,N为抛物线上的点且在第四象限,当S△NBC=S△ABC时,求N点的坐标;(3)在(2)问的条件下,过点C作直线l∥x轴,动点P(m,3)在直线l上,动点Q(m,0)在x轴上,连接PM、PQ、NQ,当m为何值时,PM+PQ+QN的和最小,并求出 PM+PQ+QN 和的最小值.16.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND 长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.17.如图1,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴从左至右交于A,B两点,与y轴交于点C.(1)若抛物线过点T(1,﹣),求抛物线的解析式;(2)在第二象限内的抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC相似?若存在,求a的值;若不存在,请说明理由.(3)如图2,在(1)的条件下,点P的坐标为(﹣1,1),点Q(6,t)是抛物线上的点,在x轴上,从左至右有M、N两点,且MN=2,问MN在x轴上移动到何处时,四边形PQNM 的周长最小?请直接写出符合条件的点M的坐标.18.如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),P是第一象限内抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.19.探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:P1P2=他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x=,y=.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:;拓展:(3)如图3,点P(2,n)在函数y=x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.20.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.21.如图①,在平面直角坐标系中,OA=6,以OA为边长作等边三角形ABC,使得BC∥OA,且点B、C落在过原点且开口向下的抛物线上.(1)求这条抛物线的解析式;(2)在图①中,假设一动点P从点B出发,沿折线BAC的方向以每秒2个单位的速度运动,同时另一动点Q从O点出发,沿x轴的负半轴方向以每秒1个单位的速度运动,当点P 运动到A点时,P、Q都同时停止运动,在P、Q的运动过程中,是否存在时间t,使得PQ⊥AB,若存在,求出t的值,若不存在,请说明理由;(3)在BC边上取两点E、F,使BE=EF=1个单位,试在AB边上找一点G,在抛物线的对称轴上找一点H,使得四边形EGHF的周长最小,并求出周长的最小值.本人所著《初中几何模型与解题通法》已发行,可在当当、淘宝和京东搜索购买特色:1.由一线名师编写,更专业权威,各地历年中考压轴题几乎都能在书中找到对应的模型和方法,甚至出现大量高度类似题。
将军饮马18道典型习题将军饮马"是一个古希腊数学问题,源于2000多年前。
当时,一位将军向城里的著名数学家海伦请教:他每天早上都要骑马到河边让马喝水,然后到河岸同一侧的一块草地上让马吃草。
将军想知道,在河岸的哪个具体位置让马喝水,可以让他和马儿走的路程最短。
经过思考,海伦给出了答案,这就是"将军饮马"问题。
以下是"将军饮马"问题的五种常见模型:1.一动两定(和最小)模型:假设点A是将军和马儿居住的营帐,点B是指定的草地,小河L在两点之间流过。
问题是,将军和马儿在哪个具体位置喝水,可以让他们走的路程最短?解决方法是,做A点关于L的对称点A',连接A'B,与L的交点即为P点。
这时,PA+PB最小。
为什么呢?因为在L 上任意取一点M(不与P重合),根据几何原理,PA+PB=A'P+PB=A'B,AM+MB>A'B,所以动点P在A'B与L 交点处时,PA+PB最小。
2.一定两动模型:假设点A和小河L1与第一种模型一样,但是这次,草地不是指定的点,而是由L2代表的一片草地。
问题是,在哪个具体位置喝水和吃草,可以让将军和马儿走的路程最短?解决方法是,做A点关于L1的对称点A',做A点关于L2的对称点A'',连接A'A'',与L1和L2的交点即为P、Q。
这时,AP+PQ+QA的和最小。
为什么呢?因为在L1上取点M(不与P重合),在L2上取点N(不与Q重合),根据几何原理,AP+PQ+AQ=A'P+PQ+A''Q=A'A'',AM+MN+AN>A'A'',所以动点P和Q在A'A''与L1、L2的交点处时,AP+PQ+QA的和最小。
3.两动一定模型:假设点A和小河L1与第一种模型一样,但是这次,将军要骑马到L2代表的一片草地吃草,然后再回到营帐。
.最全“将军饮马”类问题(类型大全+分类汇编)1.如图,直线 l 和 l 的异侧两点 A、B,在直线 l 上求作一点 P,使 PA+PB 最小。
2.如图,直线 l 和 l 的同侧两点 A、B,在直线 l 上求作一点 P,使 PA+PB 最小。
3.如图,点 P 是∠MON 内的一点,分别在 OM,ON 上作点 A,B。
使△PAB 的周长最小4.如图,点 P,Q 为∠MON 内的两点,分别在 OM,ON 上作点 A,B。
使四边形 PAQB 的周长最小。
.5.如图,点 A 是∠MON 外的一点,在射线 OM 上作点 P,使 PA 与点 P 到射线 ON 的距离之和最小6. .如图,点 A 是∠MON 内的一点,在射线 OM 上作点 P,使 PA 与点 P 到射线 ON 的距离之和最小二、常见题型三角形问题1.如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是 AC 上的一点,M 是 AD 上的一点,若 AE = 2,求 EM+EC 的最小值A解:∵点 C 关于直线 AD 的对称点是点 B ,∴连接 BE ,交 AD 于点 M ,则 ME+MD 最小, 过点 B 作 BH ⊥AC 于点 H ,则 EH = AH – AE = 3 – 2 = 1,BH = BC2 - CH2 = 62 - 32 = 3 3在直角△BHE 中,BE = BH2 + HE2=(3 3)2 + 12 = 2 7C C2.如图,在锐角△ABC 中,AB = 4 2BAC =45°,∠BAC 的平分线交 BC 于点 D ,M 、N 分别是 AD 和 AB 上的动点,则 BM+MN 的最小值是 .解:作点 B 关于 AD 的对称点 B',过点 B'作 B'E ⊥AB 于点 E ,交 AD 于点 F , 则线段 B'E 的长就是 BM +MN的最小值 在等腰 Rt △AEB'中, 根据勾股定理得到,B'E = 4AN EB3.如图,△ABC 中,AB=2,∠BAC=30°,若在 AC 、AB 上各取一点 M 、N ,使 BM+MN 的值最小,则这个最小值C解:作 AB 关于 AC 的对称线段 AB',过点 B'作 B'N ⊥AB ,垂足为 N ,交 AC 于点 M , 则 B'N = MB'+MN = MB+MNB'N 的长就是 MB+MN 的最小值则∠B'AN = 2∠BAC= 60°,AB' = AB = 2, ∠ANB'= 90°,∠B' = 30°。
中考数学复习:“将军饮马”类题型大全一、求线段和最值1.两定一动型例1:在图中,AM⊥EF,BN⊥EF,垂足为M、N,MN=12m,AM=5m,BN=4m,P是EF上任意一点,则PA+PB的最小值是多少?分析:这是最基本的将军饮马问题,A,B是定点,P是动点,属于两定一动将军饮马型。
根据常见的“定点定线作对称”,可作点A关于EF的对称点A’,根据两点之间,线段最短,连接A’B,此时A’P+PB即为A’B,最短。
而要求A’B,则需要构造直角三角形,利用勾股定理解决。
解答:作点A关于EF的对称点A’,过点A’作A’C⊥BN的延长线于C。
易知A’M=AM=NC=5m,BC=9m,A’C=MN=12m,在Rt△A’BC中,A’B=15m,即PA+PB的最小值是15m。
变式:在边长为2的正三角形ABC中,E,F,G为各边中点,P为线段EF上一动点,则△BPG周长的最小值为多少?分析:考虑到BG为定值是1,则△BPG的周长最小转化为求BP+PG的最小值,又是两定一动的将军饮马型,考虑作点G关于EF的对称点,这里有些同学可能看不出来到底是哪个点,我们不妨连接AG,则AG⊥BC,再连接EG,根据“直角三角形斜边中线等于斜边的一半”,可得AE=EG,则点A就是点G关于EF的对称点。
最后计算周长时,别忘了加上BG的长度。
解答:连接AG,易知PG=PA,BP+PG=BP+PA,当B,P,A三点共线时,BP+PG=BA,此时最短,BA=2,BG=1,即△BPG周长最短为3.2.一定两动型例2:在△ABC中,AB=AC=5,D为BC中点,AD=5,P为AD上任意一点,E为AC上任意一点,求PC+PE的最小值。
分析:这里的点C是定点,P,E是动点,属于一定两动的将军饮马模型。
由于△ABC是等腰三角形,AD是BC中线,则AD垂直平分BC,点C关于AD的对称点是点B,PC+PE=PB+PE,显然当B,P,E三点共线时,BE更短。
“将军饮马”类题型大全一.求线段和最值1(一)两定一动型例1:如图,AM⊥EF,BN⊥EF,垂足为M、N,MN=12m,AM=5m,BN=4m,P是EF上任意一点,则PA+PB的最小值是______m.分析:这是最基本的将军饮马问题,A,B是定点,P是动点,属于两定一动将军饮马型,根据常见的“定点定线作对称”,可作点A关于EF的对称点A’,根据两点之间,线段最短,连接A’B,此时A’P+PB即为A’B,最短.而要求A’B,则需要构造直角三角形,利用勾股定理解决.解答:作点A关于EF的对称点A’,过点A’作A’C⊥BN的延长线于C.易知A’M =AM=NC=5m,BC=9m,A’C=MN=12m,在Rt△A’BC中,A’B=15m,即PA+PB的最小值是15m.变式:如图,在边长为2的正三角形ABC中,E,F,G为各边中点,P为线段EF上一动点,则△BPG周长的最小值为_________.分析:考虑到BG为定值是1,则△BPG的周长最小转化为求BP+PG的最小值,又是两定一动的将军饮马型,考虑作点G关于EF的对称点,这里有些同学可能看不出来到底是哪个点,我们不妨连接AG,则AG⊥BC,再连接EG,根据“直角三角形斜边中线等于斜边的一半”,可得AE=EG,则点A就是点G关于EF的对称点.最后计算周长时,别忘了加上BG的长度.解答:连接AG,易知PG=PA,BP+PG=BP+PA,当B,P,A三点共线时,BP+PG =BA,此时最短,BA=2,BG=1,即△BPG周长最短为3.2(二)一定两动型例2:如图,在△ABC中,AB=AC=5,D为BC中点,AD=5,P为AD上任意一点,E为AC上任意一点,求PC+PE的最小值.分析:这里的点C是定点,P,E是动点,属于一定两动的将军饮马模型,由于△ABC 是等腰三角形,AD是BC中线,则AD垂直平分BC,点C关于AD的对称点是点B,PC+PE=PB+PE,显然当B,P,E三点共线时,BE更短.但此时还不是最短,根据“垂线段最短”只有当BE⊥AC时,BE最短.求BE时,用面积法即可.解答:作BE⊥AC交于点E,交AD于点P,易知AD⊥BC,BD=3,BC=6,则AD·BC=BE·AC,4×6=BE·5,BE=4.8变式:如图,BD平分∠ABC,E,F分别为线段BC,BD上的动点,AB=8,△ABC的周长为20,求EF+CF的最小值________.分析:这里的点C是定点,F,E是动点,属于一定两动的将军饮马模型,我们习惯于“定点定线作对称”,但这题这样做,会出现问题.因为点C的对称点C’必然在AB上,但由于BC长度未知,BC’长度也未知,则C’相对的也是不确定点,因此我们这里可以尝试作动点E关于BD的对称点.解答:如图,作点E关于BD的对称点E’,连接E’F,则EF+CF=E’F+CF,当E’,F,C三点共线时,E’F+CF=E’C,此时较短.过点C作CE’’⊥AB于E’’,当点E’与点E’’重合时,E’’C最短,E’’C为AB边上的高,E’’C=5.(三)两定两动型例3:如图,∠AOB=30°,OC=5,OD=12,点E,F分别是射线OA,OB上的动点,求CF+EF+DE的最小值.分析:这里的点C,点D是定点,F,E是动点,属于两定两动的将军饮马模型,依旧可以用“定点定线作对称”来考虑.作点C关于OB的对称点,点D关于OA 的对称点.解答:作点C关于OB的对称点C’,点D关于OA的对称点D’,连接C’D’.CF +EF+DE=C’F+EF+D’E,当C’,F,E,D’四点共线时,CF+EF+DE=C’D’最短.易知∠D’OC’=90°,OD’=12,OC’=5,C’D’=13,CF+EF+DE最小值为13.变式:(原创题)如图,斯诺克比赛桌面AB宽1.78m,白球E距AD边0.22m,距CD边1.4m,有一颗红球F紧贴BC边,且距离CD边0.1m,若要使白球E经过边AD,DC,两次反弹击中红球F,求白球E运动路线的总长度.分析:本题中,点E和点F是定点,两次反弹的点虽然未知,但我们可以根据前几题的经验作出,即分别作点E关于AD边的对称点E’,作点F关于CD边的对称点F’,即可画出白球E的运动路线,化归为两定两动将军饮马型.解答:作点E关于AD边的对称点E’,作点F关于CD边的对称点F’,连接E’F’,交AD于点G,交CD于点H,则运动路线长为EG+GH+HF长度之和,即E’F’长,延长E’E交BC于N,交AD于M,易知E’M=EM=0.22m,E’N=1.78+0.22=2m,NF’=NC+CF’=1.4+0.1=1.5m,则Rt△E’NF’中,E’F’=2.5m,即白球运动路线的总长度为2.5m.小结:以上求线段和最值问题,几乎都可以归结为“两定一动”“一定两动”“两定两动”类的将军饮马型问题,基本方法还是“定点定线作对称”,利用“两点之间线段最短”“垂线段最短”的2条重要性质,将线段和转化为直角三角形的斜边,或者一边上的高,借助勾股定理,或者面积法来求解.当然,有时候,我们也需学会灵活变通,定点对称行不通时,尝试作动点对称.(二)求角度例1:P为∠AOB内一定点,M,N分别为射线OA,OB上一点,当△PMN周长最小时,∠MPN=80°.(1)∠AOB=_____°(2)求证:OP平分∠MPN分析:这又是一定两动型将军饮马问题,我们应该先将M,N的位置找到,再来思考∠AOB的度数,显然作点P关于OA的对称点P’,关于OB的对称点P’’,连接P’P’’,其与OA交点即为M,OB交点即为N,如下图,易知∠DPC 与∠AOB互补,则求出∠DPC的度数即可.解答:(1)法1:如图,∠1+∠2=100°,∠1=∠P’+∠3=2∠3,∠2=∠P’’+∠4=2∠4,则∠3+∠4=50°,∠DPC=130°,∠AOB=50°.再分析:考虑到第二小问要证明OP平分∠MPN,我们就连接OP,则要证∠5=∠6,显然很困难,这时候,考虑到对称性,我们再连接OP’,OP’’,则∠5=∠7,∠6=∠8,问题迎刃而解.解答:(1)法2:易知OP’=OP’’,∠7+∠8=∠5+∠6=80°,∠P’OP’’=100°,由对称性知,∠9=∠11,∠10=∠12,∠AOB=∠9+∠10=50°(2)由OP’=OP’’,∠P’OP’’=100°知,∠7=∠8=40°,∠5=∠6=40°,OP平分∠MPN.变式:如图,在五边形ABCDE中,∠BAE=136°,∠B=∠E=90°,在BC、DE上分别找一点M、N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为________.分析:这又是典型的一定两动型将军饮马问题,必然是作A点关于BC、DE的对称点A′、A″,连接A′A″,与BC、DE的交点即为△AMN周长最小时M、N的位置.解答:如图,∵∠BAE=136°,∴∠MA′A+∠NA″A=44°由对称性知,∠MAA′=∠MA′A,∠NAA″=∠NA″A,∠AMN+∠ANM=2∠MA′A+2∠NA″A=88°思考题:1.(2017·安顺)如图所示,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_______.2.(2017·安徽改编)如图,在矩形ABCD中,AB=4,AD=3.P为矩形ABCD 内一点,若矩形ABCD面积为△PAB面积的4倍,则点P到A,B两点距离之和PA+PB的最小值为________.。
将军饮马问题类型一、基本模式类型二、轴对称变换的应用(将军饮马问题)2、如图所示,如果将军从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河OB上的某一位置Q,然后立即返回校场N.请为将军重新设计一条路线(即选择点P和Q),使得总路程MP+PQ+QN最短.【变式】如图所示,将军希望从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河OB上的某一位置Q.请为将军设计一条路线(即选择点P和Q),使得总路程MP+PQ最短.3、将军要检阅一队士兵,要求(如图所示):队伍长为a,沿河OB排开(从点P到点Q);将军从马棚M出发到达队头P,从P至Q检阅队伍后再赶到校场N.请问:在什么位置列队(即选择点P和Q),可以使得将军走的总路程MP+PQ+QN最短?4. 如图,点M在锐角∠AOB内部,在OB边上求作一点P,使点P到点M的距离与点P到OA 边的距离之和最小5已知∠MON内有一点P,P关于OM,ON的对称点分别是和,分别交OM, ON于点A、B,已知=15,则△PAB 的周长为()A. 15 B 7.5 C. 10 D. 246. 已知∠AOB,试在∠AOB内确定一点P,如图,使P到OA、OB的距离相等,并且到M、N 两点的距离也相等.7、已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数.8. 如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC 边上一动点,则DP长的最小值为______.练习1、已知点A在直线l外,点P为直线l上的一个动点,探究是否存在一个定点B,当点P在直线l上运动时,点P与A、B两点的距离总相等,如果存在,请作出定点B;若不存在,请说明理由.2、 如图,在公路a 的同旁有两个仓库A 、B ,现需要建一货物中转站,要求到A 、B 两仓库的距离和最短,这个中转站M 应建在公路旁的哪个位置比较合理?aB3、 已知:A 、B 两点在直线l 的同侧, 在l 上求作一点M ,使得||AM BM -最小.4、如图,正方形ABCD 中,8AB =,M 是DC 上的一点,且2DM =,N 是AC 上的一动点,求DN MN +的最小值与最大值.NMDCB A5、如图,已知∠AOB 内有一点P ,试分别在边OA 和OB 上各找一点E 、F ,使得△PEF 的周长最小。
将军饮马问题模型的概述:唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题:将军在观望烽火之后从山脚下的A点出发,走到河边让战马饮水后再到B 点宿营。
问如何行走才能使总的路程最短。
模型一(两点在河的异侧):将军在观望烽火之后从山脚下的A点出发,走到河边让战马饮水后再到B 点宿营,将在何处渡河使行走距离最短并求最短距离。
方法:如右图,连接AB,与线段L交于点M,在M处渡河距离最短,最短距离为线段AB的长。
模型二(两点在河的同侧):将军在观望烽火之后从山脚下的A点出发,需先走到河边让战马饮水后再到B点宿营,将在何处渡河使行走距离最短并求最短距离。
方法:如右图,作点B关于直线L的对称点B',连接AB',与直线L的交点即为所求的渡河点,最短距离为线段AB'的长。
模型三:如图,将军同部队行驶至P处,准备在此驻扎,但有哨兵发现前方为两河AB、BC的交汇处,为防止敌军在对岸埋伏需派侦察兵到河边观察,再返回P处向将军汇报情况,问侦察兵在AB、BC何处侦查才能最快完成任务并求最短距离。
数学描述:如图在直线AB、BC上分别找点M、N,使得∆PMN周长最小。
方法:如右图,分别作点P关于直线AB、BC的对称点P'、P'',连接P'P'',与两直线的交点即为所求点M、N,最短距离为线段P'P''的长。
模型四如图,深夜为防止敌军在对岸埋伏,将军又派一队侦察兵到河边观察,并叮嘱观察之后先去存粮位置点Q处查看再返回P处向将军汇报情况,问侦察在AB、BC何处侦查才能最快完成任务并求最短距离。
数学描述:如图在直线AB、BC上分别找点M、N,使得四边形PQNM周长最小。
方法:如右图,分别作点P、点Q关于直线AB、BC的对称点P'、Q',连接P'Q',与两直线的交点即为所求点M、N,最短距离为线段(PQ+P'Q')的长。
探索 1 】如图,在 l探索 2 】如图,在 l探索 3 】如图,在 l探索 4 】如图,在 l探索 5 】如图,在 l关于将军饮马问题的九种变形上找一点 P,使 PA+PB 最小。
上找一点 P,使 PA+PB 最小。
上找一点 P,使 |PA- PB|最大。
上找一点 P,使 |PA- PB|最大。
上找一点 P,使 |PA- PB|最小。
探索 6 】如图,点 P 在锐角∠ AOB 的内部,在 OB 边上求作一点 D,在 OA 边上求作一点C,使△ PCD的周长最小。
【探索 7 】如图,点 P 在锐角∠ AOB 的内部,在 OB 边上求作一点 D,在 OA 边上求作一点 C,使 PD+ CD 最小。
探索 8 】如图,点 C、D 在锐角∠ AOB 的内部,在 OB 边上求作一点 F ,在 OA 边上求作一点E,使四边形 CEFD 周长最小。
探索 9 】A、B 与直线 l 的位置关系如图,在直线 l 上找到 M、N 两点,且 MN=10,M 在 N 的左边,使四边形 ABMN 的周长最短。
习题练习1.如图,在等边△ABC 中,AB = 6 ,AD⊥BC,E 是 AC 上的一点, M 是 AD 上的一点,丐 AE = 2 ,求 EM+EC 的最小值2.如图,在锐角 △ABC 中, AB = 4 2,∠ BAC =45°,∠ BAC 的平分线交5、如图所示,正方形 ABCD 的面积为 12,△ ABE 是等边三角形,点 E 在正方形 ABCD 内,在对角线 AC 上有一点 P ,使 PD + PE 的和最小,则这个最小值为BC 于点 D ,M 、N 分别是AD 和 AB 上的动点,则 BM+MN 的最小值是∠BAC=30° ,若在 AC 、 AB 上各取一点 M 、 N ,使 BM+MN 的值最小,则这个最小值 4、如图,正方形 ABCD 的边长为 8, M 在 DC上,丐 DM =2,N 是 AC 上的一动点, DN +MN 的 最小值为。
将军饮马问题问题概述路径最短、线段和最小、线段差最大、周长最小等一系列最值问题方法原理2.三角形两边之和大于第三边,两边之差小于第三边;1.两点之间,线段最短;.垂线段最短3.中垂线上的点到线段两端点的距离相等;4.基本模型1.已知:如图,定点A、B分布在定直线l两侧;要求:在直线l上找一点P,使PA+PB的值最小, 即为所求,点PP解:连接AB交直线l于点PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P′,连接AP′、BP′,在△ABP'中,AP′+BP′>AB,即AP′+BP′>AP+BP∴P为直线AB与直线l的交点时,PA+PB最小.2.已知:如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小)解:作点A关于直线l的对称点A′,连接A′B交l于P,点P即为所求;理由:根据轴对称的性质知直线l为线段AA′的中垂线,由中垂线的性质得:PA=PA′,要使PA+PB最小,则需PA′+PB值最小,从而转化为模型1.3.两的同侧(A、B已知:如图,定点A、B分布在定直线l 的距离不相等)点到l︱的值最大P,使PA-PB︱要求:在直线l上找一点 P,点P即为所求;解:连接BA并延长,交直线l于点的一点P′,︱=AB,在l上任取异于点P此时︱理由:PA-PB ︱<AB,,由三角形的三边关系知︱P′A-P′B′连接AP、BP′︱PA-PB︱′A-P′B︱<即︱P两B分布在定直线l的两侧(A、已知:如图,定点A、B 4.的距离不相等)点到l︱的值最大上找一点P,使︱PA-PB要求:在直线l 并延长交连接B′A解:作点B关于直线l的对称点B′,P于点,点P即为所求;为线段BB′的中垂线,由中垂理由:根据对称的性质知l ′,要使︱PA-PB︱最大,则需线的性质得:PB=PB3.′︱值最大,从而转化为模型︱PA-PB1-1典型例题2分DA和点B,点Cx+4如图,直线y=与x轴、y轴分别交于点3最小时,为OA上一动点,当PC+PD、别为线段ABOB的中点,点P_________. _________,此时的最小值为PC+PD点P的坐标为,连轴的对称点D'的特征,作点【分析】符合基本模型2D关于x为CDx轴于点P,此时PC+PD 值最小,由条件知CD'接交长,从OPCDD'的中位线,易求△的中位线,△BAOOP为长,可用勾股定理CD'PC+PD而求出P点坐标;的最小值即.(或两点之间的距离公式,实质相同)计算轴x′交CD′,连接D轴的对称点x关于D,作点CD】连接解答【.2x=0,则y=4,于点P,此时PC+PD值最小.令y=x+4中322的坐标,∴点Ay=0∴点B坐标(0,4);令y=x+4中,则x+4=0,解得:x=﹣633的中位线,BAO的中点,∴CD为△为(﹣6,0).∵点C、D分别为线段AB、OB1AO=3CD=,∴CD∥x轴,且2′的中点,O为DDD∵点′和点D关于x轴对称,∴31OP=CD=-1D′(0,),∴OP为△CDD′的中位线,∴,223△CDD′中,∴点P的坐标为(﹣,0).在Rt22222?4DDCD3??5.CD′=的最小值为=5,即=PC+PD 坐标;若题型变、点P【小结】还可用中点坐标公式先后求出点C CD′的解析不是化,C、DAB和OB中点时,则先求直线.P的坐标式,再求其与x轴的交点1-2典型例题B ,点1)如图,在平面直角坐标系中,已知点A的坐标为(0,3最,点的坐标为(,﹣2)P在直线y=﹣x上运动,当|PA﹣PB|2_________. PB|的最大值是P大时点的坐标为_________,|PA﹣,y=【分析】符合基本模型4的特征,作A关于直线﹣x 对称点C x连接BC,可得直线BC的方程;求得BC与直线y=﹣的交点P的坐标;此时|PA﹣PB|=|PC﹣PB|=BC取得最大值,.再用两点之间的距离公式求此最大值BCBC,可得直线;连接的坐标为(﹣1,0)C解答【】作A 关于直线y=﹣x对称点,易得C44|PA);此时4P为(4,﹣的方程为y=﹣xy=﹣,与直线﹣x联立解得交点坐标552241)(?2(?1)?3 PB|=|PC﹣PB|=BCBC==取得最大值,最大值;﹣22.,需作一次对称点,连线得交点2和4】【小结“两点一线”大多考查基本模型1-1变式训练),,已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(50最短0D(,1),当CP+DPOBOB=45,点P是对角线上的一个动点,√时,点P的坐标为()510361,.)1. 00.A(,) B(,C((.) D,)77552.1-2变式训练AC=2,和如图,菱形ABCD中,对角线ACBD交于点O,的上一动点,则PE+PB3,E为AB的中点,P为对角线BD=2AC√__________. 最小值为1-3变式训练112与直线交于x+bx+cD,抛物线y=x+1如图,已知直线y=与y轴交于点A,与x轴交于点22.01,)A、E两点,与x轴交于B、C两点,且B点坐标为()求该抛物线的解析式;(1. 的值最大,求出点MC|M的坐标(2)在抛物线的对称轴上找一点M,使|AM﹣拓展模型1.已知:如图,A为锐角∠MON外一定点;,使上找一点Q上找一点P,在射线ON要求:在射线OM. AP+PQ的值最小解:过点A作AQ⊥ON于点Q,AQ与OM相交于点P,此时,AP+PQ最小;理由:AP+PQ≧AQ,当且仅当A、P、Q三点共线时,AP+PQ取得最小值AQ,根据垂线段最短,当AQ⊥ON时,AQ最小.2.已知:如图,A为锐角∠MON内一定点;,使上找一点ONQ,在射线上找一点要求:在射线OMP.的值最小 AP+PQ.ONAQ⊥的对称点A′,过点A′作解:作点A关于OM AP+PQ最小;交OM于点P,此时于点Q,A′QAP+PQ最小,AP=A′P,要使理由:由轴对称的性质知1 P+PQ最小,从而转化为拓展模型只需A′为锐角∠MON内一定点;已知:如图,A 3.,使,在射线ON上找一点Q要求:在射线OM上找一点P 的周长最小△APQ的对,关于ON 解:分别作A点关于直线OM的对称点A1于点ONQ,点A交OM于点P,交称点A,连接 A221即为所求,此时△APQ周长最小,最小值P和点Q AA的长度;即为线段21,△APQ的周AP=AP,AQ=AQ理由:由轴对称的性质知21 A四点共线、P、Q、P+PQ+A长AP+PQ+AQ=AQ,当A2112. 时,其值最小内两个定点;B为锐角∠MON、已知:如图,A 4.四边形上找一点Q,使要求:在OM上找一点P,在ON APQB的周长最小,作点B关于直线A 关于直线OM的对称点A′解:作点 Q,P,交ON于交的对称点ONB′,连接A′B′OM于周长的、点Q即为所求,此时四边形APQB则点P′′B的长度之和;最小值即为线段AB和A ,将PA理由:AB长为定值,由基本模型将PA转化为′ B′四点共线时,、、′QB转化为QB,当A′P、Q . QBPQPA′+′+PAPQ QB的值最小,即++的值最小下方的定分别为m上方和n已知:如图,直线m∥n,A、B5.搭桥模型垂直)(直线AB不与m点,. 最小PQ,使得AP+PQ+BQ之间求作垂线段要求:在m、n 最小,可通过平移,使PQ为定值,只需AP+BQ分析:,转化为基本模型、Q“接头”P 的方向,向下平移至A沿着平行于PQ解:如图,将点交直线n于点′AA′=PQ,连接AB点A′,使得,线段PQ即⊥n,交直线m于点PQ,过点Q作PQ.为所求,此时AP+PQ+BQ最小′=PA,理由:易知四边形QPAA′为平行四边形,则QA +BQ最小,即、A′三点共线时,QA′当B、Q.AP+PQ+BQ最小AP+BQ最小,PQ长为定值,此时al两侧,长度为A、B分布于直线6.已知:如图,定点左边)上移动(P在Q (a为定值)的线段PQ在l最小要求:确定PQ的位置,使得AP+PQ+QB的值最小,可通过平移,PQ为定值,只需AP+QB 分析:,转化为基本模型、Q“接头”使P A′,使解:将点A沿着平行于l的方向,向右移至l上截取交直线Bl于点Q,在AA′=PQ=a,连接A′ PQ即为所求,此时在Q左边),则线段PQ=a (PB+a ′′B+PQ,即AAP+PQ+QB的最小值为A ′为平行四边形,则PA=QA,理由:易知四边形APQA′PA+QB +QB最小,即、QB三点共线时,QA′A当′、.值最小最小,又PQ长为定值此时PA+PQ+QBal的同侧,长度、7. 已知:如图,定点AB分布于直线左边)Q在P上移动(l在PQ的线段)为定值(a周长最小要求:确定PQ的位置,使得四边形APQB点分析:AB长度确定,只需AP+PQ+QB最小,通过作A3的对称点,转化为上述模型关于llAl的对称点A′,将点′沿着平行于解:作A点关于B ′A′′=PQ=a,连接A′′的方向,向右移至A′′,使A (P在Q左边),线段交l于Q,在l上截取QP=a APQB周长的最小值为PQ即为所求,此时四边形B+AB+aA′′′′B+AB+PQ,即A2-1典型例题、AC、N分别是线段如图,在矩形ABCD中,AB=10,BC=5,若点M .上的两个动点,则ABBM+MN 的最小值为,再过EAC的对称点关于【分析】符合拓展模型2的特征,作点B的最小值,借BM+MNAB的垂线段,该垂线段的长即点E作.助等面积法和相似可求其长度,BM+MN=EM+MN作EN⊥AB于N,则E解答【】作点B关于AC的对称点E,再过点,其最小值即EN长;∵AB=10,BC=522BCAB?5,∴=5AC=510?55, =2等面积法求得ACBE=4边上的高为,∴55,∴∽△ABCENBEN=8.易知△,代入数据解得 8.即BM+MN的最小值为】该类题的思路是通过作对称,将线段转化,再根据定理、公理连线或作垂线;可作【小结有些题则作动点的定点或动点关于定直线的对称点,有些题作定点的对称点易解,.对称点易解2-2典型例题分别、NAOB内的定点且OP=,点MP如图,∠AOB=60°,点是∠)(的动点,OB上异于点O则△PMN周长的最小值是、是射线OAC..AB..6 D3分别交D,连接CDOA、OB的对称点C、【分析】符合拓展模型3的特征;作P点分别关于,OC、OD,此时△PMN周长最小,其值为CD长;根据对称性连接OA、OB于M、NCD.是顶角为120°的等腰三角形,作底边上高,易求底边分析条件知△OCD N,如图,、OB于M、的对称点OA、OBC、D,连接CD分别交OA【解答】作P点分别关于,BOD,∠AOP=∠AOC则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠°,∠AOC=2∠AOB=120PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∴,⊥CD于H∴此时△PMN周长最小,作OHOC=OH=,则CH=DH,∵∠OCH=30°,∴CD=2CH=3.CH=OH=,∴即△PMN周长的最小值是3;故选:D.【小结】根据对称的性质,发现△OCD是顶角为120°的等腰三角形,是解题的关键,也是难点.2-3典型例题所在的直线为原点,OCABCO,以点O如图,已知平行四边形,,OC=6D,AD=2轴于点为x轴,建立直角坐标系,AB交y为点P所在的直线为OD的垂直平分线,∠A=60°,线段EF轴x与E′关于线段EF上的动点,PM⊥x轴于点M点,点E ′M.对称,连接BP、E ;(1)请直接写出点A坐标为,点B坐标为. 的坐标BP+PM+ME′的长度最小时,请求出点P(2)当的长即可解决;,BD【分析】(1)解直角三角形求出OD,可得OP=EM符合(2)“搭桥模型”的特征;首先证明四边形OPME′是平行四边形,点为P′的长度最小,此时PM是定值,PB+ME′=OP+PB的值最小时,BP+PM+ME 点坐标;OB与EF的交点,结合OB的解析式可得P直线 ADO中,∵∠A=60°,AD=2,(【解答】1)在Rt △,)°OD=2?tan60=2,∴A(﹣2,2∴,∵四边形ABCO是平行四边形,∴AB=OC=6)4B(,22=4∴DB=6﹣,∴,,∵如图,(2)连接OP.EF垂直平分线段ODPM⊥OC PEO=是矩形,°,∴四边形∠∠EOM=PMO=90OMPE∴∠′,∴,∵∴PM=OE=OE=OEPM=OE′,OE∥′,PM,′是平行四边形OPME∴四边形.′的长度最小,∴OP=EM,∵PM是定值,∴PB+ME′=OP+PB的值最小时,BP+PM+MEB共线时,BP+PM+ME′的长度最小,∵直线OB的解析式为y=,x∴当O、P、.2,)(∴P(构造平行四边求没有公共端点的两条线段之和的最小值,一般通过作对称和平移【小结】.形)的方法,转化为基本模型2-4典型例题的顶点坐标分△AOB如图所示,在平面直角坐标系中,RtOAOB4),把△绕点)(﹣2,0,O(0,0),B(0,别为A 90°,得到△COD.按顺时针方向旋转C、D两点的坐标;(1)求三点的抛物线的解析式;、D(2)求经过A、BFE在点E(3)在(2)中抛物线的对称轴上取两点、F(点、求出E的上方),且EF=1,使四边形ACEF的周长最小,两点的坐标.F点,结合直线的F【分析】符合拓展模型7的特征,通过作对称、平移、连线,可找出E、、解析式和抛物线的对称轴可解出EF坐标. 解答】(1)由旋转的性质可知:OC=OA=2,OD=OB=4,∴C点的坐【,0)D),点的坐标是(4,标是(0,22,(2)设所求抛物线的解析式为y=ax+bx+c 4a-2b+c=016a+4b+c=0由题意,得 c=41,,b=1,c=4解得a=-21+4;x2+x y=-∴所求抛物线的解析式为21,+x+4的对称轴为x=1x2y=-最短,抛物线3)只需AF+CE(2A关于对称轴x=1的对称点,作2将点A向上平移至A(﹣,1),则AF=AE111的解析式,与对称轴交于点EE为所求,可求得ACCC1(A4,),连接A,A22223771y=+x2,当x=1时, )的坐标为,点)为y=-(1,E,∴点的坐标为F(1,.4444. 】解决此类题的套路是“对称、平移、连线”【小结;其中,作对称和平移的顺序可互换2-1变式训练几何模型: l同旁的两个定点.条件:如图1,A,B是直线的值最小.P问题:在直线l上确定一点,使PA+PB (不必证明)B交l于点P,即为所求.方法:作点A关于直线l的对称点A',连接A' 模型应用:轴上一动1),P为xA)如图2,已知平面直角坐标系中两定点(0,﹣1)和B(2,﹣(1 ,此时PA+PB= .点,则当PA+PB的值最小是点P的横坐标是,由BD的中点,P是AC上一动点,连接)如图3,正方形ABCD的边长为4,E为AB2(的最小PB+PEAC于P,则正方形对称性可知,B与D关于直线AC对称.连接ED交值是.分别F上一动点,E,DAB=60中,AB=10,∠°,P是对角线AC3()如图4,在菱形ABCD .的最小值是是线段AB和BC上的动点,则PE+PF分别是FE.°,点B=60G是边CD边的中点,点)如图(45,在菱形ABCD中,AB=6,∠.AD上的两个动点,则EF+ED的最小值是AG,变式训练2-2如图,矩形ABCD中,AD=15,AB=10,E为AB边上一点,且DE=2AE,连接CE与对角线BD交于F;若P、Q分别为AB边和BC边上的动点,连接EP、PQ和QF;则四边形EPQF周长___________.的最小值是2-3变式训练的P到直线l,l、l之间的距离为8,点如图,已知直线l∥l11212距上有一动PQ=4l的距离为4,,在直线l离为6,点Q到直线12最小,此时,满足AB⊥l,且PA+AB+BQ点A,直线l上有一动点B22.PA+BQ=2-4变式训练在OC的边OA在y轴的正半轴上,中,直角梯形如图,已知在平面直角坐标系xOyOABC 按顺BD.将∠DBC绕点作OC=3,过点BBD⊥BC,交OA于点x轴的正半轴上,OA=AB=2, E和F.x 时针方向旋转,角的两边分别交y轴的正半轴、轴的正半轴于点 B、C三点的抛物线的解析式;(1)求经过A、)中抛物线的顶点时,求CF的长;(2)当BE经过(1BCPQPQ=1,要使四边形(点Q在点P的上方),且Q(3)在抛物线的对称轴上取两点P、 Q两点的坐标.的周长最小,求出P、中考真题1.要在街道旁建奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使A、B到它的距离之和最短?小聪以街道为x轴,建立了如图所示的平面直角坐标系,A点坐标为(0,3),B点坐标为(6,5),则A、B两点到奶站距离之和的最小值是.2.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△)的坐标是(E的周长最小时,点ADE.,)(0,2) D.(0(A.(0,) B.0,) C.1两点距、满足S=BS,则点P到A3.如图,在矩形ABCD中,AB=5,AD=3,动点P ABCDPAB△矩形3)离之和PA+PB的最小值为(.5C. DA. B.,2)的距离与到4.已知抛物线y=x+1具有如下性质:该抛物线上任意一点到定点F2x0(M的坐标为(y=,3),P是抛物线x+1 PMF周长2上一个动点,轴的距离始终相等,如图,点的最小值是()则△6DC..A.3 B45 .轴上的动点,轴,分别是xyD1B),(b,)都在双曲线y=上,点C,,,点5.如图,A(a3 )ABCD则四边形周长的最小值为(.CB.. D A.AE+DE边上的动点,则ABDAC=3中,在6.如图,Rt△ABC∠C=90°,,BC=4,、E分别是、BC 的最小值为().5DCA.B..上的动点,,中,∠如图,7.Rt△ABCBAC=90°,AB=3AC=6,点D,分别是边EBCAC,的最小值为则DA+DE .8.如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为.9.如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC )的长是(PM的值最小时,PB+PM上的动点,当..D. B. C. A分F交BC于D点,E,,10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8AD平分∠CAB AC,上的动点,则CE+EF的最小值为()别是AD6. D.A. B. COABC6的正方形11.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是PM+PNP 两点.△OMN的面积为10.若动点在x轴上,则N 的两边AB,BC分别相交于M,的最小值是()2.2 D..A.6 B10 CADBC则四边形翻折得到△ABD,AC=BC=212.如图,△ABC中,,AB=1,将它沿ABPE+PF上的任意点,则、形,的形状是 P、E、F分别为线段ABAD、DB .的最小值是D轴于,AB两点,交xC、y=y=13.如图,已知抛物线x+bx+c与直线x+3交于).,,0BC 2两点,连接AC、,已知A(,3)C(﹣30)求此抛物线的解析式;(1的值最大,并求出这个最(2)在抛物线对称轴MD||MB上找一点M,使﹣l 大值;轴y交⊥作,过点轴右侧抛物线上一动点,连接为)点(3PyPAPPQPAABC于点QP,AP,问:是否存在点Q,使得以,为顶点的三角形与△请说的坐标;若不存在,P相似?若存在,请求出所有符合条件的点.明理由.14.如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.,3),C(03A(﹣1,0),B(,0y=ax15.如图,抛物线+bx+c(a≠0)经过点的坐标;)2)三点.求抛物线的解析式及顶点M(1 N点的坐标;时,求N为抛物线上的点且在第四象限,当S=S(2)连接AC、BC,ABCNBC△△,(ml上,动点QPx轴,动点(m,3)在直线2(3)在()问的条件下,过点C作直线l∥ PM+PQ+QN的和最小,并求出m为何值时,PM+PQ+QNPM轴上,连接、PQ、NQ,当0)在x 和的最小值.,过A,两点的二次函数A16.如图,直线y=5x+5交x轴于点,交y轴于点C .的图2+4x+cy=axC象交x轴于另一点B )求二次函数的表达式;(1NDD,求线段⊥BC上的动点,作NDx轴交二次函数的图象于点是线段)连接(2BC,点N 长度的最大值;2)是该二次函数图象上一点,4,m图象的顶点,点H(3)若点为二次函数y=ax+4x+cM(的坐标.E,F的周长最小,求出点HEFM,使四边形E,F轴上分别找点y轴、x在.yB两点,与A0)与x轴从左至右交于,(x﹣2)(x+a)(a>y=17.如图1,已知抛物线 C.轴交于点,求抛物线的解析式;T(1,﹣)(1)若抛物线过点△ B、D三点为顶点的三角形与(2)在第二象限内的抛物线上是否存在点D,使得以A、 ABC相似?若存在,求a的值;若不存在,请说明理由.)是抛物线上的点,6,t1的坐标为(﹣1,),点Q(2(3)如图,在(1)的条件下,点PPQNM轴上移动到何处时,四边形MN=2,问MN在x两点,在x轴上,从左至右有M、N且 M 的坐标.的周长最小?请直接写出符合条件的点轴另一交点x5)两点,与((﹣1,0),C0,A18.如图,对称轴为直线x=2的抛物线经过),P是第一象限内抛物线上的动点.0F,,0(,1)E(a0),(a+1,MB为.已知)求此抛物线的解析式;(1 的面积的最大值,并求此时点)当2a=1时,求四边形MEFPP的坐标;(周长最小?请说为顶点的等腰三角形,求是以点)若△(3PCMPaPMEF为何值时,四边形明理由.P探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点19.1=P:P1得到结论三过构造直角角形利用图,(x(,y),Px,y)可通2112221的坐标公式:)P(x,y他还利用图2证明了线段PP的中点P21.,y=x=1)请你帮小明写出中点坐标公式的证明过程;( MN长度为;(﹣M2)①已知点(2,﹣1),N3,5),则线段运用:(为顶点的平行四边形顶点D),3(﹣B2,0),C(,﹣12A②直接写出以点(2,),;的坐标:D轴正半轴夹角的平≥x(x0)的图象OL与xy=n2P33拓展:()如图,点(,)在函数的周长最小,简要叙述作图FExOL分线上,请在、轴上分别找出点、,使△PEF 方法,并求出周长的最小值.20.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛2物线y=﹣x+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;2)若点P(x,y)是抛物线y=﹣x+2x+1上的任意一点,设点P到直线AB的距离为d,求d 2(关于x的函数解析式,并求d取最小值时点P的坐标;3)若点E在抛物线y=﹣x+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小2(值.,且OA∥ABC,使得BC21.如图①,在平面直角坐标系中,OA=6,以OA为边长作等边三角形落在过原点且开口向下的抛物线上.B、C点)求这条抛物线的解析式;(1个单位的速度运动,2BAC 的方向以每秒P从点B出发,沿折线在图①中,(2)假设一动点P个单位的速度运动,当点沿点出发,x轴的负半轴方向以每秒1同时另一动点Q从O,使得tQP、的运动过程中,是否存在时间A运动到点时,P、Q都同时停止运动,在的值,若不存在,请说明理由;AB,若存在,求出tPQ⊥,在抛物线的对称边上找一点G,使BE=EF=1个单位,试在ABE3()在BC边上取两点、F 的周长最小,并求出周长的最小值.H,使得四边形EGHF轴上找一点本人所著《初中几何模型与解题通法》已发行,可在当当、淘宝和京东搜索购买1.特色:由一线名师编写,更专业权威,各地历年中考压轴题几乎都能在书中找到对应的模型和方法,甚至出现大量高度类似题。
最全“将军饮马”类问题(类型大全+分类汇编)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(最全“将军饮马”类问题(类型大全+分类汇编))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为最全“将军饮马”类问题(类型大全+分类汇编)的全部内容。
最全“将军饮马”类问题(类型大全+分类汇编)1.如图,直线 l 和 l 的异侧两点 A、B,在直线 l 上求作一点 P,使 PA+PB 最小.2.如图,直线 l 和 l 的同侧两点 A、B,在直线 l 上求作一点 P,使 PA+PB 最小。
3。
如图,点 P 是∠MON 内的一点,分别在 OM,ON 上作点 A,B。
使△PAB 的周长最小4.如图,点 P,Q 为∠MON 内的两点,分别在 OM,ON 上作点 A,B。
使四边形 PAQB 的周长最小。
最全“将军饮马”类问题(类型大全+分类汇编)5.如图,点 A 是∠MON 外的一点,在射线 OM 上作点 P,使 PA 与点 P 到射线ON 的距离之和最小6. .如图,点 A 是∠MON 内的一点,在射线 OM 上作点 P,使 PA 与点 P 到射线 ON 的距离之和最小最全“将军饮马”类问题(类型大全+分类汇编)二、常见题型三角形问题1.如图,在等边△ABC 中,AB = 6,AD⊥BC,E 是 AC 上的一点,M 是 AD 上的一点,若 AE = 2,求EM+EC 的最小值A解:∵点 C 关于直线 AD 的对称点是点 B,A∴连接 BE,交 AD 于点 M,则 ME+MD 最小,过点 B 作BH⊥AC 于点 H,则 EH = AH – AE = 3 – 2 = 1,BH = BC2 - CH2 = 62 — 32 = 3 3在直角△BHE 中,BE =BH2 + HE2 B= (3 3)2 + 12 = 2 7D C B D C2.如图,在锐角△ABC 中,AB = 4 2,∠BAC=45°,∠BAC 的平分线交 BC 于点 D,M、N 分别是 AD 和 AB 上的动点,则 BM+MN 的最小值是.解:作点 B 关于 AD 的对称点B’,过点B’作B’E⊥AB 于点 E,交AD 于点 F,则线段B’E 的长就是 BM+MN的最小值在等腰Rt△AEB’中,根据勾股定理得到,B'E = 4CB’M F D A N E B3.如图,△ABC 中,AB=2,∠BAC=30°,若在 AC、AB 上各取一点 M、N,使 BM+MN 的值最小,则这个最小值C 解:作 AB 关于 AC 的对称线段 AB',过点 B'作B’N⊥AB,垂足为 N,交 AC 于点 M,则 B'N = MB'+MN = MB+MNB’N 的长就是 MB+MN 的最小值则∠B'AN = 2∠BAC= 60°,AB' = AB = 2,∠ANB’= 90°,∠B’ =30°。
“将军饮马”常见模型及18道典型习题何为将军饮马?2000多年以前。
古希腊的亚历山大城里住着一位睿智的数学家海伦。
一天,城里来了一位将军,听闻海伦盛名,特来向他请教一个问题。
将军说,每天早上,他都骑着马儿从营帐出发,到河边让马儿饮水,然后,再去河岸同一侧的一块草地上带着马儿去吃草,问题时,在河岸的哪个具体位置喝水,行程最短?海伦略做沉思,给出了将军最佳方案。
此之谓“将军饮马”。
最佳方案为何?且阅下文:一、将军饮马常见的5种模型:1、一动两定(和最小):如图,点A是将军和马居住的营帐,点B是一块指定的草地,一条小河L潺潺流过,P是将军带着马儿喝水的地方,P点在何处时,将军和马儿走过的路PA+PB的值最小?解析:做A点关于L的对称点A’,连接A’B,与L的交点即为P点。
为什么这时PA+PB最小?假设L上有一点M(与P点不重合)。
∵A点与A’关于L对称∴AP=A’P;AM=A’M;∴AP + BP =A’P +BP =A’B而AM + BM = A’M +MB在△A’MB中,两边之和大于第三边∴A’B < A’M +MB;而M为L上任一点(与P点不重合)。
∴动点P在A’B与L交点处时AP+BP最小。
2、一定两动:如图,点A是将军和马居住的营帐,小河L1依然像上题中一样潺潺流过,P是将军带着马儿喝水的地方,不同的是,这次吃草的地方不在是一个指定的点,而是L2所代表的一片草地,Q则是将军骑马吃草的地方,水足草饱以后,将军和马儿会再回到营帐。
那么,P点、Q点在何处时,将军走过的路AP+PQ+QA的值最小?解析:做A点关于L1的对称点A’;做A点关于L2的对称点A‘’;连接A’A‘’,与L1和L2的交点即为P、Q。
为什么此时,AP+PQ+AQ的和最小?假设L1上有点M(不与P重合)、L2上有点N(不与Q重合)。
∵A点与A’关于L1对称;A点与A‘’关于L2对称。
∴AP=A’P;AQ=A”Q;AM=A’M;AN=A”N;∴AP+PQ+AQ = A’P+PQ+A”Q =A’A”;AM+MN+AN = A’M+MN+A”N在四边形A’MNA”中:A’M+MN+A”N >A’A”∴P、Q位于A’A”与L1和L2的交点处时,AP+PQ+AQ的和最小。
关于将军饮马问题的九种变形【探索 1】如图,在 l 上找一点 P,使 PA+PB 最小。
【探索 2】如图,在 l 上找一点 P,使 PA+PB 最小。
【探索 3】如图,在 l 上找一点 P,使|PA-PB|最大。
【探索 4】如图,在 l 上找一点 P,使|PA-PB|最大。
【探索 5】如图,在 l 上找一点 P,使|PA-PB|最小。
【探索 6】如图,点 P 在锐角∠AOB 的内部,在 OB 边上求作一点 D,在 OA 边上求作一点 C,使△ PCD 的周长最小。
【探索 7】如图,点 P 在锐角∠AOB 的内部,在 OB 边上求作一点 D,在 OA 边上求作一点 C,使 PD+CD 最小。
【探索 8】如图,点 C、D 在锐角∠AOB 的内部,在 OB 边上求作一点 F,在 OA 边上求作一点 E,使四边形 CEFD 周长最小。
【探索 9】A、B 与直线 l 的位置关系如图,在直线 l 上找到 M、N 两点,且 MN=10,M 在 N 的左边,使四边形 ABMN 的周长最短。
习题练习
1.如图,在等边△ABC 中,AB = 6,AD⊥BC,E 是AC 上的一点,M 是AD 上的一点,丐AE = 2,求EM+EC 的最小值
2.如图,在锐角△ABC 中,AB = 42,∠BAC=45°,∠BAC 的平分线交BC 于点D,M、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是____.
3.如图,△ABC 中,AB=2,∠BAC=30°,若在AC、AB 上各取一点M、N,使BM+MN 的值最小,则这个最小值
4、如图,正方形ABCD 的边长为8,M 在DC 上,丐DM=2,N 是AC 上的一动点,DN+MN 的最小值为_________。
即在直线AC 上求一点N,使DN+MN 最小
5、如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P,使PD+PE 的和最小,则这个最小值为
6、在边长为2 ㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB、PQ,则△PBQ 周长的最小值为____________㎝(结果不取近似值).
7、如图,四边形ABCD 是正方形,AB = 10cm,E 为边BC 的中点,P 为BD 上的一个动点,求PC+PE 的最小值;
模拟检测
1.如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边
BC,CD的动点(均不与顶点重合),当四边形AE PQ的周长取最小值时,四边形AEPQ
的面积是
2.如图,在矩形OABC 中,已知A ,C 两点的坐标分别为A (4,0),C (0,2),D 为OA 的中点.设点P 是∠AOC 平分线上的一个动点(不与点O 重合).
(1)试证明:无论点P 运动到何处,PC 总与PD 相等;
(2)当点P 运动到与点B 的距离最小时,求P 的坐标;
(3)已知E (1,﹣1),当点P 运动到何处时,△PDE 的周长最小?求出此
时点P 的坐标和△PDE 的周长.
8.如图,在平面直角坐标系中,直线 分别交
x 轴,y 轴于A ,B 两点,点C 为0B 的中点,点D 在第二象限,且四边形AOCD 为矩形.动点P 从点C 出发,沿线段CD 向终点D 运动,过点P 作PH 丄OA ,垂足为H.点Q 是点B 关于点A 的对称点,求BP+PH+HQ 的最小值.
9.如图,在五边形ABCDE 中, 90,120=∠=∠=∠E B BAE ,AB=BC,AE=DE,在BC, DE 上分别找一点M,N,使得△AMN 的周长最小时,求ANM AMN ∠+∠的度数.
43
4+=x y
10.如图,点A (a,1),B (-1,b )都在双曲线 上,点P ,Q 分别是x 轴,y 轴上的动点,当四边形PABQ 的周长取最小值时,求PQ 所在直线的表达式.
11.如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD(不含B 点)上任意—点,将BM 绕点B 逆时针旋转60°得到BN, 连接EN,AM,CM.当AM+BM+CM 的最小值为13+时,求正方形ABCD 的边长.
2.已知点A (3,4),点B 为直线x=-1上的动点,设B (-1,y ).
(1)如图1,若点C (x ,0)且-1<x <3,BC ⊥AC ,求y 与x 之间的函数关系式;
(2)在(1)的条件下,y 是否有最大值?若有,请求出最大值;若没有,请说明理由;
(3)如图2,当点B 的坐标为(-1,1)时,在x 轴上另取两点E ,F ,且EF=1.线段EF 在x 轴上平移,线段EF 平移至何处时,
四边形ABEF 的周长最
小?求出此时点E 的坐
标.
)0(3
<-=x x
y。