asimco悬置系统设计技术介绍
- 格式:pdf
- 大小:2.95 MB
- 文档页数:56
商用车驾驶室全浮式悬置系统开发(二)摘要:本文介绍了一种商用车驾驶室全浮式悬置系统的设计和开发。
该系统采用了先进的电控系统和气压控制技术,通过调节空气弹簧和减震器的气压来实现对驾驶室的自适应悬挂调节,可以有效降低路面颠簸对驾驶员的影响,提升驾驶舒适度和安全性。
在系统实现方面,本文对控制算法、气压调节、悬挂参数设计等方面进行详细说明,并进行了仿真和试验验证。
最终结果表明,该系统能够有效改善商用车的驾驶舒适度和稳定性,有较高的实用价值。
关键词:商用车;驾驶室;全浮式悬置系统;自适应调节;气压控制;安全性;舒适度。
正文:1.引言随着工业化和城市化的快速发展,商用车已经成为现代物流和交通运输中不可或缺的一部分,它们承载着物流和人员运输的重要任务。
然而,由于商用车行驶的路况和工况条件较为复杂,且车身设计和悬挂系统的局限性,导致商用车驾驶舒适度和安全性面临着很大的挑战。
为了提升商用车驾驶舒适度和安全性,设计一种全浮式悬置系统显得尤为重要。
全浮式悬置系统采用气弹簧和液压减震器的组合,实现对车身的全程悬挂调节,从而达到优化车辆稳定性和驾驶舒适度的目的。
目前,国内外一些车辆制造商都已开始研发商用车全浮式悬置系统。
但是,商用车驾驶室悬置系统的特殊性和较高的技术要求,对其悬置系统的设计和开发提出了更高的要求。
本文基于市面上流行的商用车驾驶室结构,结合现有的气压控制技术和电控系统,设计并开发了一种全浮式悬置系统。
该系统通过气压调节实现自适应悬挂调节,可以显著提高商用车驾驶舒适度和安全性,为商用车领域的悬挂系统研究提供了新的思路和实践经验。
2.商用车驾驶室全浮式悬置系统设计2.1 系统基本结构和工作原理商用车驾驶室全浮式悬置系统是由气压调节器、气压传感器、减震器、气弹簧和悬挂控制器等组成。
整个系统分为两部分:电控部分和气控部分。
当车辆行驶时,气控部分的气压传感器将路面信息采集反馈到悬挂控制器,悬挂控制器根据反馈信息自动调节气压调节器,使气压调节器对气弹簧进行调节,从而实现对驾驶室的自适应悬挂调节。
车辆悬浮系统设计方案简介车辆悬浮系统是指通过使用悬浮技术,使车辆与地面之间保持一定的高度,从而实现“飞行”效果。
悬浮系统可以使车辆在行驶中减少摩擦阻力,提高行驶稳定性和安全性,同时也可以带来独特的驾驶体验。
本文将介绍一个车辆悬浮系统的设计方案,包括悬浮原理、悬浮控制、能源管理等方面的内容。
悬浮原理车辆悬浮系统的基本原理是利用磁悬浮或气垫技术,将车辆与地面之间的距离保持在一定范围内。
常用的悬浮技术有以下几种:•磁悬浮:利用超导电磁体产生的磁场,将车辆悬浮在空中。
•气垫悬浮:利用高压气体产生的气垫,将车辆悬浮在空中。
•磁气混合悬浮:将磁悬浮和气垫悬浮结合起来,利用气垫来控制车辆的姿态和位置,利用超导电磁体来提供悬浮力。
本系统采用磁气混合悬浮技术,将车辆悬浮在空中。
具体来说,系统由以下部分组成:•超导电磁体:安装在车顶上,产生磁场,提供悬浮力。
•气垫:安装在车底,通过高压气体形成气垫,控制车辆的姿态和位置。
•悬浮控制系统:控制超导电磁体和气垫的工作,维持车辆悬浮状态。
悬浮控制悬浮控制是整个系统中最核心的部分,它决定了车辆的姿态和位置。
悬浮控制系统由以下部分组成:•传感器:感知车辆的姿态、位置、速度等信息。
•控制算法:根据传感器数据和用户输入,计算出控制命令,控制电磁体和气垫的工作。
•执行器:执行控制命令,控制电磁体和气垫的开关状态。
在悬浮控制系统中,传感器是关键。
一般需要使用多个传感器才能获取到准确的车辆姿态和位置信息。
常用的传感器有:•陀螺仪:感知车辆的角速度和角度信息。
•加速度计:感知车辆的加速度和倾斜角度信息。
•GPS:获取车辆的位置和速度信息。
控制算法方面,可以采用PID控制器或基于模型的控制算法,来实现悬浮状态的控制。
执行器方面,可以使用电磁阀和电磁继电器等元件来控制气垫和电磁体的开关状态。
能源管理悬浮系统需要消耗大量的能量,因此能源管理是整个系统中非常关键的一环。
常用的能源管理方案有以下几种:•燃料电池:通过燃料电池产生的氢气来供电,具有高效、环保的特点。
商用车悬置系统设计基础培训资料一、商用车悬置系统概述商用车悬置系统是连接动力总成(发动机、变速器等)与车架的重要部件,其主要作用是支撑动力总成、减少振动传递、控制噪声以及承受动力总成在运行过程中产生的各种力和力矩。
一个良好设计的悬置系统能够显著提高商用车的乘坐舒适性、可靠性和耐久性。
二、悬置系统的组成部分商用车悬置系统通常由悬置软垫、支架、连接件等组成。
悬置软垫是悬置系统中最为关键的部件之一,它一般由橡胶或其他弹性材料制成,具有良好的减振性能。
不同类型的软垫在刚度、阻尼等特性上有所差异,以适应不同的车辆工况和性能要求。
支架则起到固定和支撑悬置软垫的作用,其结构强度和刚度需要经过精心设计,以确保在承受动力总成的重量和各种力的作用下不变形或损坏。
连接件用于将悬置系统与动力总成和车架相连接,其质量和可靠性直接影响悬置系统的性能。
三、悬置系统的设计要求在设计商用车悬置系统时,需要考虑多个方面的要求。
首先是隔振性能。
要有效地隔离动力总成产生的振动,使传递到车架和车身的振动减小到最低程度,从而提高乘坐舒适性。
其次是支撑性能。
悬置系统需要能够可靠地支撑动力总成的重量,并承受发动机工作时产生的各种力和力矩,确保动力总成在车辆运行过程中的位置稳定。
此外,还需要考虑悬置系统的耐久性。
在长期使用过程中,要能够经受住各种恶劣工况的考验,不易出现损坏或失效的情况。
四、悬置系统的布置形式常见的商用车悬置系统布置形式有三点式、四点式和五点式等。
三点式悬置系统结构相对简单,成本较低,但在隔振性能和支撑稳定性方面可能相对较弱。
四点式悬置系统在稳定性和隔振性能上有一定的提升,适用于大多数商用车。
五点式悬置系统则在复杂工况下具有更好的性能表现,但结构较为复杂,成本也相对较高。
在选择悬置系统的布置形式时,需要综合考虑车辆的类型、用途、动力总成的特点以及成本等因素。
五、悬置软垫的特性分析悬置软垫的刚度和阻尼特性对悬置系统的性能有着至关重要的影响。
汽车悬置系统设计指南(一)引言概述:汽车悬置系统是汽车底盘系统的重要组成部分,对于汽车的驾驶稳定性和乘坐舒适性至关重要。
本文旨在提供汽车悬置系统设计的指南,帮助读者了解悬置系统的基本原理和设计要点,从而优化汽车悬置系统的性能与驾驶舒适。
正文内容:一、悬置系统基本原理1. 悬置系统的定义和作用2. 悬置系统的基本组成部分3. 悬置系统的工作原理4. 悬置系统与驾驶稳定性的关系5. 悬置系统与乘坐舒适性的关系二、悬置系统设计要点1. 悬置系统弹簧的选取和设计2. 悬置系统减震器的选择和调整3. 悬置系统阻尼的调节和优化4. 悬置系统材料的选择与优化5. 悬置系统与车体结构的匹配设计三、悬置系统振动控制1. 悬置系统振动类型与特性2. 悬置系统振动控制的方法3. 悬置系统调频器的设计与优化4. 悬置系统振动控制与驾驶稳定性的关系5. 悬置系统振动控制与乘坐舒适性的关系四、悬置系统磨损与维护1. 悬置系统磨损的原因与表现2. 悬置系统磨损程度的检测方法3. 悬置系统磨损的预防与延长寿命的方法4. 悬置系统维护的注意事项5. 悬置系统维护对驾驶稳定性和乘坐舒适性的影响五、悬置系统创新与发展趋势1. 悬置系统新材料的应用2. 悬置系统主动控制技术的发展3. 悬置系统电子化的趋势4. 悬置系统智能化的发展5. 悬置系统可持续发展的方向结论:通过本文的介绍,读者可以更好地理解汽车悬置系统的设计原理和要点,并在实际应用中引导悬置系统的优化与改进。
汽车悬置系统的设计不仅影响驾驶稳定性和乘坐舒适性,也与汽车的安全性和性能密切相关。
因此,合理设计和维护汽车悬置系统对于提高整车的操控性和乘坐舒适性至关重要。
未来,随着汽车技术的飞速发展,悬置系统将面临更多的创新与发展机遇,我们期待悬置系统能够更好地满足人们对于汽车驾驶体验和乘坐舒适性的需求。
悬置系统发动机本身是一个内在的振动源,同时也受到来自外部的各种振动干扰。
引起零部件的损坏和乘坐的不舒适等。
所以设置悬置系统,把发动机传递到支承系统的振动减小到最低限度。
成功地控制振动,主要取决于悬置系统的结构型式、几何位置及悬置软垫的结构、刚度和阻尼等特性。
确定—个合理的悬置系统是一件相当复杂的工作,它要满足—系列静态及动态的性能要求,同时又受到各种条件的约束,这些大大增加了设计的难度。
一般来讲对发动机悬置系统有如下要求。
①能在所有工况下承受动、静载荷,并使发功机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其他零部件发生干涉。
同时在发动机大修前,不出现零部件损坏。
②能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声。
③能充分地隔离由于路面不平产生的通过悬置而传向发动机的振动,降低振动噪声。
④保证发动机机体与飞轮壳的连接面弯矩不超过发动机厂家的允许值。
悬置系统的激振源作用于发动机悬置系统的激振源主要如下:①发动机起动及熄火停转时的摇动;②怠速运转时的抖动;③发动机高速运转时的振动;④路面冲击所引起的车体振动;⑤大转矩时的摇动;⑥汽车起步或变速时转矩变化所引起的冲击;⑦过大错位所引起的干涉和破损。
作用在发动机悬置上的振动频率十分广泛。
按着振动频率可以把振动分为高频振动和低频振动。
频率低于30Hz的低频振动源如下:①发动机低速运转时的转矩波动;②在发动机低速运转时由于惯性力及其力偶使动力总成产生的振功;③轮胎旋转时由于轮胎动平衡不好使车身产生的振动;④路面不平使车身产生的振动;⑤由于传动系的联轴器工作不佳产生附加力偶和推力,使动力装置产生的振动。
频率高于30Hz的高频振动源如下:①在发动机高速运转时,由于惯性力及其力偶使动力总成产生的振动;②变速时产生的振动;③燃烧压力脉动使机体产生的振动;④发动机配气机构产生的振动;⑤曲轴的弯曲振动和扭振;⑥动力总成的弯曲振动和扭振;⑦传动轴不平衡产生的振动。
动力总成是汽车的重要振源之一,它对乘坐舒适性有重要影响。
合理选择动力总成悬置系统,可明显降低动力总成和车身的振动,减少动力总成经悬置传递给车架的力以及由此激发的车身钣金件和底盘相关零部件的振动噪声,因而可明显提高汽车的耐久性和乘坐舒适性。
降低动力总车和车架之间的振动传递主要有两项措施:第一是改进现有动力总成悬置的结构,使之产生最佳隔振特性,例如采用液压悬置等;第二是改进悬置系统的配置方案。
改进现有动力总成悬置的结构,要受到生产工艺、成本、可靠性和安装条件的制约,实施的难度较大。
而改进悬置系统的配置方案,则可以在现有一悬置的基础上,通过优化分析,正确选择各悬置的位置参数和性能参数,合理匹配动力总成悬置徐彤的各项固有频率,最大限度地发挥已有选址的潜能,该措施是达到最优减振目的的捷径。
动力总成悬置系统设计是指:在已经确定动力总成基本参数及有关整车基本参数的前提下,正确设计发动机悬置的刚度和阻力系数,悬置的数量及相对动力总成质心的坐标位置和布置型式,各悬置的具体结构形式,合理设置动力总成各阶模态参数,最大限度的减少由发动机引起的振动向车体的传递,提高悬置系统的工作可靠性,改善整车舒适性。
1.动力总成悬置系统的基本设计要求发动机本身是一个内在的振源,同时受到来自外部的各种干扰,引起零部件的损坏和乘坐不舒适性。
一个良好的悬置系统一档能充分减小由于发动机引起的振动噪声,延长零件的使用寿命。
悬置系统设计的好坏,主要取决于悬置系统的结构型式、几何位置以及选址的结构、刚度、阻尼等特性。
确定一个合理的悬置系统是一项相当复杂的工作,它需要满足一系列静态特性和动态特性要求,同时又受到各种条件的约束。
1.1静特性要求动力总成悬置的静特性要求即基本要求是:固定并支承动力总成;支承动力总成的内部作用力(例如发动机的往复惯性力、输出扭矩等)和尾部作用力(汽车其他部分对动力总成的作用力);最大限度地双向隔离动力总成与车体之间的振动;保证汽车生产和装配过程中工艺要求。
动力总成悬置系统设计总结第一章悬置系统的经验设计悬置系统的功能与设计原则发动机悬置系统是发动机应用工程的重要组成部分。
悬置系统的功能与设计原则大致可归纳如下:1隔离振动在发动机所有工作转速范围内,发动机产生的振动必须通过悬置系统加以隔离,尽可能降低传递给汽车底盘和车身的振动。
同时悬置系统还必须隔离道路不平引起的车轮悬挂系统的振动,防止这一振动向发动机传递,避免发动机振动加剧以满足车辆运行时的平稳性和舒适性,并保证怠速和停机时发动机的稳定性。
2发动机支承和定位为了隔离振动,发动机被支承在几个弹簧软垫上。
因而在发动机本身振动和外界作用力驱动下,发动机和底盘之间必然存在着相对运动。
所以悬置系统必须具有控制发动机相对运动和位移的功能,使发动机始终保持在相对稳定和正确的位置上,决不能让发动机在向各方向运动中与底盘车身上的零件发生干涉和碰撞。
3保护发动机车辆在行驶过程中同时承受着动态负荷和冲击负荷。
悬置系统应具有保护发动机的能力,防止发动机上个别部位因承受过大的冲击载荷而损坏,特别要保证发动机缸体后端面与飞轮壳的结合面上的弯曲力矩不超过制造厂规定的限值。
此外车辆在崎岖道路上行驶时,车架的扭曲变形会使发动机承受扭曲应力,使发动机局部受到损伤。
悬置系统应布置合理,并正确选择软垫刚度等参数,以保证能充分缓冲和抵御外力的冲击并消除薄弱环节。
4克服和平衡因扭矩输出而产生的反作用力悬置系统必须有足够强度,当发动机变速箱总成输出最大扭矩时能克服最大扭矩所产生的最大反作用力。
悬置软垫和支架在这种条件下都必须具有足够的可靠性。
5发动机与底盘之间的连接零件必须有足够柔性这些零件是排气管进气管、燃油管、冷却水管、压缩空气管、油门操纵机构及变速箱操纵机构等。
如果它们的刚度较大,则发动机的振动容易造成这些零件的损坏,特别是在怠速停机和出现共振时表现得尤其剧烈。
另一方面如果它们刚度较大,也会改变发动机悬置系统的刚度和自振频率,从而影响隔振效果并导致噪声升高,因此这些连接件必须采用柔性软管或柔性连接。
商用车悬置系统设计基础培训资料1.悬置系统的定义和作用:悬置系统是商用车辆中的一个重要部件,用于支撑和控制车辆底盘和车身之间的连接。
它的主要作用是减震和保证车辆在行驶过程中的稳定性和舒适性。
2.悬置系统的组成部分:-弹簧:弹簧是悬置系统的关键部件,负责承受车辆重量和减小车辆震动。
常见的悬挂弹簧有螺旋弹簧、气弹簧和液压弹簧等。
-阻尼器:阻尼器是控制车辆弹簧回弹速度和减小车辆震动的装置。
常见的阻尼器有液压阻尼器和气动阻尼器等。
-支撑装置:支撑装置是悬置系统的一个重要组成部分,用于稳定车身和底盘之间的连接。
常见的支撑装置有悬挂臂、悬挂杆和扭力杆等。
-连接件:连接件是各个悬挂部件之间的连接元件,包括螺栓、螺母和销轴等。
3.悬置系统的设计原则:-载荷适应性:悬置系统需要根据车辆的不同载荷情况进行调整,保证车辆在不同负荷下的稳定性和舒适性。
-减震效果:悬置系统需要具备良好的减震效果,减小车辆在行驶过程中的震动,提高乘坐舒适性。
-频率匹配:悬置系统的弹簧和阻尼器需要在设计时考虑车辆悬挂部件的自然频率,以达到最佳的悬挂效果。
-独立性和互相影响:悬置系统的各个组成部分需要具备一定的独立性,在其中一个部分出现问题时,可以独立进行维修或更换。
4.悬置系统的常见问题及解决方法:-过硬或过软的弹簧:过硬的弹簧会导致车辆在行驶中颠簸和不舒适,过软的弹簧会导致车辆在行驶中容易下沉。
解决方法是根据实际情况选择合适的弹簧刚度。
-阻尼器失效:阻尼器的失效会导致车辆在行驶中出现弹跳和晃动。
解决方法是定期检查和维护阻尼器,并及时更换损坏的部件。
-支撑装置松动:支撑装置的松动会导致车辆底盘和车身之间的连接不稳定,影响车辆的操控性和安全性。
解决方法是定期检查和紧固支撑装置。
5.悬置系统设计的未来发展趋势:-轻量化设计:随着环保意识的增强,悬置系统的轻量化设计将成为未来的发展方向,以减少车辆的能耗和碳排放。
-智能化控制:悬置系统的智能化控制将使车辆能够根据道路和载荷情况自动调整悬挂刚度和阻尼效果,提高乘坐舒适性和操控性。
车辆主动悬架系统控制方案设计车辆主动悬架系统是一种利用电子控制和传感器技术来调节车辆悬挂系统的功能。
通过检测车辆的动态状况和路况情况,主动悬架系统能够实时调节悬挂的刚度和阻尼,提升车辆的稳定性和行驶舒适性。
本文将针对车辆主动悬架系统的控制方案进行设计,共分为传感器模块、控制模块和执行模块三个部分。
传感器模块是主动悬架系统的基础,负责采集车辆的动态信息和路况情况。
常用的传感器包括加速度传感器、角度传感器、车速传感器和路况传感器等。
加速度传感器用于检测车辆的加速度和减速度,角度传感器用于检测车辆的倾斜角度,车速传感器用于检测车辆的速度,路况传感器用于检测路面的平整度和颠簸程度。
传感器采集到的数据需要经过滤波和处理后方能使用。
控制模块是主动悬架系统的核心,负责根据传感器模块采集到的数据,进行实时的控制和调节。
控制模块包括控制算法和控制器两部分。
控制算法通常采用PID控制算法,即比例、积分、微分控制算法。
PID控制算法能够根据车辆的动态状况和路况情况,计算出合适的悬挂刚度和阻尼,以提升车辆的稳定性和行驶舒适性。
控制器通常采用微控制器或程序控制器,用于控制悬挂系统的执行器。
执行模块是主动悬架系统的实施部分,负责根据控制模块的指令,实时地调节悬挂的刚度和阻尼。
执行模块包括悬挂系统的执行器和悬挂系统的控制阀。
悬挂系统的执行器通常为液压或电液混合执行器,用于实现悬挂系统的加压或减压。
悬挂系统的控制阀用于控制液压或电液混合执行器的操作,根据控制模块的指令,调节液压或电液混合执行器的工作状态。
在车辆主动悬架系统的控制方案设计中,传感器模块负责采集车辆的动态信息和路况情况,控制模块负责根据传感器模块采集到的数据,进行实时的控制和调节,执行模块负责根据控制模块的指令,实时地调节悬挂的刚度和阻尼。
三个模块之间需要进行信息的传递和交互,以实现整个系统的协调工作。
在实际应用中,车辆主动悬架系统的设计还需要考虑到成本、可靠性和安全性等因素。
商用车驾驶室全浮式悬置系统开发(一)摘要:商用车驾驶室全浮式悬置系统是一种可以使车辆在行驶过程中减少震动和提高舒适性的技术。
本文介绍了该系统的各种组成部分,并探讨了其在增加驾驶员舒适性和减少疲劳方面的优势。
在该技术的开发中,还需要解决技术上的一些挑战,如系统的设计、控制和测试等。
我们希望该技术能够在商用车辆中得到广泛应用。
关键词:全浮式悬置系统;商用车辆;舒适性;疲劳;技术挑战正文:1. 引言商用车驾驶室的舒适性和减少疲劳是一个受到广泛关注的话题。
随着科技的发展和创新,全浮式悬置系统被广泛运用于商用车辆,以减少震动和提高舒适性。
2. 全浮式悬置系统的组成部分全浮式悬置系统包含四个部分:悬架、支座、气囊和控制系统。
2.1 悬架悬架是全浮式悬置系统的核心组成部分,用于支撑车体、减少震动和提供舒适性。
悬架可以分为主动和被动两种类型,其中主动悬架根据路况自动调整,而被动悬架则需要由驾驶员手动调整。
2.2 支座支座用于固定悬架,减少震动和保持车体稳定性。
支座一般分为机械和液压两种类型,其中液压支座可以根据路况和驾驶习惯进行调整,从而降低车辆的震动和噪音。
2.3 气囊气囊是全浮式悬置系统另一个重要的组成部分,用于支持悬架和调节车身高度。
气囊一般由弹性材料制成,能够在固定、变形和挤压之间进行变化。
2.4 控制系统控制系统是全浮式悬置系统的关键组成部分,用于控制悬架的运动和调整。
控制系统主要包括传感器、计算机和电子控制单元(ECU)。
传感器用于检测车辆的动态变化,计算机用于对传感器数据进行处理,而ECU则用于控制悬架的运动和调整。
3. 全浮式悬置系统的优点全浮式悬置系统具有以下优点:3.1 提高驾驶员舒适性全浮式悬置系统可以降低车辆的震动和噪音,提高驾驶员的舒适性。
3.2 减少驾驶员疲劳全浮式悬置系统可以使驾驶员减少长时间驾驶过程中的疲劳。
3.3 保护道路全浮式悬置系统可以降低车辆对道路的破坏,从而减少道路维修成本。
《汽车设计》课程设计题目:汽车悬架系统设计公司:鸿马华祥悬架设计有限公司班级: 1宿舍:学生:负责人:指导老师:目录第1部分绪论 (3)1.1 悬架系统的功能 (3)1.2悬架的工作原理 (3)1.3 悬架系统的分类 (5)1.4 设计任务 (11)第2部分悬架主要参数的确定 (11)2.1 悬架的静挠度fc的确定 (11)2.2 悬架的动挠度fd的选择 (13)2.3 悬架的弹性特性 (13)2.4 后悬架主副弹簧刚度的分配 (14)2.5 悬架侧倾角刚度及在前、后轴的分配 (15)2.6悬架的空间几何参数 (16)第3部分弹性元件的设计 (17)3.1 弹性元件简介 (17)3.2 螺旋弹簧的设计 (18)3.2.1 螺旋弹簧的刚度 (18)3.2.2 计算弹簧钢丝直径d (19)3.2.3 弹簧校核 (19)3.3 小结 (20)第4部分悬架导向机构的设计 (20)4.1 导向机构受力分析 (23)4.2 横臂轴线布置方式的选择 (24)4.3 横摆臂主要参数 (25)第5部分减振器的设计 (26)5.1减震器简介 (26)5.2 双筒式液力减振器 (27)5.3 单筒充气式液力减振器 (30)5.4 减震器参数的设计 (32)第6部分横向稳定杆的设计 (36)6.1 横向稳定杆的作用 (36)6 .2 横向稳定杆参数的选择 (36)第7部分悬架的CATIA 3D建模图 (37)7.1前悬架系统——麦弗逊式独立悬架 (37)7.2 后悬架系统——双横臂式独立悬架 (38)第8部分参考文献 (39)第9部分会议记录 (40)9.1 会议记录1 (40)9.2 会议记录2 (41)9.3 会议记录3 (41)第10部分任务报表..................................................................................... 错误!未定义书签。