Microarray_Printing基因微阵列打印
- 格式:ppt
- 大小:712.50 KB
- 文档页数:12
微阵列名词解释介绍如下:
微阵列(microarray)是基因芯片技术的一种,它是一种用于检测大量的DNA、RNA或蛋白质的平台。
微阵列技术用于评估基因和蛋白质的表达模式,以研究复杂疾病发病的机制、诊断和治疗。
微阵列技术的核心部分是由数千到数百万个小的“探针”组成的芯片。
这些探针可以精确地探测目标分子(如DNA、RNA或蛋白质),并测定其在样本中的数量和表达水平。
使用微阵列技术,研究人员可以比较正常、疾病或治疗后人体中基因或蛋白质的表达水平,以此来确定哪些基因或蛋白质与疾病相关。
微阵列技术的应用非常广泛。
在生物学研究中,微阵列技术可用于检测细胞中的大量基因表达水平,以便确定其与细胞功能、代谢途径和发育等方面的联系。
在医学研究中,微阵列技术可以加速疾病的诊断和治疗。
例如,它可以帮助确定肿瘤细胞基因表达的差异,从而指导治疗方案的制定和个体化治疗的选择。
总之,微阵列技术是一种用于检测大量基因表达的高通量技术,具有广泛的应用前景。
通过微阵列技术,可以了解基因与疾病之间的关系,从而在医学诊断和治疗上提供更准确、更有效的解决方案。
功能基因组研究方法功能基因组学是一种研究基因产物在特定情况下(如特定发育阶段或疾病)的动态表达,并尝试建立基因型(功能)与表型联系的模型。
以下是功能基因组学的一些常见研究方法:1. 基因敲除(Knockout):通过随机突变或特定的基因编辑技术(如CRISPR-Cas9)使细胞或生物体失去一个或多个基因的功能,以研究该基因的功能。
2. 基因过表达(Overexpression):通过转染或转化技术使细胞或生物体表达更多的特定基因,以研究该基因的功能。
3. RNA干扰(RNAi):利用RNA干扰技术来抑制或减少特定基因的表达,以研究该基因的功能。
4. 转录组学(Transcriptomics):研究所有基因的转录产物(mRNA或非编码RNA)的表达和调控。
5. 基因芯片(Gene chips):用于测定基因表达水平的高通量技术,可在同一实验中同时分析数千个基因的表达水平。
6. 体内或体外分子相互作用研究(In vivo or In vitro molecular interaction studies):通过分析蛋白质和DNA、RNA等分子之间的相互作用,以了解它们之间的功能和关系。
7. Microarray 微阵列芯片(Microarray)是DNA探针的集合,探针通常是“喷墨印刷”在载玻片(Agilent)上或原位合成(Affymetrix)的挂衣核苷酸链(oligo)。
来自目标样品的标记单链DNA或反义RNA片段在特定调节下与DNA微阵列杂交,随后检测特定探针的杂交量。
杂交量与样品中的核酸片段数量成正比。
Microarray可分为:单色和双色。
以上信息仅供参考,如需获取更多详细信息,建议查阅相关书籍或咨询专业人士。
微阵列芯片(Microarray)以高密度阵列为特征。
其基础研究始于20世纪80年代末,本质上是一种生物技术,主要是在生物遗传学领域发展起来的。
微阵列分为cDNA微阵列和寡聚核苷酸微阵列.微阵列上"印"有大量已知部分序列的DNA探针,微阵列技术就是利用分子杂交原理,使同时被比较的标本(用同位素或荧光素标记)与微阵列杂交,通过检测杂交信号强度及数据处理,把他们转化成不同标本中特异基因的丰度,从而全面比较不同标本的基因表达水平的差异.微阵列技术是一种探索基因组功能的有力手段.其发展契机主要来自于现代遗传学的一些重要发现,并直接收益于该领域的某些重要研究成果,即在载体上固定寡核苷酸的基础上以杂交法测序的技术。
因此发展早期,微阵列芯片有时被通俗的称为“生物芯片(Biochip)”,目前媒体和科普读物中仍然常用该名称。
微阵列芯片经过近十年的主要发展期,国内外学术界渐渐采用名称Microarray(微阵列芯片),而Biochip(生物芯片)由于这名称容易混淆微阵列芯片和微流控芯片,渐渐该领域用的越来越少了。
比较基因组杂交技术比较基因组杂交(comparative genomic hybridization,CGH)是自1992年后发展起来的一种分子细胞遗传学技术,它通过单一的一次杂交可对某一肿瘤整个基因组的染色体拷贝数量的变化进行检查。
其基本原理是用不同的荧光染料通过缺口平移法分别标记肿瘤组织和正常细胞或组织的DNA制成探针,并与正常人的间期染色体进行共杂交,以在染色体上显示的肿瘤与正常对照的荧光强度的不同来反映整个肿瘤基因组DNA表达状况的变化,再借助于图像分析技术可对染色体拷贝数量的变化进行定量研究。
CGH技术的优点:1.实验所需DNA样本量较少,做单一的一次杂交即可检查肿瘤整个基因组的染色体拷贝数量的变化。
2.此法不仅适用于外周血、培养细胞和新鲜组织样本的研究,还可用于对存档组织的研究,也可用于因DNA量过少而经PCR扩增的样本的研究。
微阵列数据分析(MicroarrayDataAnalysis)蔡政安副教授(台湾前⾔在⼈类基因组测序计划的重要⾥程碑陆续完成之后,⽣命科学迈⼊了⼀个前所未有的新时代,在⼈类染⾊体总长度约三⼗亿个碱基对中,约含有四万个基因,这是⽣物学家⾸次以这么宏观的视野来检视⽣命现象,⽽医药上的研究⽅针亦从此改观,科学研究从此正式进⼊后基因组时代。
微阵列实验(Microarray)及其它⾼通量检测(high-throughput screen)技术的兴起,⽆疑将成为本世纪的主流;微阵列实验主要的优势在于能同时⼤量地、全⾯性地侦测上万个基因的表达量,通过基因芯⽚,可在短时间内找出可能受疾病影响的基因,作为早期诊断的⽣物标记(biomarker)。
然⽽,由于这⼀类技术的⾼度⾃动化、规模化及微型化的特性,使得他们所⽣成的数据量⾮常庞⼤且数据形态⽐⼀般实验数据更加复杂,因此,传统统计分析⽅法已经不堪使⽤。
在此同时,统计学家并未在此重要时刻缺席,提出⾮常多新的统计理论和⽅法来分析微阵列实验数据,也⼴受⽣物学家所使⽤。
由于微阵列数据分析所牵涉的统计问题层⾯相当⼴且深⼊,本⽂仅针对整个实验中所衍⽣的统计问题加以介绍,并介绍其中⼀些新的图形⼯具⽤以呈现分析结果。
基因芯⽚的原理微阵列芯⽚即⼀般所谓的基因芯⽚,也是基因组计划完成后衍⽣出来的产品,花费成本虽⾼,但效⽤⽆限,是⽬前所有⽣物芯⽚中应⽤最⼴的,由于近年来不断改进,也是最有成效的⽣物技术。
⼀般⽽⾔,基因芯⽚是利⽤微处理技术,先把⼈类所有的基因分别固着在⼀⼩范围的玻璃⽚(glass slide)、薄膜(membrane)或者硅芯⽚上;然后,可以平⾏地、⼤量地、全⾯性地侦测基因组中mRNA的量,也就是侦测基因的调控及相互作⽤表达。
⽬前微阵列芯⽚⼤致分为以下两种平台:cDNA芯⽚及⾼密度寡核⽢酸芯⽚(high-density oligonucleotide),两种系统⽆论在芯⽚的制备及样本处理上都有相当的差异,因此在分析上也略有不同,以下便就芯⽚的特性简略介绍。
植物基因功能研究的主要方法随着植物基因组计划的实施和完成,大量的基因组数据库和EST数据库得以建立和完成,因此产生的问题是成千上万新基因的功能有待分子生物学家鉴定。
研究植物基因功能主要有两种策略:正向遗传学和反向遗传学策略。
正向遗传学是传统的方法,策略是通过筛选天然或人工产生的突变体进而克隆相关目标基因,即从功能(表型)-突变体-基因,最后得到具有相关功能(如对干旱敏感或耐旱)的基因,常用手段是图位克隆并结合一些基因差异表达筛选技术(如差减杂交、差异显示PCR、差异显示分析等)。
反向遗传学的策略是从已知的基因序列入手鉴定其功能,研究手段包括基因的互补实验、超表达、反义抑制、基因敲除、基因激活等。
采用反向遗传学鉴定基因功能是基因组计划由结构基因组学过渡到功能基因组学的必然要求。
目前,植物抗逆性功能基因的研究策略主要集中在利用差减杂交、差异显示PCR、差异显示分析、cDNA微阵列(或基因芯片)等技术筛选与逆境胁迫相关的表达序列标签(EST)或转录因子,然后利用反向遗传学等技术对转录因子的功能进行研究。
正向遗传学手段主要集中在抗逆性状的遗传分析和QTL定位方面,然而目前尚无抗逆性状QTL基因克隆的报道;通过突变体抗逆筛选的途径主要是在模式植物拟南芥中,特别是克隆了一大批与ABA合成或ABA 敏感性有关的基因,例如ABA不敏感的abi8突变体(Brocard-Gifford et al., 2004)。
近年来许多国家(特别是我国)的水稻突变体数量剧增,为通过抗逆筛选克隆基因奠定了基础。
综合利用这些研究手段可以全面地了解植物对胁迫响应的复杂机制和相互作用以及相应的信号传导途径,从而为更加高效地利用基因工程技术来提高植物的抗逆性奠定基础。
下面就几种常见的研究抗逆基因功能的策略作简要介绍。
1. 超量表达(Over-expression)超量表达是指将目的基因全长序列与高活性的组成型或组织特异型启动子融合,通过转化获得该基因产物大量积累的植株,从而扩大该基因在生理生化过程中的效应,这部分扩大的效应带来的与正常植株在各种表型上的差异有助于帮助理解基因功能。
研究植物基因功能的策略和方法研究植物基因功能主要有两种策略:正向遗传学(forward genetics)和反向遗传学(reverse genetics)策略。
正向遗传学即通过生物个体或细胞基因组的自发突变或人工诱变,寻找相关表型或性状改变,然后通过图位克隆并结合一些基因差异表达筛选技术(如差减杂交、差异显示PCR、差异显示分析等)从这些特定性状变化的个体或细胞中找到对应的突变基因,并揭示其功能,例如遗传病基因的克隆。
反向遗传学的原理正好相反,人们首先是改变某个特定的基因或蛋白质,然后再去寻找与之有关的表型变化,例如基因剔除技术或转基因研究。
简单地说,正向遗传学是从表型变化研究基因变化,而反向遗传学则是从基因变化研究表型变化。
研究植物体内基因功能的方法主要有以下几种:(1)基因功能丧失或减少,即筛选目的基因功能部分丧失或全部丧失的突变体,比较其与野生型的表型差异来确定该基因功能;(2)基因功能增加或获得,即筛选目的基因高水平表达的植株,比较其与相应对照植株(野生型植株,功能丧失突变体或模式植物植株)差异,观察其表型性状变化来鉴定基因功能;(3)基因异位表达(Ectopic expression),通过定向调控靶基因的时空表达模式来研究基因功能;(4)微阵列(Microarray)是一种在全基因组水平对基因表达进行高通量检测的技术;(5)酵母双杂交技术(Yeast two-hybrid system)用于分析基因产物即蛋白质之间的互作。
1 基因功能丧失或减少以前,通常通过筛选自然突变体来获得基因功能部分或全部丧失的突变体,但概率较低;现在一般通过各种人工方法来获得合适突变体。
人工产生基因功能丧失的方法有插入突变、反义抑制(antisense suppression)、共抑制(cosuppression)、双链RNA干扰(double-stranded RNA interference, dsRNAi)。
基因表达谱分析技术1、微阵列技术(microarray)这是近年来发展起来的可用于大规模快速检测基因差别表达、基因组表达谱、DNA序列多态性、致病基因或疾病相尖基因的一项新的基因功能研究技术。
其原理基本是利用光导化学合成、照相平板印刷以及固相表面化学合成等技术,在固相表面合成成千上万个寡核昔酸探针” (CDNA、ESTs或基因特异的寡核昔酸),并与放射性同位素或荧光物标记的来自不同细胞、组织或整个器官的DNA或mRNA反转录生成的第一链cDNA进行杂交,然后用特殊的检测系统对每个杂交点进行定量分析。
其优点是可以同时对大量基因,甚至整个基因组的基因表达进行对比分析。
包括cDNA芯片(cDNA microarray)和DNA 芯片(DNA chips)。
cDNA芯片使用的载体可以是尼龙膜,也可以是玻片。
当使用尼龙膜时,目前的技术水平可以将20000份材料点在一张12cmxi8cm的膜上。
尼龙膜上所点的一般是编好顺序的变性了的双链cDNA片段。
要得到基因表达情况的数据,只需要将未知的样品与其杂交即可。
杂交的结果表示这一样品中基因的表达模式,而比较两份不同样品的杂交结果就可以得到在不同样品中表达模式存在差异的基因。
杂交使用的探针一般为mRNA的反转录产物,标记探针使用32PdATP。
如果使用玻片为载体,点阵的密度要高于尼龙膜。
杂交时使用两种不同颜色的荧光标记不同的两份样品,然后将两份样品混合起来与一张芯片杂交。
洗去未杂交的探针以后,能够结合标记cDNA的点受到激发后会发出荧光。
通过扫描装置可以检测各个点发出荧光的强度。
对每一个点而言,所发出的两种不同荧光的强度的比值,就代表它在不同样品中的丰度。
一般来讲,显示出来的图像中,黄色的点表示在不同的样品中丰度的差异不大,红色和绿色的点代表在不同样品中其丰度各不相同。
使用尼龙膜为载体制作cDNA芯片进行研究的费用要比玻片低,因为尼龙膜可以重复杂交。
检测两种不同的组织或相同组织在不同条件下基因表达的差异,只需要使用少量的尼龙膜。
dna微阵列原理DNA微阵列原理:揭开基因密码的奥秘引言:DNA微阵列技术是一种高通量的基因分析方法,它通过在玻璃片或芯片上固定大量的DNA探针,实现对数千个基因的同时检测。
本文将介绍DNA微阵列的原理及其在基因研究和临床应用中的重要性。
一、DNA微阵列的原理DNA微阵列是基于互补配对原理的。
首先,将DNA样本提取并标记,然后将其加到微阵列芯片上。
芯片上的每个探针都与特定的基因序列互补配对。
当样本中的DNA与芯片上的探针互补配对时,形成了DNA探针-目标DNA的复合物。
接下来,通过检测标记物的信号强度,可以确定目标DNA在样本中的存在与否以及其相对丰度。
二、DNA微阵列的应用1. 基因表达分析:DNA微阵列可以同时检测数千个基因的表达水平,帮助研究人员了解基因在不同条件下的表达变化,揭示基因调控网络的复杂性。
2. 基因突变检测:DNA微阵列可以用于检测基因中的突变,帮助诊断遗传性疾病和肿瘤等疾病,并指导个体化治疗方案的制定。
3. 药物筛选:DNA微阵列可以评估药物对基因表达的影响,加速新药的开发过程,为个体化药物治疗提供依据。
4. 遗传多态性研究:DNA微阵列可以检测个体之间的遗传差异,帮助研究人员了解遗传多态性与疾病易感性之间的关系。
三、DNA微阵列的优势与挑战1. 优势:a. 高通量:DNA微阵列可以同时检测数千个基因,大大提高了研究效率。
b. 灵敏度高:微阵列技术可以检测到低丰度的基因表达变化或突变。
c. 数据量大:DNA微阵列生成的数据量庞大,为基因研究提供了更全面的信息。
2. 挑战:a. 数据分析复杂:DNA微阵列数据的处理和分析需要专业的生物信息学技术支持。
b. 校正与标准化:芯片制备和实验操作的标准化对结果的准确性和可重复性至关重要。
c. 芯片设计限制:芯片上的探针设计需要考虑基因组的覆盖度和特异性,这对芯片制造商提出了挑战。
结论:DNA微阵列技术以其高通量、高灵敏度和广泛的应用领域成为基因研究和临床诊断的重要工具。
第七章 微阵列芯片随着 cDNA 微阵列和寡核苷酸芯片(下文没有特别说明时,统称为 DNA 微阵列)等高通量检测技术的发展,我们可以从全基因组水平定量或定性检测基因转录产物 mRNA 。
在本章中,基因表达数据特指基于 DNA 微阵列实验得到的反映 mRNA 丰度的数据,而不包括基因表达最终产物——蛋白质丰度的数据。
由于生物体中的细胞种类繁多,同时基因表达具有时空特异性,因此,基因表达数据与基因组数据相比,要更为复杂,数据量更大,数据的增长速度更快。
基因表达数据中蕴含着基因活动的信息,可以反映细胞当前的生理状态,例如细胞是处于正常还是恶化状态、药物对肿瘤细胞是否有效等。
对基因表达数据的分析可以获取基因功能和基因表达调控信息,这是生物信息学的重大挑战之一,也是 DNA 微阵列能够在生物医学领域中广泛应用的关键原因之一。
基因表达数据分析的对象是在不同条件下,全部或部分基因的表达数据所构成的数据矩阵。
通过对该数据矩阵的分析,可以回答一些生物学问题,例如,基因的功能是什么?在不同条件或不同细胞类型中,哪些基因的表达存在差异?在特定的条件下,哪些基因的表达发生了显著改变,这些基因受到哪些基因的调节,或者控制哪些基因的表达?哪些基因的表达是细胞状态特异性的,根据它们的行为可以判断细胞的状态(生存、增殖、分化、凋亡、癌变或应激等)等等。
对这些问题的回答,结合其它生物学知识和数据有助于阐明基因的表达调控路径和调控网络。
揭示基因调控路径和网络是生物学和生物信息学共同关注的目标,是系统生物学 (Systems Biology) 研究的核心内容。
目前,对基因表达数据的分析主要是在三个层次上进行: 1 、分析单个基因的表达水平,根据在不同实验条件下,基因表达水平的变化,来判断它的功能,例如,可以根据表达差异的显著性来确定肿瘤分型相关的特异基因。
采用的分析方法有统计学中的假设检验等。
2 、考虑基因组合,将基因分组,研究基因的共同功能、相互作用以及协同调控等。
应用微阵列比较基因组杂交技术对胎儿额外小标记染色体及染色体大片段重复进行产前诊断江均;梁华【摘要】目的对产前羊水细胞培养染色体核型分析,检测出来源不明染色体片段的胎儿应用基于芯片的微阵列比较基因组杂交(aCGH)技术检测,以明确其遗传物质的变异,探讨aCGH技术在检测胎儿来源不明染色体片段致病性中的临床价值.方法通过胎儿羊水细胞培养,染色体G显带核型分析,诊断出2例胎儿染色体异常(来源不明片段),核型分别为47,XY,+Mar及46,XY,add(16)(p13.1).对此2例标本进行aCGH分析,通过多位点高分辨率扫描确定未知片段的来源及大小.结果 aCGH扫描检测出其中一个胎儿染色体在15q11.1-q12.1区带存在3.2 Mb的重复,另一个胎儿染色体在13q22.2-q33.3区带存在35.1Mb的重复.结论利用aCGH技术可以方便快速地鉴定和分析染色体的重复变异,也能高效地对染色体重复片段进行定位,结合传统的核型分析技术,可以为判断额外染色体片段的遗传学效应和产前诊断提供帮助.【期刊名称】《华中科技大学学报(医学版)》【年(卷),期】2016(045)001【总页数】5页(P103-107)【关键词】微阵列比较基因组杂交技术;额外小标记染色体;染色体片段重复;产前诊断【作者】江均;梁华【作者单位】湖北省红安县妇幼保健院妇产科,红安438400;武汉大学人民医院妇产科,武汉430060【正文语种】中文【中图分类】R714.15基因组拷贝数变化(copy number variations,CNVs)即染色体片段的重复或缺失,指与参考基因组相比,拷贝数存在差异且增加或减少的碱基数目>1 kb,这是一种十分普遍的染色体变异,并且很多染色体数目的变异都与疾病直接相关[1]。
最近的研究表明,CNVs在人类疾病的病因学中具有重要作用,尤其是罕见的变异[2]。
对于基因组拷贝数变化,在细胞、亚细胞水平主要表现为染色体片段的缺失或重复。
DNA微阵列技术介绍及其应用DNA微阵列技术(microarray)指在固体表面(玻璃片或尼龙膜)上固定成千上万DNA克隆片段,人工合成的寡核苷酸片段,用荧光或其他标记的mRNA,cDNA或基因组DNA探针进行杂交,从而同时快速检测多个基因表达状况或发现新基因,快速检测DNA序列突变,绘制SNP遗传连锁图,进行DNA序列分析等的一种新技术,其基本原理是基于Southern杂交或斑点杂交技术。
将DNA 微阵列称为基因芯片实际上是不确切的。
生物芯片(bioship) 属于分子生物电子学范畴,只采用DNA或蛋白质等生物高分子为骨架制成大规模集成电路,用于研制第六代智能计算机。
DNA 微阵列有两种基本形式,即点样型DNA 微阵列和原位合成型DNA 微阵列。
点样型DNA 微阵列,通过PCR扩增的上万个DNA克隆,或常规合成的寡合苷酸被点样固定在一定固体表面(玻璃片,尼龙膜),用一组标记探针单独或混合处理检测。
制备方法:采用常规技术制备DNA,用点样仪自动点样在玻璃片上。
1.制备DNA片段:采用特异引物从各个克隆进行PCR扩增或将基因组DNA克隆到通用载体,然后纯化后重悬浮于3*SSC,使终浓度为0.5ug/ul. 2.微阵列制作:玻璃片清洗,包被多聚赖氨酸(35ml 多聚赖氨酸,35ml PBS,280ml ddH2O),双蒸水冲洗,干燥。
用微阵列仪点样,每种样品放5nl,用介层连接确定其互补序列。
制备方法:可改装一台半导体光印刷仪,采用光导向结合化学原理合成各种寡核苷酸探针。
1.玻璃片清洗后包被一层多聚赖氨酸。
2.在玻璃片上每个一定间距连接上带有光不稳定保护基的羟基。
3.UV照射,通过光印刷仪的遮盖膜使UV只穿过特定微孔射向玻璃片,将孔下的光不稳定保护基除去,产生自由羟基。
4.加入5’端带光不稳定保护基的磷酰胺碱基与自由羟基连接。
5.使遮盖膜微孔对准邻侧另一光不稳定保护基,重复4.5.依次有序进行,第一层碱基连接完毕后再进行第二层第三层.......。