4.棱锥的分类: .棱锥的分类: (1)按底面多边形的边数分为三棱锥、 )按底面多边形的边数分为三棱锥、 四棱锥、五棱锥等, 四棱锥、五棱锥等,其中三棱锥又叫四面 体!
三棱锥 四面体) (四面体)
四棱锥
五棱锥
(2)正棱锥:如果棱锥的底面是正多边 )正棱锥:如果棱锥的底面是正多边 并且水平放置, 它的顶点又在过正 顶点又在过 形,并且水平放置, 它的顶点又在过正 多边形中心的铅垂线上 多边形中心的铅垂线上,则这个棱锥叫做 S 正棱锥! 正棱锥
3 a 3
。
4.正四面体棱长为 a,M,N为其两条相 . , , 为其两条相 对棱的中点, 对棱的中点,则MN的长是 的长是
2 a 2
。
四.棱台及相关概念
1.定义:棱锥被平行于底面的平面所截, .定义:棱锥被平行于底面的平面所截 截面和底面间的部分叫做棱台. 截面和底面间的部分叫做棱台
上底面 侧棱 侧面 高 顶点 下底面
2.相关概念: .相关概念: 下底面、 (1)棱台的下底面、上底面:原棱锥的底 )棱台的下底面 上底面: 面和截面分别叫做棱台的下底面、上底面; 面和截面分别叫做棱台的下底面、上底面; 侧面: (2)棱台的侧面:棱台中除上、下底面以 )棱台的侧面 棱台中除上、 外的面叫做棱台的侧面; 外的面叫做棱台的侧面; 侧棱: (3)棱台的侧棱:相邻两侧面的公共边叫 )棱台的侧棱 做棱台的侧棱; 做棱台的侧棱; (4)棱台的高:当棱台的底面水平放置时, )棱台的高 当棱台的底面水平放置时, 铅垂线与两底面交点间的线段或距离叫做棱 台的高。 台的高。
有四个命题: 例1.有四个命题:① 各侧面是全等的等 有四个命题 腰三角形的四棱锥是正四棱锥; 腰三角形的四棱锥是正四棱锥;② 底面 是正多边形的棱锥是正棱锥; 是正多边形的棱锥是正棱锥;③ 棱锥的 所有侧面可能都是直角三角形;④ 四棱 所有侧面可能都是直角三角形; 锥的四个侧面中可能四个都是直角三角 形。其中正确的命题有 ③④ .