基础统计预备知识
- 格式:ppt
- 大小:189.50 KB
- 文档页数:19
以下是统计学中的一些基本概念和知识,供参考:
统计学基本概念
总体与样本:总体是研究对象全体的集合,样本是从总体中抽取的一部分元素的集合。
变量:用来描述数据的名称或符号。
数值变量与分类变量:数值变量是可度量的数据,如身高、体重等;分类变量是定性数据,如性别、血型等。
参数与统计量:参数是描述总体特征的指标,如总体均值、总体方差等;统计量是从样本中计算出来的指标,如样本均值、样本方差等。
描述性统计
频数分布表:将数据分为若干个组,统计每个组内的数据个数。
直方图:用直条矩形面积代表各组频数,矩形的面积总和代表频数的总和。
平均数:描述数据集中趋势的指标,计算方法有算术平均数、几何平均数、调和平均数等。
标准差:描述数据离散程度的指标,表示数据分布的宽窄程度。
概率与概率分布
概率:描述随机事件发生的可能性大小的数值。
概率分布:描述随机变量取值的概率规律的函数。
常见的概率分布有二项分布、泊松分布、正态分布等。
参数估计与假设检验
点估计:用单一的数值估计未知参数的值。
区间估计:用一定的置信水平估计未知参数的范围。
假设检验:根据样本数据对未知参数进行检验,判断假设是否成立。
常见的假设检验方法有t检验、卡方检验、F检验等。
相关分析与回归分析
相关分析:描述两个变量之间的线性关系的强度和方向。
回归分析:基于自变量和因变量之间的相关关系建立数学模型,用于预测因变量的值。
常见的回归分析方法有线性回归、逻辑回归等。
统计学习基础统计学习是一门研究如何从数据中学习模型并做出预测的学科。
它是统计学、机器学习和计算机科学的交叉领域,旨在通过分析数据来发现数据中的规律和模式,从而做出准确的预测和决策。
统计学习的基础是统计学和概率论,它们为我们提供了一种理论框架来理解数据和模型之间的关系。
在统计学习中,我们通常会面临一个监督学习的问题,即给定一组输入数据和对应的输出标签,我们的目标是学习一个模型来预测未知数据的输出标签。
这个过程可以分为两个阶段:模型训练和模型预测。
在模型训练阶段,我们会使用训练数据来拟合模型的参数,使得模型能够最好地拟合训练数据。
在模型预测阶段,我们会使用训练好的模型来对未知数据进行预测。
统计学习中最常用的模型包括线性回归、逻辑回归、支持向量机、决策树、随机森林等。
这些模型都有各自的优缺点,适用于不同类型的数据和问题。
在选择模型时,我们需要考虑模型的复杂度、泛化能力、计算效率等因素。
除了模型选择,统计学习中还有一些重要的概念和技术,如特征选择、交叉验证、正则化等。
特征选择是指选择对预测目标有最大影响的特征,以提高模型的预测性能。
交叉验证是一种评估模型性能的方法,通过将数据集分为训练集和测试集来评估模型的泛化能力。
正则化是一种用来控制模型复杂度的技术,可以避免模型过拟合训练数据。
总的来说,统计学习是一门非常重要的学科,它在各个领域都有广泛的应用,如金融、医疗、电商等。
通过统计学习,我们可以从数据中挖掘出有用的信息,帮助我们做出更准确的预测和决策。
因此,掌握统计学习的基础知识是非常有必要的,它将为我们的学习和工作带来很大的帮助。
《应用统计学》教学大纲一、课程简介统计学是农林经济管理本科专业的一门学科基础必修课。
本课程采取理论讲授与实验操作交替进行的方式,理论讲授部分主要包括统计数据的收集、整理、分析及预测,重点讲授各种统计方法,如参数估计、假设检验、方差分析、时间序列分析、统计指数、相关与回归分析等;实验操作部分包括统计工作过程的实验、Excel等电子表格在统计分析中的应用、统计学知识的综合应用三个实验。
二、教学大纲1.教学目的开设此课旨在培养学生数据收集、处理和分析能力。
通过本课程的学习,学生掌握统计学基本理论、方法及在Excel等统计软件中的运用,达到能应用统计方法分析问题和解决问题的目的。
2.教学要求(1)对教师的要求教师要积极备课,认真准备实验,对课程内容要融会贯通,切忌照本宣科。
授课在多媒体教室,结合典型实用案例和相关统计软件,理论讲授与上机操作交替进行。
做到授课内容与大纲相符,注重全程考核,最终成绩由考勤、调查方案设计、实验报告撰写、调查报告撰写、上机测试及期末考试构成,成绩评价体系标准真实、严谨、公平、公正、公开,提升学生学习积极性。
(2)对学生的要求学生能系统地掌握各种统计方法,并理解各种统计方法中所包含的统计思想;能运用统计方法分析和解决实际问题的能力;能够熟练应用Excel等统计软件进行数据分析。
3.预备知识或先修课程要求先修课程包括《概论论与数理统计》、《微观经济学》、《宏观经济学》、《管理学原理》等。
4.教学方式课程包括理论讲授和实验操作两部分。
理论授课32学时,教师讲授与课堂讨论相结合;实验操作24学时,包括统计工作过程实验、Excel等统计软件的运用及统计学知识的综合运用,以学生上机操作为主,教师引导、实地调查为辅。
5.实验环境和设备1)硬件环境:每个学生一台微型计算机。
2)软件环境:Windows 7、Office 2007(或以上版本)(Excel需安装数据分析及规划求解功能)软件包、卓越班学生还需SPSS、DPS软件包。
预备知识1.事件域定义 设Ω为一基本事件空间,F 为Ω的某些子集所组成的集合类。
如果F 满足: (1)Ω∈F ;(2)若A ∈F ,则对立事件A ∈F ;(3)若,=1,2,n A n ∈F ,则可列并=1n n A ∞∈F .则F 是一个σ代数(或称σ域),称为事件域。
F 中的元素称为事件。
2.可测空间定义 在概率论中,二元组(),ΩF称为概率可测空间,这里“可测”是指F是一个事件域,即F 中的元素都是有概率可言的事件。
3. 有限维乘积可测空间定义 设(),,1i i i n Ω≤≤F 是n 个可测空间,像通常一样,(){}1=,,:,1n i i i n ωωωΩ∈Ω≤≤称为1,,n ΩΩ乘积空间,记为1=1==n i n i Ω⨯ΩΩ⨯⨯Ω。
对i i A ⊂Ω,1i n ≤≤,集合(){}1A=,,:,1n i i A i n ωωω∈≤≤称为乘积空间Ω中的矩形集,记为1=1A==A n i n i A A ⨯⨯⨯。
特别地,当每个i i A ∈F 时,1=1A==A ni n i A A ⨯⨯⨯称为可测矩形。
C 表示=1=n i i Ω⨯Ω中的可测矩形全体,即{}1=A :,i=1,,n n i i A A ⨯⨯∈C F ,则C 是一个半域,()=σC F (由C 生成的σ域,即包含C 的最小σ域)称为乘积σ域, 记为1=1==ni n i ⨯⨯⨯F F F F ,又称(),ΩF 为可测空间()()11,,,,n n ΩΩF F 的乘积可测空间,记为()()()()11=1,=,=,,ni i n n i Ω⨯ΩΩ⨯⨯ΩF F F F4. 无限维乘积可测空间定义 设(){},,J αααΩ∈F 是一族可测空间,则(){}=,J :,J αααωαωαΩ∈∈Ω∈称为(),J ααΩ∈乘积空间,记为=JJαααα∈∈Ω⨯Ω=Ω∏。
若I 是J 的有限子集,对,A I ααα∈∈F ,集合(){}B=,J :,,,J i A I ααααωαωαωα∈∈∈∈Ω∈称为乘积空间Ω中的有限维基底可测矩形柱集,=IA A αα∈⨯称为B 的底。
预备知识1.事件域定义 设Ω为一基本事件空间,F 为Ω的某些子集所组成的集合类。
如果F 满足: (1)Ω∈F ;(2)若A ∈F ,则对立事件A ∈F ;(3)若,=1,2,n A n ∈F ,则可列并=1n n A ∞∈F .则F 是一个σ代数(或称σ域),称为事件域。
F 中的元素称为事件。
2.可测空间定义 在概率论中,二元组(),ΩF称为概率可测空间,这里“可测”是指F是一个事件域,即F 中的元素都是有概率可言的事件。
3. 有限维乘积可测空间定义 设(),,1i i i n Ω≤≤F 是n 个可测空间,像通常一样,(){}1=,,:,1n i i i n ωωωΩ∈Ω≤≤称为1,,n ΩΩ乘积空间,记为1=1==n i n i Ω⨯ΩΩ⨯⨯Ω。
对i i A ⊂Ω,1i n ≤≤,集合(){}1A=,,:,1n i i A i n ωωω∈≤≤称为乘积空间Ω中的矩形集,记为1=1A==A n i n i A A ⨯⨯⨯。
特别地,当每个i i A ∈F 时,1=1A==A ni n i A A ⨯⨯⨯称为可测矩形。
C 表示=1=n i i Ω⨯Ω中的可测矩形全体,即{}1=A :,i=1,,n n i i A A ⨯⨯∈C F ,则C 是一个半域,()=σC F (由C 生成的σ域,即包含C 的最小σ域)称为乘积σ域, 记为1=1==ni n i ⨯⨯⨯F F F F ,又称(),ΩF 为可测空间()()11,,,,n n ΩΩF F 的乘积可测空间,记为()()()()11=1,=,=,,ni i n n i Ω⨯ΩΩ⨯⨯ΩF F F F4. 无限维乘积可测空间定义 设(){},,J αααΩ∈F 是一族可测空间,则(){}=,J :,J αααωαωαΩ∈∈Ω∈称为(),J ααΩ∈乘积空间,记为=JJαααα∈∈Ω⨯Ω=Ω∏。
若I 是J 的有限子集,对,A I ααα∈∈F ,集合(){}B=,J :,,,J i A I ααααωαωαωα∈∈∈∈Ω∈称为乘积空间Ω中的有限维基底可测矩形柱集,=IA A αα∈⨯称为B 的底。