沪教版六年级下册数学——一元一次方程的应用
- 格式:pdf
- 大小:626.93 KB
- 文档页数:18
沪教版数学六年级下册6.4《一元一次方程的应用》教学设计一. 教材分析《一元一次方程的应用》是沪教版数学六年级下册第6.4节的内容。
本节课主要让学生掌握一元一次方程的应用,培养学生解决实际问题的能力。
教材通过生活中的实例,引导学生认识一元一次方程在实际问题中的应用,进一步巩固学生对一元一次方程的理解。
二. 学情分析六年级的学生已经学习了代数基础知识,对一元一次方程有了初步的认识。
但在实际应用方面,学生可能还存在一定的困难。
因此,在教学过程中,教师需要注重引导学生将理论知识与实际问题相结合,提高学生解决问题的能力。
三. 教学目标1.让学生掌握一元一次方程在实际问题中的应用。
2.培养学生解决实际问题的能力。
3.提高学生对数学的兴趣,增强学生的自信心。
四. 教学重难点1.重点:一元一次方程在实际问题中的应用。
2.难点:如何将实际问题转化为方程,并求解。
五. 教学方法1.情境教学法:通过生活实例,引导学生认识一元一次方程在实际问题中的应用。
2.引导发现法:教师引导学生发现实际问题与方程之间的联系,培养学生解决问题的能力。
3.小组合作学习:学生分组讨论,共同解决问题,提高学生的合作能力。
六. 教学准备1.教学课件:制作课件,展示生活实例和相关的练习题。
2.练习题:准备一些实际问题,供学生练习。
3.教学道具:准备一些实物,如商品、钱等,用于演示。
七. 教学过程1.导入(5分钟)教师通过一个生活实例引入课题,如“某商品打8折出售,售价为120元,求原价是多少?”让学生思考并讨论,引导学生认识到一元一次方程在实际问题中的应用。
2.呈现(10分钟)教师展示一些实际问题,让学生尝试用一元一次方程来解决。
如“甲、乙两地相距150公里,甲地一辆汽车以60公里/小时的速度前往乙地,同时,乙地一辆汽车以80公里/小时的速度前往甲地。
问几小时后两车相遇?”引导学生列出方程并求解。
3.操练(10分钟)学生分组讨论,共同解决教师提供的练习题。
一元一次方程的应用【学习目标】1.能利用一次方程组解决一些简单的实际问题。
2.再次体验方程思想是解决实际问题的有力工具。
【学习重难点】1.掌握一次方程组解决实际问题的过程。
2.能将所学内容应用到实际生活中。
【学习过程】一、自主学习1.对于含有两个未知数的应用题可以列二元一次方程组求解,也来可以列一元一次方程求解。
对于含有三个未知数的应用题一般采用列_______________________的方法求解。
2.某人要在规定的时间内由甲地赶往乙地,如果他以每小时50千米的速度行驶,就会迟到24分钟,如果他以每小时75千米的高速行驶,则可提前24分钟到达乙地,求他以每小时多少千米的速度行驶,可准时到达。
分析:有些问题只能间接设元,理解题意,找出题目中不变量,看已知量与不变量之间存在怎样的关系。
此题中的不变量是_____________________和_____________________,所以应设甲地解法一:(二元一次方程组)解法二:(一元一次方程)二、自主检测1.小华买了10分与20分的邮票共16枚,花了2元5角。
10分与20分的邮票各买了多少枚?2.公鸡1只值钱5,母鸡一只值钱3,小鸡三只值钱1,今有钱100,买鸡100只,问公鸡、母鸡、小鸡各买几只?3.小兰在玩具工厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分。
平均做1个小狗与1个小汽车各用多少时间?三、思维拓展1.某服装厂要生产一批同样型号的运动服,已知每3m长的某种布料可做2件上衣或3条裤子,现有此种布料600m,请你设计一下,该如何分配布料,才能使运动服成套而不至于浪费?能生产多少套运动服?2.某商场以每件a元购进一种服装,如果规定以每件b元卖出,平均每天卖出15件。
30天共获利润22500元,为了尽快回收资金,商场决定将每件降价20%卖出,结果平均每天比降价前多卖出10件,这样30天仍然可获得利润22500元,试求a,b的值。
《一元一次方程的应用》作业设计方案(第一课时)一、作业目标本作业设计旨在通过一元一次方程的实际应用,加深学生对一元一次方程的理解,培养学生运用数学知识解决实际问题的能力,同时提高学生的逻辑思维和计算能力。
二、作业内容作业内容主要围绕一元一次方程的应用展开,具体包括以下几个方面:1. 基础练习:通过选择题、填空题等形式,让学生熟练掌握一元一次方程的基本概念和解题方法。
2. 实际问题建模:选取几个与日常生活紧密相关的问题,如购物找零、速度与时间的关系等,引导学生将实际问题转化为数学模型,即一元一次方程。
3. 方程应用拓展:设计一些较为复杂的实际问题,如工程问题、行程问题等,让学生运用所学知识解决这些问题,加深对一元一次方程应用的理解。
4. 计算能力训练:布置一定量的计算题,包括解方程、方程的求解等,以提高学生的计算能力和解题速度。
三、作业要求1. 学生在完成作业时,应认真审题,明确题目要求,准确理解题意。
2. 学生应将实际问题转化为数学模型,即一元一次方程,并正确列出方程。
3. 学生应熟练掌握一元一次方程的解法,正确求解方程。
4. 学生在完成计算题时,应注意计算过程的规范性,保证计算结果的准确性。
5. 学生在完成作业后,应进行自我检查和反思,找出自己的不足之处,加以改进。
四、作业评价1. 教师根据学生完成作业的情况,对学生的学习情况进行评估。
2. 教师应对学生的解题思路、计算过程和结果进行认真检查,给出详细的批阅意见。
3. 对于学生的优点和进步,教师应及时给予肯定和鼓励,激发学生的学些兴趣和自信心。
4. 对于学生的不足之处,教师应指出具体问题,并提供改进建议,帮助学生提高数学学习能力。
五、作业反馈1. 教师根据学生的作业情况,进行课堂讲解和点评,让学生了解自己的不足之处。
2. 对于共性问题,教师可以在课堂上进行重点讲解和演示,帮助学生掌握正确的解题方法和技巧。
3. 教师可以通过课堂互动、小组讨论等方式,让学生互相交流学习经验和解题方法,提高学生的合作能力和交流能力。
一元一次方程的应用题课题 6.4(1)一元一次方程的应用题设计依据(注:只在开始新章节教学课必填)教材章节分析:学生学情分析:课型新授课教学目标1、能找出应用题中的未知量和已知量,结合题意设未知数列方程。
2、经历用方程解决实际问题,体验方程思想,了解方程是解决问题的工具。
3、运用数学思想方法思考问题,层次清晰,遇到困难要积极动脑重点运用方程解决生活、工作实际问题。
难点正确找出已知量和未知量,以及他们的等量关系。
教学准备一元一次方程的解法学生活动形式教学过程设计意图课题引入:课前练习一课前练习二2、(1)某企业去年年产值是100万元,今年力争比去年增加20%,那么今年年产值是__________万元;2、(2)某企业去年年产值是a万元,今年力争比去年增加20%,那么今年年产值是___________万元 .课前练习三3、(1)一种药品原价每瓶m元,现在降价15%,那么这种药品现价每瓶为______元;(2) 一种药品降价10%后,现价每瓶54元,那么原价每瓶为_______元 . 下面做法正确的是( ) 复习旧知识,为一元一次方程方程的应用作铺垫用“国家体育馆”的图片把学生带入一个我们为奥运做贡献的一个具体的情境本题可让学生自己解决。
由学生回答所列方程各部分的实际意义。
设计了两种方法,随机点击 方法一:直接用算术的方法求。
引导学生用方程的方法来解。
方法二:通过设元建立方程来解。
寻找等量关系知识呈现:新课探索一(1)北京奥林匹克公园的中心是可容纳8万人的国家体育场,周围分布着田径、体操、游泳等14个场馆,整个公园占地1215公顷,总建筑面积约200万平方米.2008年中国将举办北京奥运会.2004年中国政府提出了“节俭办奥运”的新理念,将建造国家体育馆的预算资金调整为26亿元,比原预算节约资金35%,问原建造国家体育馆的预算资金为多少亿元? 新课探索一(2)2008年中国将举办北京奥运会.2004年中国政府提出了“节俭办奥运”的新理念,将建造国家体育馆的预算资金调整为26亿元,比原预算节约资金35%,问原建造国家体育馆的预算资金为多少亿元? 新课探索二(1)在解决实际问题的过程中,往往需要引入适当的未知数,根据题目中的等量关系列出方程,并求得方程的解.列方程解应用题的一般步骤是:1.设未知数(元);2.列方程;3.解方程;4.检验并作答(符合实际). 新课探索二(2)在2004年雅典奥运会闭幕式上,中国表演队必须用8分49秒表演舞动北京、中华武术、少儿京剧等节目,其表演的时间之比是10:8:5,那么舞动北京,中华武术,少儿京剧等节目表演的时间各是多少秒?本题有怎样的一个等量关系?新课探索三方程的思想方法在解决许多实际问题时,用列方程的方法将已知量与未知量之间的等量关系表示出来,然后求出方程的解,通过检验获得实际问题的解.这种方法就是方程的思想方法.新课探索四例2 学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人,现在调20人去支援,使在甲处植树的人数是乙处植树人数的2倍,应调往甲、乙两处各多少人?增加一例题“人员调配问题”巩固刚才的解题思路和方法。
沪教版六年级下册数学第五章一元一次方程应用(1)1.动物园的门票售价:成人票每张50元,儿童票每张30元,某日动物园售出门票700张,共得29000元.设儿童票售出x张,依题意可列出方程为()A. 30x+50(700-x)=29000B. 50x+30(700-x)=29000C. 30x+50(700+x)=29000D. 50x+30(700+x)=290002.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元.如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A. 2(x-1)+3x=13B. 2(x+1)+3x=13C. 2x+3(x+1)=13D. 2x+3(x-1)=133.一艘船由甲地开往乙地,顺水航行要4h,逆水航行比顺水航行多用40min,已知船在静水中的速度为16km/h,求水流速度.若设水流速度为xkm/h,列出一元一次方程为4.某厂的两个车间10月份共生产1339个零件,第一车间10月份比9月份增产12%,第二车间10月份比9月份减产24%,若9月份第一车间的产量是第二车间产量的3倍,那么9月份两个车间各生产了多少个零件?设第二车间9月份生产x个零件,则10月份第一车间生产了个零件,第二车间生产了个零件,列方程为5.一列火车从A城到B城行驶3h,返回时车速每时减少10km,则多行驶半小时,那么A、B 两地相距多远?6.江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工质量的3倍还多2000千克,求粗加工的该种山货质量7.去年某市生产运营用水和家庭生活用水的总和是5.8亿立方米,其中家庭生活用水比生产运营用水的3倍还多0.6亿立方米,则家庭生活用水和生产运营用水各多少亿立方米?8.目前扬州市小学和初中在校生共有约128万人,其中小学生在校人数比初中生在校人数的2倍多14万人(1)求目前扬州市在校的小学生人数和初中生人数.(2)假设今年小学生每人需交杂费500元,初中生每人需交杂费1000元,而这些费用全部由扬州市政府拨款解决,则扬州市政府要为此拨款多少?9.朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还差3个,如果每人2个又多2个,共有小朋友()A.4个B.5个C.10个D.12个10.如图是某年6月份的日历,如图中那样,用一个圈竖着圈住3个数,如果被圈的三个数的和为39,则这三个数中最大的一个为11.食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输,某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2g,B饮料每瓶需加该添加剂3g,已知270g该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?12、张新和李佳相约到图书城去买书,请你根据他们的对话内容(如图),求出李佳上次所买书籍的原价。
一、教学要点:1.学生能够了解一元一次方程的概念,掌握如何列出一元一次方程。
2.学生能够应用一元一次方程解决实际生活问题。
3.学生能够通过解方程解决实际问题和进行合理推理。
二、教学准备:1.教师准备黑板、白板、教学课件等教具。
2.学生准备教材、练习册等学习工具。
三、教学过程:1.导入:通过一个实例引入一元一次方程的概念。
教师先设计一个实例,比如:小明买了几支钢笔和几本数学书,花了多少钱?学生可以用双括号表示钢笔的价格,用大括号表示数学书的价格,以x和y表示数量,写出这个问题的方程:2x+5y=120。
然后教师引导学生,通过观察方程,了解一元一次方程的概念。
2.讲解一元一次方程的概念和解题步骤。
二次函数是一个变量的一个约束,它表示一个未知数x的一个整数系数和一个常数项的代数表达式。
一般表示为ax + b = c,其中a、b、c都是已知数。
求解一元一次方程,就是要找到使等式成立的未知数x的值。
解题步骤:首先观察方程,整理方程,使得x的系数为1,然后通过变形和运算,逐步求得未知数x的值。
最后验证解是否合理,并给出解答。
3.分组讨论解题方法。
将学生分为小组,每组选择一道应用一元一次方程的问题,让小组成员一起讨论选择合适的解题方法,然后小组展示解题过程和解答。
教师引导学生归纳总结解题方法。
4.练习。
教师通过多种形式的练习,让学生掌握应用一元一次方程解决实际问题的能力。
(1)练习1:若直线y=x+2与x轴交于点A,与y轴交于点B,求解线段AB的长度。
解:由题意,直线与x轴的交点为(0,2),与y轴的交点为(2,0)。
根据直线上两点间距离公式可得:AB=√((2-0)²+(0-2)²)=√(4+4)=√8=2√2(2)练习2:长方形围墙的长和宽的和为12米,若围墙的面积为20平方米,求长和宽的值。
解:设长为x,宽为y。
根据题意可得:x+y=12解方程组:x=12-y,(12-y)y=20。
沪教版数学六年级下册6.4《一元一次方程的应用》教学设计一. 教材分析《一元一次方程的应用》是沪教版数学六年级下册第六章的内容。
本节课主要让学生掌握一元一次方程的应用,通过解决实际问题,让学生了解一元一次方程在生活中的应用,培养学生解决实际问题的能力。
教材通过丰富的例题和练习题,帮助学生巩固知识,提高解题技能。
二. 学情分析六年级的学生已经掌握了代数的基础知识,对一元一次方程有一定的理解。
但是,学生在应用一元一次方程解决实际问题时,还存在着一定的困难。
因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生解决问题的能力。
三. 教学目标1.知识与技能:让学生掌握一元一次方程的应用,能够解决实际问题。
2.过程与方法:通过解决实际问题,培养学生运用一元一次方程解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极解决问题的态度。
四. 教学重难点1.重点:让学生掌握一元一次方程的应用。
2.难点:如何引导学生将实际问题转化为一元一次方程,并解决问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过提出问题,引导学生思考,运用案例教学法讲解实际问题,让学生在解决实际问题的过程中掌握一元一次方程的应用。
同时,采用小组合作法,让学生在小组内讨论、交流,提高学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关案例和练习题,用于引导学生解决问题。
2.准备多媒体教学设备,用于展示案例和讲解。
七. 教学过程1.导入(5分钟)教师通过提出一个问题:“小明买了一些苹果,比梨多3倍,如果小明买了45个梨,那么他买了多少个苹果?”引发学生的思考,引导学生进入本节课的主题。
2.呈现(10分钟)教师通过多媒体展示几个实际问题,让学生尝试解决。
例如:“一家商店卖出一件衣服,赚了20元,卖出一双鞋子,赚了15元。
如果商店一天卖出了3件衣服和2双鞋子,那么商店一共赚了多少钱?”学生在解决问题的过程中,教师进行讲解和指导。
沪教版六年级一元一次方程应用————————————————————————————————作者:————————————————————————————————日期:一元一次方程应用列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)类型1:比例分配问题:这类问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。
常用等量关系:各部分之和=总量。
【例1】三个正整数的比为1:2:4,它们的和是84,那么这三个数中最大的数是几? 分析:等量关系:三个数的和是84解:设一份为x ,则三个数分别为x ,2x ,4xx x x x ++==248412 答:略.【例2】甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件?变式训练1 甲、乙、丙三个乡合修水利工程,按照收益土地的面积比3:2:4分担费用1440元,三个乡各分担多少元?变式训练2 今年小杰的岁数与爸爸的岁数之比是2:7,又知道小杰的岁数与爸爸的岁数之和是54,今年小杰和爸爸各几岁?类型2:储蓄问题⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。
利息的20%付利息税⑵利息=本金×利率×期数本息和=本金+利息利息税=利息×税率【例1】某人把若干元按三年期的定期储蓄存入银行,假设年利率为3.69%,到期支取时扣除所得税实得2103.3元,求存入银行的本金。
一元一次方程的应用【教学目标】1.进一步掌握一元一次方程解应用题的方法和步骤;2.理解分数百分比问题用列一元一次方程的根据和方法。
【教学重难点】1.找分数百分比问题中的相等关系;2.把寻找出的相等关系转化成方程。
【教学过程】一、复习提问列一元一次方程解应用题的一般步骤。
列代数式:休闲牌服装售价x元,现降价四成出售,则现在售价为_________________。
(0.6x)。
某厂八月份原计划生产洗衣机y台,技术革新后,实际超额完成计划的15%,则超额生产洗衣机______________台,实际生产洗衣机______________台。
( 320 y,2320 y)。
某学生看一本z页的漫画书,第一天看了全书的 13 还多2页,第二天看的比第一天余下的一半少1页,第三天看了最后的24页。
则第一天看了_______页;第二天看了____________________页,三天共看了___________________页。
( 13 z + 2;12 (z –13 z – 2)– 1,13 z – 2;z,24 +23 z)。
二、新课讲解一年前妈妈用800元买了债券,一年半后的本息正够买一台830元的微波炉,问妈妈所买债券的年利率是多少?分析:利息问题有一个相等关系是:本利和=本金+利息(本金×利率×期数)。
现在本利和,本金,期数均为已知数,年利率是一个未知数,不妨设它为x。
解:设:债券的年利率是x。
800 + 800×1.5x =830,1200x = 30,x=0.025,x=2.5%。
答:妈妈所买债券的年利率为2.5%。
老李买进500千克的苹果,用去运费20元,出售时损坏的苹果占总数的10%,剩下的以每千克5.20元出售,这样可得三成利润,求老李买进苹果时每千克的价格?分析:相等关系在题中有为:剩下的以每千克5.20元出售,这样可得三成利润,下面需解决的几个数量为:(1)剩下的苹果,500×(1–10%);(2)卖出的总价=卖出单价×卖出数量=5.20×500×(1–10%);(3)成本=买进单价×买进数量+运费;买进的单价不知道,是要求的,不妨设为x元,则成本=500x+20;相等关系为:卖出总价=成本×(1+30%);解:设:老李买进苹果时每千克的价格为x元。
教学设计:一元一次方程的应用【课程】初中数学【教材】上海市九年义务教育课本《数学》(上海教育出版社)【年级】六年级第二学期【教学内容】第六章6.4《一元一次方程的应用》【教学任务分析】1、教材分析本节内容,是在前面已经学习了一元一次方程的解法、一元一次方程的应用两课时的基础之上,应用一元一次方程的有关知识,对从报刊、图书、网络、媒体等收集的一些实际数据,分析其中的等量关系,编成问题,再用一元一次方程解决这些问题。
本节内容,对于培养学生用数学的眼光观察现实世界,分析数据起着重要的作用。
一方面,可以锻炼学生运用所学的一元一次方程的知识解决实际问题的能力,另一方面也引导学生关注生活实际中隐含的数学问题,培养学生的数学敏锐性,为以后学习新的数学知识、时刻能联系实际做好准备。
2、学情分析六年级学生已经具备一定的运算能力、阅读能力和简单的分析问题的能力,这时候学生已具备一定的运用一元一次方程解决问题的能力,对于这个年龄段的孩子来说,对新鲜事物充满好奇,他们对生活实际与数学学习相结合是充满期待的。
面对这个年龄阶段的学生,我们需要通过深层挖掘身边的实际素材,帮助学生体会从算术到代数是数学的发展,增强用数学的意识。
通过自主分析实际问题,列方程解决问题,体验方程思想在我们生活实际中的作用,培养学生勇于探索的意识和解决问题的能力。
3、德育渗透本节课通过高铁相关问题,从“富强”、“和谐”、“法治”、“爱国”、“敬业”、“友善”等方面渗透社会主义核心价值观,重点培养学生爱党爱国情感,增强国家意识和社会责任意识,增强中国特色社会主义道路自信。
通过本节课的学习,再一次引导学生用数学的眼光观察现实世界,感受祖国建设日新月异的变化。
通过问题1中高铁列车速度、时间等相关数据的比较,让学生感受祖国高铁列车的飞速发展,综合国力的逐步提升,从“富强”、“爱国”两方面渗透社会主义核心价值观;通过问题2中高铁列车的票价和编组问题的解决,对祖国的高铁列车有进一步的了解,同时“帮爷爷奶奶买票”的问题,引导学生继承祖国优良的文化传统,对长辈的孝敬、关爱的情感态度,从“和谐”这一方面渗透社会主义核心价值观;通过问题3中对“一带一路”的高铁建设的了解,体会“知识产权”的重要性,感受这些年伴随习主席走向世界舞台的步伐,一张张“中国名片”亮相世界的民族自豪感,培养学生的社会责任意识,增强中国特色社会主义道路自信,从“法治”、“敬业”、“友善”三个方面渗透社会主义核心价值观。
一元一次方程的应用课题 6.4(4)一元一次方程的应用设计教材章节剖析:依照(注:只学生学情剖析:在开始新章节教课课必填)课型新讲课教1、能找出应用题中的未知量和已知量,联合题意设未知数列方程。
学2、体验方程思想,掌握方程是解决问题的工具,逐渐能用方程的思想来剖析问目题,解决问题。
标3、运用数学思想方法思虑问题,层次清楚,碰到困难要踊跃动脑。
要点运用方程解决生活、工作实质问题(行程问题)。
难点正确找出已知量和未知量,以及他们的等量关系;掌握行程、时间、速度的计算。
间接设元。
教课一元一次方程的解法准备学生活动形式教课过程课题引入:课前练习一某人将文件从A市送到B市,若每小时行12千米,就要比规准时间晚到分钟;若每小时行14千米,便可提早1小时抵达.问本来规准时间是多少?AB两地的行程是多少?课前练习二探究:汽车从王家庄出发匀速行驶,经过青山、翠湖抵达秀水,你能求出王家庄到翠湖的行程吗?知识体现:新课探究一例1小杰、小丽分别在400米环形跑道上练习跑步与竞走,小杰每分钟跑设计企图让学生辨析迟到和早到在方程中那个时间用加和减(学生简单混杂)。
能够把要点性句子划出。
利于学生剖析。
注意是同向。
1320米,小丽每分钟走120米,两人同时同向由同一点出发,问几分钟后,小丽与小杰第一次相遇.你能依据题意找到此题的等量关系吗?新课探究二例2(我国古代问题)跑得快的马每日走240里,跑得慢的马每日走150里,慢马先走12天,快马几日能够追上慢马?直接设元学生简单接受。
间接设元有一定的难度。
学生都能掌握直接设元后可以加深用间接设元考虑。
注意是同向若设快马x天可追上慢马,那么可得方程:240x=150(x+12),240x=150×12+150x.若设快马追上慢马时,跑了y里,快马跑的天数=慢马跑的天数-12.那么可得方程:直接设元对学生来说简单接受。
注意是反向。
请解说此方程中左右两边的实质意义.而后再求追上时间.课内练习书P51练习6.4(2)3、4甲、乙两人从相距为180千米的A,B两地出发,沿同一条路线相向匀速行驶.甲骑自行车,车速为15千米/小时.乙骑摩托车,车速为45千米/小时.假如甲先行一小时后乙才出发,问甲再行多少时间与乙相遇.2讲堂小结:相关行程问题的应用题基本数目关系:行程=速度×时间.工作总量=工作效率×工作时间.总价=单价×数目.设元:直接设元、简接设元.找寻等量关系:(隐含的等量关系).课外练习册P29习题6.49、10作业堂堂练P374-6、10-13讲堂小结:课外作业预习要求教课后记与反省1、讲堂时间耗费:教师活动分钟;学生活动分钟)2、本课时实质教课成效自评(满分10分):分3、本课成功与不足及其改良举措:此资源为word格式,您下载后能够自由编写,让智慧点亮人生,用爱心播种将来。
《一元一次方程的应用》作业设计方案(第一课时)一、作业目标本节作业旨在使学生能够掌握一元一次方程的基本概念和应用,学会利用一元一次方程解决实际问题,培养其数学思维能力和解决问题的能力。
二、作业内容本节作业内容主要包括以下几个方面:1. 掌握一元一次方程的基本概念和形式,如ax=b的形式。
2. 理解一元一次方程在现实生活中的应用,如购物找零、行程问题等。
3. 学会通过实际问题抽象出一元一次方程,并运用等式性质进行求解。
4. 练习一元一次方程的解法,包括移项、合并同类项、化简等步骤。
5. 巩固所学知识,完成一些具有挑战性的练习题,加深对一元一次方程的理解。
三、作业要求为确保学生能够高效地完成本次作业,我们提出以下要求:1. 学生应首先回顾一元一次方程的基本概念和形式,并确保理解其含义。
2. 学生需要仔细阅读每一个问题,理解题目的背景和要求,然后尝试抽象出一元一次方程。
3. 在解方程的过程中,学生应遵循一元一次方程的解法步骤,确保每一步都准确无误。
4. 学生应注重练习题的训练,通过反复练习加深对一元一次方程的理解。
5. 学生在完成作业后,应自行检查答案,确保答案的准确性。
四、作业评价为保证作业质量,我们将采取以下评价方式:1. 评价学生的作业完成情况,包括是否按时完成、是否按照要求完成等。
2. 评价学生对一元一次方程的理解程度,包括对方程概念、形式、解法等的理解。
3. 评价学生的解题思路和步骤,看其是否合理、准确。
4. 评价学生的答案准确性,看其是否符合题目要求。
五、作业反馈为帮助学生更好地掌握所学知识,我们将进行以下反馈:1. 对学生的作业进行批改,指出错误的地方并给出正确的解答。
2. 对学生的解题思路和步骤进行点评,指出其中的优点和不足。
3. 针对学生的薄弱环节,提供相应的辅导和练习,帮助学生巩固所学知识。
4. 鼓励学生自我反思,找出自己的不足之处,并制定改进计划。
通过以上的作业设计方案,相信能够帮助学生更好地掌握一元一次方程的应用,并培养其数学思维能力和解决问题的能力。
一元一次方程的应用课前练习二2.一件商品按成本价提高30%后标价,又以8折销售,售价为208元,这种商品的成本价是多少元?设这种商品的成本价是x元.根据题意,得x 130% 0.8=208解这个方程,得 x=200答:这种商品的成本价是200元新课探索一(2)2.(1)一件商品进价为设这件商品的原标价是尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。