沪教版六年级数学下册全套教案习题
- 格式:docx
- 大小:4.22 MB
- 文档页数:184
ABBAACCAABBAa六年级下册数学教案-第七章《线段与角的画法》|沪教版7.1线段的大小的比较 学习目标:初步把握线段大小比较的一样方法并会用数学符号表示;会用直尺、圆规等学习工具画一条线段等于已知线段,初步体验差不多的作图语句;3、把握两点间距离的概念,并明白得“两点之间线段最短”的意义. 学习过程:一、线段、射线、直线 1、线段的表示方法:(1)我们能够用两个大写英文字母表示一条线段的两个端点.如图,记作:线段AB 或线段BA(2)用一个小写英文字母表示.如图,记作:线段a .2、线段的延长线:线段向一方延伸的部分叫做线段的延长线.延长线段AB 或反向延长线段BA. 延长线段BA 或反向延长线段AB.3、射线的表示方法:线段向一方无限延伸所形成的图形叫做射线.如图,记作:射线AC.点A 叫做射线AC 的端点,一条射线只有一个端点. 假如只显示端点A ,不显示点C ,依旧用两个大写英文字母表示.如图,记作射线AC.4、直线的表示方法:线段向两方无限延伸所形成的图形叫做直线.如图,记作:直线AB 或直线BA假如不显示点A 、点B ,依旧用两个大写英文BEDQPABlba 字母表示.如图,记作:直线AB 或直线BA也能够用一个小写英文字母表示.如图,记作:直线l.试一试: 1、填表:图形名称 图形语言符号语言端点个数线段m直线b2、依照要求画图:如图,已知线段AB ,延长线段AB 到点C ,使AC=5cm ,反向延长线段AB 到点D ,使AD=2cm.操作:画线段AB 和CD ,使端点A 与端点C 重合,线段AB 与线段C D 叠合. 这时端点B 有几种可能的位置情形?例题1 如图,已知线段a , 用圆规、直尺画出线段AB , 使得AB =a . 例题2 先观看估量图中线段a ,b 的大小,然后用比较线段大小的方法验证你的估量,并用“ ”符号连结.例题3 如图,在教学楼到活动室之间有三条小路,假如把教学楼和活动室看作点,那么小路1是通过这两点的一条线段,请画出小路1,活动室_____确定一条____________________线段.联结两点的________的_________叫做两点之间的________._______________________最短.巩固练习:1、比较下列各图中两条线段AB与CD的大小.[来源:学&科&网]2、已知线段AB、CD,AB>CD,(1)假如将CD移动到AB的位置,使点C与点A重合,CD与AB叠合,那么点D的位置状况是__________________(2)假如将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,那么点B的位置状况是__________________3、下列叙述正确的是()A、联结两点的直线叫做两点之间的距离.B、联结两点的线段叫做两点之间的距离.C、联结两点的直线的长度叫做两点之间的距离.D、联结两点的线段的长度叫做两点之间的距离.7.2 画线段的和、差、倍学习目标:1、能用等式表示两条线段的和、差、倍关系并把握用直尺、圆规作线段的和、差、倍;2、明白得线段的中点的意义,能用数学符号语言表示线段的中点并能用直尺、圆规作线段中点;学习过程:一、新课探究1、观看:如图所示,A、B、C三点在一条直线上,1)图中有几条线段?2)这几条线段之间有如何样的等量关系?两条线段能够_____________,它们的和(或差)也是___________,其长度等于这两条线段_________的和(或差).( )( )( )练习1:(书第90页练习7.2第1题)例题1:如图,已知线段a 、b ,(1)画出一条线段 , 使它等于a b +; (2)画出一条线段 , 使它等于a b -.解:(1) ①画___________;②在_________上顺次截取______________________;(2) ①画_____________;②在___________上截取_______,在_________ 上截取___________;摸索1:已知线段a ,类比乘法的意义,你能讲出2a ,3a ,……,na (n 为正整数,且1n >)的含义吗?例题2 如图,已知线段a 、b ,画出一条线段,使它等于2a b -.摸索2:如图,已知线段AB ,你能否在线段AB 的上找一点C ,使点C 把线段AB 分成相等的两条线段?将一条线段分成两条相等线段的点叫做这条线段的中点. 若已知点M 是线段AB 的中点,你能得到哪些等量关系? 练习2:(书第90页练习7.2第2题) 练习3(书第91页练习7.2第4题) 7.3 角的概念与表示 学习目标:1、明白角的有关概念;2、把握角的四种表示方法;3、在用含方向角的射线表示方向的过程中,感受实际问题与数学问题间的互相转化.学习过程: 一、角的概念abaDAB CEFHG ( )( )( )30︒45︒30︒CB AONSE W西东南北角是具有公共端点的两条射线组成的图形. [来源:学,科,网Z,X,X,K] 角的形成过程:操作:把圆规的两只脚由并在一起到逐步把一只脚旋转到另一个位置. 角是由___________绕着它的端点旋转到另一个位置所成的图形. 初始位置的那条射线叫做角的________,终止位置的那条射线叫做角的_________.角的始边转动到角的终边所通过的平面部分,叫做角的内部,简称角内,余下部分是角的外部,简称角外.二、角的表示方法(1)分别说出∠ABC 、∠POQ 、∠XYZ 的顶点和边.角 ∠ABC ∠POQ ∠XYZ 顶点边(2)专门地:我们书中所说的角,如不加以说明是指小于平角的角.(周角除外)反馈练习:1、用一个大写字母或一个希腊字母表示图中的角.2、图中共有( )个角,并分别表示出来. 三、方位角读法: 1、点A 在点O 的_____________方向2、点B 在点O 的_____________方向3、点C 在点O 的_____________方向4、画出表示南偏东50°的射线OP7.4角的大小的比较、画相等的角(1)学习目标:1、把握角的大小的比较方法;2、会使用量角器画角.学习过程:一、学习新课:1、如何样比较两个角的大小?方法一:_______________2、使用量角器的操作方法:(1)将量角器的中心点与角的顶点重合;(对中)(2)将量角器的零度刻度线与角的一边重叠;(对边)(3)看角的另一边落在量角器的什么刻度线上。
沪教版六年级下册数学2.2分数的基本性质(第二课时)(教学设计)一. 教材分析沪教版六年级下册数学2.2分数的基本性质(第二课时)的教学内容主要包括分数的基本性质和分数的比较。
分数的基本性质包括分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数的比较包括同分母分数的比较和异分母分数的比较。
本节课的教学内容是学生进一步理解分数的意义,掌握分数的基本性质,提高解决问题的能力。
二. 学情分析六年级的学生已经掌握了分数的基本概念和简单的分数运算,对分数有一定的认识。
但是在实际应用中,部分学生对分数的基本性质和比较方法还不够熟练,需要通过本节课的学习进一步巩固。
此外,学生的数学思维能力、观察能力和合作能力有待提高。
三. 教学目标1.理解分数的基本性质,掌握分数的比较方法。
2.能够运用分数的基本性质和比较方法解决实际问题。
3.培养学生的数学思维能力、观察能力和合作能力。
四. 教学重难点1.教学重点:分数的基本性质,分数的比较方法。
2.教学难点:分数的基本性质在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活情境引导学生理解分数的基本性质和比较方法。
2.合作学习法:小组讨论、探究,培养学生的合作能力和观察能力。
3.引导发现法:教师引导学生发现分数的基本性质和比较方法,培养学生的数学思维能力。
六. 教学准备1.教学课件:制作课件,展示分数的基本性质和比较方法。
2.练习题:准备一些有关分数的基本性质和比较方法的练习题。
3.教学道具:准备一些分数的模型,帮助学生直观地理解分数的基本性质。
七. 教学过程1.导入(5分钟)教师通过一个生活情境,如分蛋糕,引入分数的概念,引导学生回顾已学的分数知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师利用课件展示分数的基本性质,如分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
同时,展示分数的比较方法,如同分母分数的比较和异分母分数的比较。
沪教版数学六年级下册6.2《方程的解》教学设计一. 教材分析沪教版数学六年级下册 6.2《方程的解》是本套教材中关于方程解的学习内容。
在此之前,学生已经学习了方程的概念和一些基本性质。
通过这一节课的学习,学生需要掌握方程的解的含义,学会如何求解方程,并且能够理解解的意义。
教材中通过具体的例子引导学生理解方程解的概念,并通过练习题让学生巩固所学知识。
二. 学情分析在学习本节课之前,学生已经具备了一定的方程知识,对 equation 的概念和基本性质有所了解。
但部分学生可能对 equation 的解的概念理解不够清晰,对解的求解方法不够熟练。
因此,在教学过程中,需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。
三. 教学目标1.知识与技能:理解 equation 的解的含义,学会求解 equation,并能解释解的意义。
2.过程与方法:通过具体例子,引导学生探索 equation 的解的含义,培养学生的逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:理解 equation 的解的概念,学会求解 equation。
2.难点:对复杂 equation 的求解,以及对解的意义的重理解。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
问题驱动法引导学生主动思考,案例教学法通过具体例子让学生加深理解,小组合作法培养学生的团队合作精神。
六. 教学准备1.教学PPT:制作教学PPT,内容包括equation 的解的概念、求解方法等。
2.练习题:准备一些有关equation 的解的练习题,用于巩固所学知识。
3.教学素材:准备一些关于 equation 的解的实际例子,用于引导学生理解解的意义。
七. 教学过程1.导入(5分钟)通过一个实际问题引入方程的概念,让学生回顾方程的基本性质。
例如,某商店举行打折活动,原价为100元,打8折后售价为多少?引导学生列出方程并求解。
上海沪教版六年级数学下不等式(组)教案及练习六年级数学讲义(七)一元一次不等式(组)【知识要点】(一)不等式及其性质1.不等式的概念:用不等号“<”、“>”、“≦”、“≧”、“≠”表示不等关系的式子,叫做不等式。
如:x+3>5。
2.常见的不等号及其含义:“≠”读作“不等于”,它表明两个量是不相等的,但不能确定哪个量大,哪个量小;“>”读作“大于”,它表明左边的量比右边的量大;“≧”读作“大于或等于”,它表明左边的量不小于右边的量;“<”读作“小于”,它表明左边的量比右边的量小;“≦”读作“小于或等于”,它表明左边的量不小于右边的量。
3.不等式的基本性质:(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变,即:a>b →a ±m>b ±m 。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即:a>b 且m>0→am>bm ;a m >bm。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:a>b 且m<0→am<bm ;a m <bm。
[注]性质(2)和(3)反过来也是成立的,即如果a<b ,am<bm (或am<b m ),那么m>0;如果a<b ,am>bm (或a m >b m ),那么m<0。
小练习:用不等号填空1.若-3x ≧-3y ,则-12x_______-12y ;2.若x-2y>x,则y______0;3.若(3.14-π)x<2,则x______23.14-π;4.若-a3>-b3,则2a+105______2b+105;5.若a>0,b<0,c<0,则(a-b)c______0;(二)一元一次不等式的解法1.不等式的解的定义:能使不等式成立的未知数的值,叫做不等式的解。
5.9 有理数的混合运算(第一课时)上海市建平实验学校梅隽婕教学目标1、能了解有理数混合运算的意义,掌握有理数混合运算的顺序.2、会进行有理数的混合运算.3、会合理应用运算律,进行简便运算.4、通过有理数的混合运算,培养一定的数感.教学重点及难点重点是有理数的混合运算难点是有理数混合运算顺序的确定并根据运算顺序正确的进行混合运算,以及运算中的符号问题教学流程设计课题引入学习新课巩固练习小结作业教学过程设计一、课题引入1.导入经过前一阶段的学习,我们已经学习了有理数的加、减、乘、除、乘方五种运算,今天我们将学习有理数的混合运算.提问:算式里有哪几种运算?学生积极回答,并补充直到说出完整答案.2.有理数混合运算的意义含有有理数加、减、乘、除、乘方这五种运算中两种或两种以上的运算称为有理数的混合运算.3.引出课题:那么有理数的混合运算中应按照什么顺序呢?二、学习新课1.有理数的运算级别:2.有理数的运算顺序:(1)先算乘方,再算乘除,最后算加减;(2)同级运算,按照从左到右的顺序进行(3)如果有括号,先算小括号里的,后算中括号,再算大括号3.以导入中的算式为例,请学生讲讲它的运算顺序4.例题讲解P27例1.判断下列各题的运算顺序,并计算1)2)3)4)5)P28例2.计算:两种解法,可以按一般顺序做,也可以先去括号,把同分母的先进行计算,注意去括号时符号的变化去括号要注意:括号前带负号,去掉括号后括号内各项要变号,即,,三、巩固练习课本P28 练习5.9(1)四、小结学生自主小结,教师加以补充.注重学生的学习体验和主体意识的培养:1、知识点归纳2、学生学习的感受和体会以及存在问题质疑五、作业练习册:5.9教学设计说明1、关于导入从学生已有的知识出发,问题比较简单,激发学生主动参与,把学生的注意力和思维活动调节到积极状态,培养学生思维的灵活性.2、关于新课学习有理数的运算级别和有理数的运算顺序,基本采用直接呈现式的教学方式,以教师讲授为主,帮助学生整理出知识点.3、关于例题设置完全采用了课本上的例题,只是在例1中添加了一个任务,先指出每题的运算顺序,进一步加强有理数混合运算顺序的正确性.这个任务相对轻松简单,注重学生的参与程度,给基础较差的同学一些机会,并适当鼓励,让他们感受成功的喜悦,从而激发新的学习动力.在例2的教学中,一定要强调去括号时的符号变化,以及其中包含的加法运算律.。
沪教版数学六年级下册第五章《有理数》全章教学设计及习题一. 教材分析沪教版数学六年级下册第五章《有理数》是学生学习数学的重要内容,本章主要介绍了有理数的定义、性质、运算及其应用。
教材通过丰富的实例和生动的语言,引导学生认识和理解有理数,掌握有理数的加、减、乘、除运算,并能运用有理数解决实际问题。
本章内容在数学体系中占据重要地位,为学生进一步学习代数、几何等数学分支奠定了基础。
二. 学情分析六年级的学生已经具备了一定的数学基础,对实数有一定的认识。
但在学习有理数时,仍存在以下问题:1. 对有理数的定义和性质理解不深刻;2. 有理数的运算规则掌握不熟练;3. 运用有理数解决实际问题的能力较弱。
因此,在教学过程中,要注重引导学生深入理解有理数的概念,熟练掌握有理数的运算方法,提高运用有理数解决实际问题的能力。
三. 教学目标1.理解有理数的定义,掌握有理数的性质;2. 熟练掌握有理数的加、减、乘、除运算方法;3. 能够运用有理数解决实际问题;4. 培养学生的逻辑思维能力和创新能力。
四. 教学重难点1.有理数的定义和性质;2. 有理数的运算方法;3. 运用有理数解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入有理数的概念,使学生能够直观地理解有理数;2. 讲授法:讲解有理数的定义、性质和运算方法,引导学生深入理解有理数;3. 练习法:布置适量的习题,让学生巩固所学知识;4. 小组讨论法:分组讨论,培养学生的合作意识和解决问题的能力。
六. 教学准备1.准备相关的教学PPT和教学素材;2. 准备习题和实际问题;3. 准备黑板和粉笔。
七. 教学过程1.导入(5分钟)利用生活实例,如温度、海拔等,引导学生认识有理数,激发学生的学习兴趣。
2.呈现(10分钟)讲解有理数的定义、性质和运算方法,让学生初步了解有理数的基本概念和运算规则。
3.操练(10分钟)布置适量的习题,让学生独立完成,检验对有理数的理解和运算方法的掌握程度。
沪教版六年级数学下册教案[001]
教学目标
1.掌握面积的定义和相关概念。
2.理解与计算平行四边形、三角形的面积。
3.培养学生独立思考和解决问题的能力。
教学重难点
1.教学重点:面积的定义及计算方法。
2.教学难点:平行四边形的计算。
教学内容
1. 面积的引入
教师可以利用教室或校园中常见的物品引入面积的概念,让学生理解面积对于计算或比较物体大小的作用。
2. 面积的定义和计算
教师要引导学生探究面积的定义和计算方法,学生可以通过手工制作正方形、长方形等图形,边长改变时观察面积的变化,并通过数学公式进行计算。
3. 平行四边形的面积计算
由于平行四边形的形态较为特殊,教师需要通过合理的讲解和案例引导学生理解、计算平行四边形的面积。
4. 三角形的面积计算
三角形是常见的图形,教师也需要通过案例和计算公式的讲解帮助学生掌握三角形面积的计算方法。
教学方法
1.通过教室或校园中常见的物品引入面积概念。
2.制作手工图形进行计算,培养学生思考和解决问题的能力。
3.讲解和案例相结合,帮助学生掌握平行四边形和三角形的面积计算方
法。
教学评估
通过以下方式对学生的学习效果进行评估:
1.每节课结束时通过课堂练习进行检测。
2.作业中对面积计算的要求,如画图、列公式等。
3.期末考试中对面积计算相关题目的考查。
教学反思
1.面积的引入是否能够吸引学生兴趣?
2.平行四边形的面积计算是否能够讲解清楚,学生是否理解?
3.是否需要增加更多实际案例引导学生计算面积?。
最新沪教版六年级数学下册教案(全册共90页)5.1有理数的意义教学目标1、理解负数的学习意义,感受数学来源于现实生活,激发学习数学的兴趣;2、掌握有理数的概念以及有理数的两种分类,能判断一个数是正数还是负数,运用正、负数表示生活中具有相反意义的量;3、通过自主探究,发现有理数的分类,形成分析问题,解决问题的能力;4、通过了解负数的历史,渗透德育教育,增强民族自豪感;5、渗透化归、分类的数学思想方法.教学重点:有理数的概念以及分类教学难点:有理数分类的探究以及分类中对小数的理解.教学准备: PPT辅助教学教学过程一、结合实例,情景引入金茂大厦(420米)比国际饭店(86米)高几米?420-86=?杨浦大桥桥面比黄浦江底高出多少米?48-(-10)=?【引入课题】----5.1-有理数的意义(板书)1.复习旧知1)上学期已经学过的数,自然数、整数、分数,及之间的关系;2)分数可化化为有限小数和无限循环小数;3)π是一个无理数。
2.引入新知由生活中常见的一些具有相反意义的量,让学生通过实际感受,从而概括出“正数和负数可以表示具有相反意义的量”(强调注意相关量的单位)。
思考1:1.如果把收入50元记作50元,那么下列各数分别表示什么意义?(1)20元; (2) 2.5元; (3)80-元; (4)0元.2.如果6摄氏度用C ο6表示,那么零下4摄氏度如何表示?(强调书写格式)。
二、探究新知,扩张数域1、引入正数,负数的概念:2、判断:“一个数如果不是正数,必定就是负数。
”这句话对不对,为什么? 例题1 把数59,712,43,67.0%,34,217,0,61,8.2,71,12----分别填在表示正数和负数的圈里.思考2 提问:0能放到以上两个圈中吗? 3、强调:零既不是正数也不是负数 0是正数和负数的分界0和正数又可称为非负数 (重点强调)4、引导学生概括有理数的第一种分类:有理数按正数、零、负数(大小)分类(板书)有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数5、通过观察:71,-5,0分别是一个正整数,负整数和零,它们都是整数.712,217,61都是正分数,而43-和59-是负分数,它们都是分数. 引导学生概括有理数的第二种分类:有理数按整数、分数(特征)分类(板书)有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数 整数和分数统称为有理数.说明:对于这个分类,学生的理解还是有困难的,我们可以借助于数轴来帮助学生理解,也可以让学生们提问题,或学生之间讨论,学生的疑问出来了,我们就好引导了.正数负数学习了分数后,我们可以再说明一个问题,这个问题是十分重要的.如果我们把整数看成是分母为1的分数,那么在这个意义下,所有的有理数都是分数. 例题2 在下列数中,哪些是整数?哪些是正数?哪些是负数?哪些是有理数? (学生口答教师板书)6、说明:1)在这个题当中,要照顾到全体学生,争取每一个学生对这些概念都能理解,尤其有理数的概念,教师边提问边讲解。
沪教版六年级数学下册教案5.1有理数.doc 5.2数轴.doc 5.3(1)绝对值.doc 5.3(2)绝对值.doc 5.4(1)有理数的加减法.doc 5.4(2)有理数的加减法.doc 5.5(1)有理数的加减法.doc 5.5(2)有理数的加减法(练习).doc 5.6(1)有理数的乘法.doc 5.6(2)有理数的乘法.doc 5.6(3)有理数的乘法.doc 5.7(1)有理数的除法.doc 5.7(2)有理数的除法.doc 5.8有理数的乘方.doc 5.9(1)有理数的混合运算.doc 5.9(2)有理数的混合运算.doc. 5.10科学记数法.doc 6.1列方程.doc 6.2方程的解.doc 6.3(1)一元一次方程.doc 6.3(2).doc 6.3(3)一元一次方程及解法.doc 6.4(1).doc 6.4(2).doc 6.4(3).doc 6.4(4).doc 6.5(1)不等式及其性质.doc 6.5(2)不等式及其性质(练习).doc 6.6(1)一元一次不等式的解法.doc 6.6(2)一元一次不等式的解法.doc 6.6(3)一元一次不等式的解法.doc 6.7(1)一元一次不等式组.doc 6.7(2)一元一次不等式组.doc 6.8二元一次方程.doc 6.9(1)二元一次方程组及其解法.doc 6.9(2)二元一次方程组及其解法.doc 6.9(3)二元一次方程组及其解法.doc 6.9(4)二元一次方程组及其解法.doc 6.10(1)三元一次方程组及其解法.doc 6.10(2)三元一次方程组及其解法.doc 6.11一次方程的应用(1).doc 6.11一次方程的应用(2).doc 7.1线段的大小的比较.doc 7.2画线段的和、差、倍.doc 7.3角的概念与表示.doc 7.4角的大小的比较、画相等角.doc 7.5画角的和差倍.doc 7.6余角、补角(练习课).doc 7.6余角、补角.doc 8.1长方体的元素.doc。
沪教版数学六年级下册6.3《一元一次方程及其解法》教学设计一. 教材分析《一元一次方程及其解法》是沪教版数学六年级下册第六章第三节的内容。
本节课的主要内容是一元一次方程的定义、性质、解法以及应用。
这一部分内容是学生学习数学的重要基础,也是进一步学习代数和数学分析的基础。
教材通过具体的例子引入一元一次方程,使学生了解其意义和应用,然后引导学生通过代数方法解决方程,培养学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经学习了代数的基本概念,如代数表达式、运算等,对代数有一定的认识。
但是,对于一元一次方程的定义、性质和解法可能还比较陌生。
因此,在教学过程中,需要通过具体的例子和实际应用,使学生理解和掌握一元一次方程的知识。
三. 教学目标1.知识与技能:使学生理解一元一次方程的定义和性质,学会解一元一次方程的方法,能够应用一元一次方程解决实际问题。
2.过程与方法:通过实际问题和代数方法,培养学生的抽象思维和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:一元一次方程的定义、性质和解法。
2.难点:一元一次方程的解法和应用。
五. 教学方法1.情境教学法:通过实际问题和情境,引导学生理解和掌握一元一次方程的知识。
2.合作学习法:通过小组讨论和合作,培养学生的团队合作意识和自主学习能力。
3.引导发现法:通过教师的问题和引导,激发学生的思考和发现,培养学生的抽象思维能力。
六. 教学准备1.教材和教案:准备沪教版数学六年级下册的教材和教案。
2.课件和教学资源:准备与教学内容相关的课件和教学资源,如图片、视频等。
3.练习题和作业:准备与教学内容相关的练习题和作业,以便巩固和检测学生的学习效果。
七. 教学过程1.导入(5分钟)利用实际问题引入一元一次方程,如“小明买了一本书,原价是20元,他给了店员30元,店员应该找给他多少元?”引导学生思考和解答这个问题,引出一元一次方程的概念。
六年级下册第五章有理数知识点1、正数:大于0的数叫做正数。
2、负数:在正数前面加上负号“-”的数叫做负数。
3、0既不是正数也不是负数。
零是正数和负数的分界。
4、有理数:整数和分数统称为有理数。
有理数:正数:正整数、零、负整数分数:正分数、负分数5、数轴:规定了原点、正方向、单位长度的直线叫做数轴。
数轴上的点从左到右依次增大,正数大于零,零大于负数,正数大于负数。
6、相反数:绝对值相等,只有负号不同的两个数叫做互为相反数。
7、绝对值:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
记做|a|。
由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8、有理数加法法则加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。
表达式:a+b=b+a。
加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。
表达式:(a+b)+c=a+(b+c)9、有理数减法法则减去一个数,等于加这个数的相反数。
表达式:a-b=a+(-b)10、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0.乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。
表达式:ab=ba乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
表达式:(ab)c=a(bc)乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
表达式:a(b+c)=ab+ac注意:几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;几个数相乘,有因数为零,积就为零。
也就是说,在积的各个因数中,只有一个负号,积为负; 有两个负号,积为正; 有三个负号,积为负; 有四个负号,积为正; 有零时积就是零。
11、倒数1除以一个数(零除外)的商,叫做这个数的倒数。
如果两个数互为倒数,那么这两个数的积等于1。
12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。
0除以任何一个不等于0的数,都得0.13、有理数的乘方:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
a n 中,a 叫做底数,n 叫做指数。
根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何正整数次幂都是0。
14、有理数的混合运算顺序(1)“先乘方,再乘除,最后加减”的顺序进行; (2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
15、科学计数法:把一个大于10的数表示成a×10n 的形式(其中a 是整数数位只有一位的数(即0<a<10),n 是正整数)。
16、近似数:与准确数相近的数 17、有理数可以写成n m (m 、n 是整数,n≠0)的形式。
另一方面,形如nm(m 、n 是整数,n≠0)的数都是有理数。
所以有理数可以用nm(m 、n 是整数,n≠0)表示。
六年级下册 第五章 有理数配套练习一、选择题1、下列运算中正确的是( ). A. a 2·a 3=a 6B. =2C. |(3-π)|=-π-3D. 32=-92、下列各判断句中错误的是( ) A.数轴上原点的位置可以任意选定B.数轴上与原点的距离等于个单位的点有两个C.与原点距离等于-2的点应当用原点左边第2个单位的点来表示D.数轴上无论怎样靠近的两个表示有理数的点之间,一定还存在着表示有理数的点。
1733、、是有理数,若>且,下列说法正确的是( )A.一定是正数B.一定是负数C.一定是正数D.一定是负数 4、两数相加,如果比每个加数都小,那么这两个数是( )A.同为正数B.同为负数C.一个正数,一个负数D.0和一个负数 5、两个非零有理数的和为零,则它们的商是()A.0B.-1C.+1D.不能确定 6、一个数和它的倒数相等,则这个数是( )A.1B.-1C. ±1D. ±1和0 7、如果|a|=-a ,下列成立的是( )A.a>0B.a<0C.a>0或a=0D.a<0或a=0 8、(-2)11+(-2)10的值是( )A.-2B.(-2)21C.0D.-2109、已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( )A. 3瓶B. 4瓶C. 5瓶D. 6瓶 10、在下列说法中,正确的个数是( )⑴任何一个有理数都可以用数轴上的一个点来表示 ⑵数轴上的每一个点都表示一个有理数 ⑶任何有理数的绝对值都不可能是负数 ⑷每个有理数都有相反数A 、1B 、2C 、3D 、411、如果一个数的相反数比它本身大,那么这个数为( )A 、正数B 、负数C 、整数D 、不等于零的有理数12、下列说法正确的是( )A 、几个有理数相乘,当因数有奇数个时,积为负;B 、几个有理数相乘,当正因数有奇数个时,积为负;C 、几个有理数相乘,当负因数有奇数个时,积为负;D 、几个有理数相乘,当积为负数时,负因数有奇数个; 二、填空题1、在有理数-7,,-(-1.43),,0,,-1.7321中,是整数的有_____________是负分数的有_______________。
a b a b ||||a b <a a b b 34-123--105-2、一般地,设a 是一个正数,则数轴上表示数a 的点在原点的____边,与原点的距离是____个单位长度;表示数-a 的点在原点的____边,与原点的距离是____个单位长度。
3、如果一个数是6位整数,用科学记数法表示它时,10的指数是_____;用科学记数法表示一个n 位整数,其中10的指数是___________.4、实数a 、b 、c 在数轴上的位置如图:化简|a -b|+|b -c|-|c -a|.5、绝对值大于1而小于4的整数有_____________________________________,其和为___________.6、若a 、b 互为相反数,c 、d 互为倒数,则(a+b )3-3(cd )4=________. 7、1-2+3-4+5-6+……+2001-2002的值是____________. 8、若(a-1)2+|b+2|=0,那么a+b=_____________________.9、平方等于它本身的有理数是___________,立方等于它本身的有理数是_____________. 10、用四舍五入法把3.1415926精确到千分位是 ,用科学记数法表示302400,应记为 ,近似数 3.0× 精确到 位。
11、正数–a 的绝对值为__________;负数–b 的绝对值为________ 12、甲乙两数的和为-23.4,乙数为-8.1,甲比乙大13、在数轴上表示两个数, 的数总比 的大。
(用“左边”“右边”填空) 14、数轴上原点右边4.8厘米处的点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是____________。
三、计算题 15.计算:8341231-+-; 16.计算22)3(4143)712(---+÷-有理数综合测试题(沪教版)(满分100分,时间90分钟)1. 填空题:(每小题3分,共21分)(1)-5的相反数是______,-5的倒数是______,-5的绝对值是______;(2)若4x -=,则x =__________;若30x -=,则x =__________;若31x -=,则x =__________.--+的结果为___________(3)、化简(4)(4)若|a|=a,那a_____0;(5)若那么x=______;(6)若m=-m,那么m=______;(7)有理数、在数轴上的位置如图,用“> ”或“< ”填空:︱a+b︱=______,︱a-b︱=______。
2.判断正误,对的画“√”,错的画“×”:(每小题4分,共20分)(1)一个数的绝对值一定不是负数;()(2)一个数的相反数一定是负数;()(3)两个数的和一定大于每一个加数;()(4)若ab>0,则a与b都是正数;()(5)一个非零数的绝对值等于它的相反数,那么这个数一定是负数。
()3.选择题:(每小题2分,共20分)(1)下列说法正确的是()(A)绝对值较大的数较大;(B)绝对值较大的数较小;(C)绝对值相等的两数相等;(D)相等两数的绝对值相等。
(2)下列用四舍五入法得到的近似数中,精确到0.001,且有三个有效数字的是()(A)0.0207; (B)0.207; (C)2.070; (C)20.700.(3)若a与b互为相反数,则下列式子成立的是()(A)a-b=0;(B)a+b=1;(C)a+b=0;(D)ab=0(4)、如果a、b互为倒数,c、d互为相反数,且m=-1,则代数式2ab-(c+d)+m2=_______。
(5)数轴上原点和原点左边的点表示的数是()(A)负数;(B)正数;(C)非正数;(D)非负数(6)当a<5时,|a-5|÷(5-a)=()A.4-2a;B.0;C.1;D.-1.(7)已知a、b、c都是非正数,且∣x-a∣+∣y-b∣+∣z-c∣=0,则(xyz)5的值是()A、负数B、非负数C、正数D、非正数(8)如果m<0, n>0, 且m+n<0,那么下列关系式中正确的是()A. m>-m>n>-nB. n>m>-n>-mC. m>n>-n>-mD. –m>n>-n>m(9)下列说法不正确的个数是( )①两个有理数的和可能等于零;②两个有理数的和可能等于其中一个加数;③两个有理数的和为正数时,这两个数都是正数;④两个有理数的和为负数时,这两个数都是正数A.1个B.2个C.3个D.4个(10)若a,b,c的位置如右图,则a-(b-c)的值是( )A.正数B.负数C.整数D.不能确定4.设的值。
(7分)5.计算:(前4题每小题5分,后两小题6分,共32分)有理数考点1、正数和负数 正数:大于零的数负数:小于零的数(在正数前面加上负号“—”的数) 注意:①0既不是正数也不是负数,它是正负数的分界点②对于正数和负数,不能简单理解为带“+”号的数是正数,带“—”号的数是负数 例1、 向北走2000米与向南走1000米,若规定向北走为正,则向北走2000米可记作 ,向南走1000米,原地不动课记作例2、 七年级一班第一小组五名同学某次数学测验的平均成绩为85分,一名同学以平均成绩为标准,超过平均分记正,将五名同学的成绩分别记作—15分,—4分,0分,4分,15分。