供电系统的运行方式
- 格式:doc
- 大小:20.50 KB
- 文档页数:3
电力系统运行方式的安全要求电力系统是现代社会运转的重要基础设施之一,为了保障电力系统的稳定运行和供电的安全可靠,有必要对电力系统运行方式提出一系列安全要求。
本文将从电力系统的可靠性、运行稳定性、安全保护措施等方面探讨电力系统运行方式的安全要求。
一、电力系统的可靠性要求电力系统的可靠性指的是系统在预定的工作条件下能够连续地提供电能的能力。
为保障电力系统的可靠性,有以下要求:1. 供电可靠性:供电可靠性是指电力系统连续供电的能力,要求系统确保稳定的供电,防止供电中断或质量下降,减少对用户造成的影响。
2. 设备可靠性:电力系统中的各类设备,如变电站、线路、开关设备等,要求具有高可靠性,能够长期稳定运行,减少设备故障和停电风险。
3. 故障处理能力:电力系统运行过程中,难免会出现故障,要求系统具备快速、准确地诊断和调试故障的能力,以确保故障及时恢复,减少停电时间。
二、电力系统的运行稳定性要求电力系统运行稳定性是指系统在各种负荷和故障等扰动下,能够保持稳定的运行状态,维持正常的电压和频率。
为保障电力系统的运行稳定性,有以下要求:1. 电压稳定性:电力系统的电压要保持在一定的范围内,不能过高或过低,以确保电力设备正常运行,不影响用户用电。
2. 频率稳定性:电力系统的频率要保持稳定,一般为50Hz 或60Hz,以确保电力设备正常运行。
3. 功率平衡:电力系统中的电力供需要实现平衡,供电能力要能够满足用户的需求,防止电力不足或过剩造成系统运行不稳。
三、电力系统的安全保护要求为了保障电力系统的安全运行,有必要对系统进行安全保护措施的规划和实施,包括以下要求:1. 电力设备安全:对于电力设备,要求具备可靠的过载和短路保护装置,以避免设备损坏或火灾等事故发生。
2. 电网安全:要求电力系统有完善的电网保护系统,能够对故障进行及时检测、定位和隔离,确保故障不会扩大,减少事故对整个电力系统的影响。
3. 安全管理:电力系统的运行要具备科学的管理方法和流程,包括规范的操作规程、应急预案等,确保运行人员的安全,减少人为因素对电力系统安全的影响。
供电系统的分类供电系统是指为用户提供电力能源的组织、设施和设备。
根据供电方式、供电范围和用途不同,可以将供电系统分为不同的类型。
本文将介绍几种常见的供电系统分类。
按供电方式分类集中供电系统集中供电系统是指在电厂发电后,采用输电、变电和配电手段,将电能送往用户的系统。
该系统可以直接向用户提供交流或直流电。
传统的集中供电系统一般采用交流电,但近年来,随着太阳能和风能等新能源的开发应用,也逐渐采用了直流输电方式。
集中供电系统适用于大范围的供电,供电能力强,但投资和运营成本高。
分布式供电系统分布式供电系统是指通过自发电设备或小型电力设备(如太阳能电池板、小风力发电机等)在用户场址现场实现电能转换和供应的系统。
由于其小型化、轻便化的特点,该系统可随时随地进行扩容或下调功率,维护维修方便,适用于一些小范围、分散的供电需求。
联合供电系统联合供电系统是指将集中供电系统和分布式供电系统相结合,以满足社会不同范围和用途的供电需求。
联合供电系统一般是由集中供电网络与分布式供电网络在一定范围内相互衔接,形成用户电网。
同时,联合供电系统还可以利用储能设备、微网、智能控制等多种技术手段,提高供电质量和效率。
按供电范围和用途分类送电系统送电系统是指以输电线路为主,将电厂发出的电能输送到大范围的缺电地区或其他供电系统的系统。
送电系统一般采用高压输电线路,以保证被送电系统的稳定可靠运行。
配电系统配电系统是指将送来的电能通过变电站变压、变流,按照用户不同范围和用途的需求进行供应的系统。
配电系统是整个供电系统的最后一个环节,其准确高效的运行是保障用户用电质量和稳定供电的重要保障。
通信供电系统通信供电系统是指在电力传输和配电过程中要进行监测和控制的各种设备和通信系统,包括各种电缆、绝缘子、电缆桥架等。
该系统在电力供应过程中发挥着极为重要的作用,它不但能够实现对供电系统的精确监测,还能够保障电力运行稳定、可靠。
结语供电系统的分类并不是固定不变的,随着时代的推进和技术的发展,它也在不断地演变和升级。
简述低压供电系统的几种供电方式摘要建筑工程供电使用的基本供电方式为:TT 系统、TN 系统、IT 系统,其中TN 系统又分为TN-C 、TN-S 、TN-C-S 系统,简要介绍各种供电方式的特点及一些应用。
关键词TT;TN-C;TN-S;TN-C-S;IT;供电系统1 TT方式供电系统TT 供电系统是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统。
第一个字母说明电源的带电导体与大地的关系,也即如何处理系统接地,T是“大地”一词法文Terre的第一个字母,电源的一点(通常是中性线上的一点)与大地直接连接。
第二个符号T:外露导电部分直接接大地,它与电源的接地无联系。
在TT 系统中用电设备的所有接地均称为保护接地。
这种供电系统的特点如下:1)当电气设备的相线碰壳或设备绝缘损坏而导致人体可接触的金属外壳带电时,因为人体电阻与保护接地电阻是并联关系,并且一般情况下人体的电阻远大于接地电阻4Ω,所以通过人体的电流远小于通过接地电阻的电流,降低触电的危险性。
但低压断路器、熔断器不一定能断开故障线路,漏电设备的外壳对地电压仍属于危险电压,所以线路中还需要安装漏电断路器;2)每个电气设备均需要制作接地装置,耗用的镀锌角钢、圆钢等钢材难以回收;3)TT系统中的负载所有接地均称为保护接地。
如在施工现场借用的电源是TT 系统,作临电时应作一条专用保护线,以节约接地装置钢材用量。
把新设专用保护线PE 线和工作零线N 分开,其特点是:(1)共用接地保护线与工作零线,相互独立、绝缘;(2)三相负荷不平衡时,工作零线即中性线上可以有电流,而专用保护线没有电流;(3)TT 系统适用于接地保护点很分散的地方,部分农村仍然采用TT 系统的供电方式。
2 TN-C方式供电系统TN方式供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN 表示。
TN-C系统用工作零线兼作接零保护线,称作保护中性线,用PEN表示,在全系统内N线和PE线是合一的(C是“合一”一词法文Comhine的第一个字母)。
电力系统的中性点运行方式在电力系统中,当变压器或发电机的三相绕组为星形联结时,其中性点可有两种运行方式:中性点接地和中性点部接地。
中性点直接接地系统称为大电流接地系统,中性点不接地和中性点经消弧线圈(或电阻)接地的系统称为小电流接地系统。
中性点的运行方式主要取决于单相接地时电气设备绝缘要求及供电可靠性.图1-2列出了常用的中性点运行方式.图中,电容C为输电线路对地分布电容。
图1-2 电力系统中性点运行方式a)中性点直接接地b)中性点不接地c)中性点经消弧线圈接地d)中性点经电阻接地中性点直接接地方式:当发生一相对地绝缘破坏时,即构成单相短路,供电中断,可靠性降低。
但是,该方式下非故障相对地电压不变,电气设备绝缘水平可按相电压考虑。
此外,在380/220V低压供电系统中,线对地电压为相电压,可接入单相负荷。
中性点不接地方式:当发生单相接地故障时,线电压不变,而非故障相对地电压升高到原来相电压的√3倍,供电不中断,可靠性高。
电力系统的构成图示一个完整的电力系统由分布各地的各种类型的发电厂、升压和降压变电所、输电线路及电力用户组成,它们分别完成电能的生产、电压变换、电能的输配及使用,如图所示。
电力系统的组成示意图低压接地系统字母表示含义解释1 )国际电工委员会( IEC )规定的供电方式符号中,第一个字母表示电力(电源)系统对地关系.如 T 表示是中性点直接接地; I 表示所有带电部分绝缘。
2 )第二个字母表示用电装置外露的可导电部分对地的关系.如 T 表示设备外壳接地,它与系统中的其他任何接地点无直接关系; N 表示负载采用接零保护。
3 )第三个字母表示工作零线与保护线的组合关系。
如 C 表示工作零线与保护线是合一的,如TN-C ; S 表示工作零线与保护线是严格分开的,所以 PE 线称为专用保护线,如 TN—S 。
T-电源端有一点直接接地;I-电源端所有带电部分不接地或有一点通过高阻抗接地.第二个字母表示电气装置的外露可电导部分与地的关系:T-电气装置的外露可电导部分直接接地,此接地点在电气上独立于电源端的接地点;N-电气装置的外露可电导部分与电源端接地点有直接电气连接。
铁道供电原理
铁道供电是指为铁路交通提供电力的一种方式。
铁道供电原理主要有以下几个方面:
1. 直流供电:铁路供电系统通常采用直流供电的方式,直流供电可以减少电能损耗和电力线路的电压降低。
直流供电系统通常包括电源变电所、接触网、牵引变电所、牵引系统和辅助设备等。
2. 电源变电所:电源变电所是铁路供电系统的起始点,它将交流电转换为直流电,并通过接触网供给给牵引变电所。
3. 接触网:接触网是铁路供电系统的重要组成部分,它由一系列的接触线组成,一端连接到电源变电所,另一端固定在架空的铁道架子上。
列车通过接触线与接触网之间的接触滑行,从而获取所需的电能。
4. 牵引变电所:牵引变电所是供应列车牵引系统所需电能的设施,它将接触网提供的电能通过牵引变压器转换为适合列车牵引设备的电压和电流。
5. 牵引系统:牵引系统由列车上的电力设备和电机组成,它将接触线提供的电能转换为机械能,驱动列车运行。
6. 辅助设备:铁路供电系统还包括为列车和车站提供电力的辅助设备,例如车站照明、信号系统等。
这些设备通常由牵引变电所直接供电。
试论城市轨道交通供电系统的供电方式城市轨道交通是指在城市内运行的交通工具,如地铁、轻轨等。
而城市轨道交通供电系统是指为这些交通工具提供动力的电力供应系统。
城市轨道交通供电系统的供电方式主要有以下几种:1. 第三轨供电方式:第三轨供电是一种常见且广泛应用于城市轨道交通的供电方式。
它是通过在轨道旁边安装一根导电的第三轨,以供给电动车辆所需的电能。
这种供电方式具有输电损耗小、结构简单等优点,但是存在电流接触不良、用电安全性较低等问题。
2. 列车集中供电方式:列车集中供电是指将电能在供电站集中产生或接入,然后通过电缆输送至轨道上的集电装置,再由集电装置连接到列车上的电力系统进行供电。
这种供电方式适用于较长的线路,能够减少供电系统的线损,但是在供电站和集电装置的选址上有一定的限制。
3. 无线供电方式:无线供电是通过电磁场或电磁感应将电能传输到轨道上的列车上,实现供电的方式。
这种供电方式不需要第三轨或集电装置,因此具有接触安全性高、无污染等优点,但是目前无线供电的技术还不够成熟,在实际应用中存在一定的挑战。
除了以上的供电方式外,还有一些新兴的供电技术正在逐渐应用于城市轨道交通中,如充电式供电方式和太阳能供电方式。
充电式供电是指在列车停靠或运行过程中,通过充电设施向列车提供电能。
这种供电方式可以减少供电系统的设备和线路,同时还能在停靠站为列车提供充电,以应对不同线路和运行方式的需求。
太阳能供电是指利用太阳能发电装置将太阳能转化为电能,再供给城市轨道交通系统使用。
这种供电方式可以减少对传统电力资源的依赖,同时还能减少供电系统对环境的影响。
城市轨道交通供电系统的供电方式有第三轨供电、列车集中供电、无线供电等传统方式,同时还有充电式供电和太阳能供电这样的新兴方式。
不同的供电方式有着各自的优缺点,选择合适的供电方式需要考虑到城市轨道交通的特点、线路长度、运行方式等因素。
随着技术的发展和创新,未来城市轨道交通的供电方式也将不断改进和演进。
电网运行方式管理制度一、总则电网是指供电企业通过输电线路、变电设备等利用能源进行输送的系统。
电网运行是供电企业的重要业务之一,对于确保供电系统的正常运行和保障用户用电安全具有重要意义。
为了规范电网运行方式管理,提高电网运行效率和稳定性,确保全社会用电需求得到满足,制定本制度。
二、运行方式管理的基本原则1. 安全第一:电网运行方式管理以保障电网安全稳定为首要原则,确保供电企业电网运行的安全、可靠和稳定。
2. 科学决策:电网运行方式管理应遵循科学决策原则,依据数据和事实进行分析和决策,制定有效的运行方案。
3. 创新驱动:不断改进和创新电网运行方式管理手段和技术,在提高供电质量和效率的同时,降低运营风险。
4. 公平公正:遵循公平公正原则,保障各方利益相关者的合法权益,促进电网运行方式管理制度的公平性和透明度。
5. 环保节能:在电网运行方式管理中,应引入环保节能概念,促进绿色发展,降低能源消耗和排放。
三、主要内容1. 电网运行方式管理体系(1)建立健全电网运行方式管理体系,包括组织架构、管理制度、工作流程等,明确职责分工和工作流程,确保电网运行方式管理工作的有序开展。
(2)制定电网运行方式管理制度,明确管理要求、安全标准和操作规程,规范电网运行方式管理工作。
(3)建立电网运行方式管理人员培训机制,加强电网运行方式管理人员的技术培训和素质提升,提高电网运行方式管理水平。
2. 电网运行模式优化(1)根据不同电网运行场景制定相应运行模式,包括正常运行模式、故障处理模式、应急响应模式等,确保在不同情况下能够采取有效的运行措施。
(2)逐步推行智能化电网运行管理系统,引入大数据、人工智能等技术手段,提高电网运行的智能化水平,提高运行效率和稳定性。
3. 电网调度管理(1)加强电网调度管理,做好电力供需平衡工作,确保电网运行的稳定性和可靠性。
(2)建立电网调度预警机制,及时掌握电网运行情况,预判潜在风险,并及时采取必要措施,保障电网安全运行。
三进线二母联(5合3)供电系统及其工作原理三进线二母联供电系统与一般的二进线一母联供电系统相比具有一定的优越性,它能通过一主两备、两主一备或3个主电路同时供电等多种方案满足较高的供电要求。
现在许多电力用户对供电连续性要求越来越高,于是在设计供电方案时,除了考虑2路变压器并行供电外,还并联上1路备用发电电源,在3路电源进线之间设有联络回路,这就是三进线二母联供电系统。
1三进线二母联电路三进线二母联供电方案见图1。
三进线二母联供电系统的供电要求是“五合三”,即在该供电系统中的5个主断路器,只允许且必须有3个主断路器同时处于合闸状态。
2三进线二母联供电系统的联锁电路2.1设计思路利用主断路器中常闭和常开辅助触点(主断路器辅助触点不够时增加中间继电器)的动断和动合,来控制主断路器合闸线圈的电源通或断。
合闸线圈电源连通时,该回路主断路器可合闸供电;否则主断路器不能合闸,即该回路不能供电。
依据这个思路,设计出三进线二母联主电路断路器相互联锁电路,如图2所示。
2.2电路分析联锁控制电路的功能:当控制回路连通时,该回路控制的主断路器才能合闸;当控制回路断开时,该回路控制的主断路器不能合闸。
主电路断路器合分状态见表1。
在状态1,即QF1,QF2和QF4合闸而QF3和QF5分闸时,其电路分析见表2。
经过表2分析可知,在状态1时,QF3和QF5不能合闸,此时由1~3号变压器供电。
同理可知,图2的联锁电路完全可满足表1中8种状态的功能要求。
3与一般供电系统的比较三进线二母联供电系统与一般供电系统的区别是:a)三进线二母联供电系统采用三进线二母联供电方式;一般供电系统是采用二进线一母联供电方式,其系统图见图3,联锁电路见图4。
b)三进线二母联供电系统要求“五合三”,二进线一母联供电系统只要求“三合二”,即供电系统中的3个主断路器只允许且必须有2个主断路器同时处于合闸状态。
c)三进线二母联供电系统联锁复杂,要5个断路器相互交错联锁才可实现预期功能;二进线一母联供电系统联锁较简单,只要3个断路器两两互锁就可达到要求。
铁路10kV配电室电力自闭、贯通线路运行方式大全线用电负荷较大,区间用电负荷点多而分散,各点容量较小,平均2~3km就有一个负荷点,宜采用两回10kV电力贯通线路供电。
高速铁采用一级贯通和综合贯通两回线路供电,两路贯通线的电源取自各配电室设置的调压器馈出的专用母线段。
沿线与行车有关的通信、信号、综调系统等由一级贯通线主供,综合电力贯通线备供。
3.2电力线路回路的路径普速铁路中两回10kV电力线路,自动闭塞电力线路和电力贯通线路均为架空线路(部分受地形所限的区段可改为电缆线路),线路路径基本在铁路限界以外。
自闭线路在运用过程中,通常采用LGJ-50mm2架空线路,在使用过程中提供铁路信号、通信设备和5T系统等,进行一级负荷用电。
而贯通系统主要是采用LGJ-70mm2的架空线路,也同样提供铁路信号、通信设备和5T系统,所谓一级负荷用电,同时还向铁路区间和各项设施提供有效的供电。
但是由于线路在使用过程中,以架空形式的线路为主要运行的线路,里面含有较小的电容量,单相接地的电流较小,正接地时,电弧可以实现自动熄灭。
所以,在电路的选择上,通常中性点不接地形式。
3.3高速铁路与普速铁路对配电室重合闸和备自投功能投退的要求正是由于高速铁路与普速铁路电力线路路径及敷设方式的不同,其对配电室线路备投和重合的投退功能也有所区别。
高速铁路沿线大多为电缆敷设,一旦出现故障,大多为永久性故障,投入备自投或重合闸,在永久性故障情况下只能是加剧对断路器等设备的二次冲击,甚至导致顶电源情况发生,从而扩大停电范围。
所以高速铁路电力线路一般不应投入备自投或重合闸,出现故障后,由于是双回路供电,在保证一路电源有电的情况下,安排设备巡视,找到故障原因再送电,确保设备安全供电。
普速铁路大多为架空线路,沿铁路线架设,处于露天状态,受地势地形的限制,同时受雨、雪、风、雾、雷击等自然天气的影响,大多故障表现为瞬间故障,瞬间故障就应设置备自投或重合闸功能,方便应对瞬间故障,确保铁路不间断供电。
电力系统的中性点运行方式:中性点直接接地方式,以小电流接地,大电流接地方式运行。
这有什么作用?
1、中性点不接地系统:这种系统发生单相接地时,三相用电设备能正常工作,允许暂时继续运行两小时之内,因此可靠性高,其缺点:这种系统发生单相接地时,其它两条完好相对地电压升到线电压,是正常时的√ 3 倍,因此绝缘要求高,增加绝缘费用,因此高电压系统不采用,电压越高绝缘投资太大。
2 、中性点经消弧线圈接地系统:除有中性点不接地系统的优点外,还可以减少接地电流;其缺点:类同中性点不接地系统。
3 、中性点直接接地系统:发生单相接地时,其它两完好相对地电压不升高,因此可降低绝缘费用;其缺点:发生单相接地短路时,短路电流大,要迅速切除故障部分,从而使供电可靠性差。
电力系统中,中性点的运行方式有中性点直接接地、中性点经消弧线圈接地和中性点不接地三种。
前一种为大接地电流系统,后两种为小接地电流系统。
中性点的运行方式主要取决于单相接地时电气设备的绝缘要求及对供电可靠性的要求。
我国110KV及以上系统和1KV以下低压系统,采用中性点直接接地运行方式,3~63KV,一般采用中性点不接地运行方式;当3~10KV系统接地电流大于30A,20~63KV系统接地电流大于10A时,应采用中性点经消弧线圈接地的运行方式。
采用分列运行方式供电彰显煤矿科技装备效能摘要:煤矿在少花钱甚至不花钱的条件下,对已形成两回路电源线路(双电源)供电的矿井,通过优化安全供电技术方案,放弃变配电所单母线分段、两台主要变压器1台使用1台热备用(1用1备)的常见井上下供电方式,采用单母线分段、两台主要变压器分列运行的供电方式;在满足《煤矿安全规程》规定的同时,最大限度地减少停电对矿井安全生产造成的影响和因主变空载而产生的感性无功功率,提高矿井供电的可靠性与经济性;为矿井拥有连续可靠的用电环境、发挥井上下科技装备效能,夯实供电基础;为煤矿实施科技兴安战略、体现科技装备在安全生产上的重要支撑作用,最大限度地营造全矿井各主要用配电点连续可靠的用电条件。
关键词:供电系统分列运行连续可靠经济安全装备效能前言:2011年5月,国家安监总局、科技部先后下发了“进一步加强煤矿企业安全技术管理工作的指导意见”和“进一步加强安全生产科技支撑工作的通知”等文件,并在本年度大力组织实施科技周等安全生产宣教活动,旨在充分发挥煤矿安全科技进步及煤矿科技装备在安全生产上的重要支撑作用、加快煤矿科技兴安战略的实施。
显然,连续可靠、科学合理的井上下供电条件是提高煤矿企业安全科技装备保障能力的重要基础。
行政区域内煤矿,特别是各类小型矿井,经过“十一五”期间的改造与发展,井型规模普遍不低于9万吨。
技术领先、装备适用的理念已深入人心,机械化开采及科技装备程度有很大的提升,井下采掘一线的作业人员基本实现在"掩护"下作业,很多煤矿井下局部通风实现了"双风机、双电源、互相备用",架空乘人装置、平巷人车也不是大矿所独有。
随着煤矿"采、掘、运、通"机械化科技装备水平的提高,无疑对煤矿供配电的安全性与连续可靠性提出了更高要求。
一、问题的提出从供电电源上讲,矿井供电均设计或建设有双电源供电线路,但笔者发现,全区很多已经实现双电源线路供电的煤矿,有很大一部分不是采用分列运行的供电方式,而是采用两台主要变压器1台使用、1台热备用的井上下方式,认为"1台变压器运行,1台不用,可以减少1台变压器及所带线路设备的电力损耗。
关于供电系统正常运行方式的规定1.本文规定的运行方式为供电车间各区域所的正常运行方式,在未接到车间技术组书面通知前正常运行方式内容不改变。
2.本文规定的正常运行方式适用于事故预案的编写、反事故演练、交接班记录的填写、异常及事故处理的调度指令及汇报用语、人员培训等工作。
3.供电车间运行值班人员、电力调度、工艺人员在供电设备正常情况下以此方式运行,供电设备检修或事故异常处理时,可改变正常运行方式,但设备检修完毕、事故异常处理后应恢复正常运行方式。
4.新建、改建的配电室及供电系统,在首次送电时,应将新增部分运行方式明确规定,并附加到送电方案中,运行人员应在交接班记录中交接一轮次。
5.各区域所运行值班人员交接班记录簿中详细记录并交接正常运行方式的第1项内容及不符正常运行方式部分,其它与正常运行方式相符部分“其它维持正常运行方式”表示。
6.电力调度只交接非正常运行方式、正常运行方式中可变(带括号)内容及催化主、备风机运行方式,与正常运行方式相符部分“其它维持正常运行方式”表示。
7.一次系统图中的开关、刀闸方式必须符合正常运行方式。
8.大连石化电力系统正常运行方式详见附录1。
中国石油大连石化公司供电车间2011年11月1日附录:大连石化电力系统正常运行方式:一、220kV石化变:1.220kV南钢、南化线运行,启用重合闸“三重”方式;1#、2#主一次、主二次运行,220kV中性点间隙接地,1#主三次、1#电容器35kV I母运行、2#主三次、2#电容器35kV II母运行,66kV、35kV1#、2#消弧线圈运行,66kV、6.3kV所用变运行;66kV分段、35kV母联热备用,备自投停止;380V分段热备用;启用220kV、66kV母差保护,启用(或停止)66kV母差跳化电一线;2.66kV化机、化电、化新一、二线、化总线、化升线运行;3.35kV二空压、三催化、四催化甲线、三催化丙线I母运行,35kV二空压、三催化、四催化乙线II母运行。
供电系统的运行方式
1.主变电所的运行方式
每座主变电所分别从城市电网引入2路相互独立的110kV电源进线,每路电源进线各带一台110/35kV有载调压主变压器,并在高压侧设有载分接开关。
主变电所的110kV侧采用内桥接线,在正常运行方式下,高压进线的联络开关打开,两台主变压器同时分列运行,主变电所的35kV侧采用单母线分段接线并设常开母联开关,馈出35kV 中压电源给沿线的牵引变电所和降压变电所供电。
在正常运行方式下,每座主变电所的2路电源进线和两台主变压器同时分列运行,负担各自供电分区的牵引负荷和动力照明负荷。
在故障情况下,当其中一台主变压器解列时,合上该所的母联开关,由另一台主变压器负担该主变电所的供电区域负荷,该主变压器应能满足该所供电区域内高峰小时牵引负荷和动力照明一、二级负荷需要;当其中一路电源进线故障时,合上进线侧的联络开关,由另一路电源进线负担该主变电所的供电区域内负荷,它应能满足该所供电区域内高峰小时全部牵引负荷和动力照明负荷。
在严重故障情况下,当一座主变电所解列时(不考虑该主变电所的母线故障),合上两座主变电所间设于建国道变电所的环网联络开关,由另一座主变电所通过环网越区供电负担全线供电范围内的牵引负荷及动力照明一、二级负荷需要。
2.牵引变电所的运行方式
牵引变电所的35kV侧采用单母线分段接线,两套整流机组并联接在
同一段35kV母线上,DC750V侧为单母线接线,通过直流快速开关向接触轨供电,两台配电变压器分别接在两段35kV母线上。
在正常运行方式下,牵引变电所中的两套整流机组并联工作并组成等效24脉波整流方式;相邻牵引变电所对正线接触轨实行上下行分路双边供电方式。
当正线任一座牵引变电所解列时,由相邻的两座牵引变电所越区“大双边”供电。
当牵引变电所内有一台牵引变压器出现故障,另一台变压器可以负担该所的牵引负荷,但一般不会
3.降压变电所的运行方式
降压变电所的35kV侧采用单母线分段接线,两台动力变压器分别接在两段高压母线上;低压0.4kV侧采用单母线分段接线,通过低压开关向车站各动力照明负荷供电,并设三级负荷总开关,以方便对三级负荷必要的切除工作。
在正常运行方式下,两台动力变压器同时分列运行,共同负担供电区域内的动力照明负荷。
在故障情况下,当牵引降压混合变电所或降压变电所中的一台动力变压器故障解列时,自动切除三级负荷,由另一台动力变压器负担该所供电范围内全部动力照明一、二级负荷。
4.中压环网电缆的运行方式
在正常运行方式下,每个供电分区均由两路电源同时负担供电。
在故障情况下,当供电分区中的任一路电缆故障时,跳开故障电缆的
进线开关,并合上变电所的母联开关,由另一路电缆负担该供电分区管辖范围内牵引负荷及全部动力照明负荷。