单片机多机通信实现
- 格式:doc
- 大小:14.22 MB
- 文档页数:23
单片机多机通信实现随着科技的进步和应用的需求,单片机成为了嵌入式系统中不可或缺的一部分。
在很多应用场景中,我们需要将多个单片机之间进行通信,以实现数据的传输和协同工作。
本文将介绍单片机多机通信的实现方法。
一、串口通信串口通信是最常见和简单的单片机通信方式之一。
单片机通过串口将数据以字节的形式传输给另一个单片机。
常见的串口通信协议有RS232、RS485和UART等。
其中,RS232是单片机与计算机之间的标准通信协议,而RS485适用于单片机与多个设备之间的通信。
串口通信需要注意以下几个方面:1. 波特率的设置:通信双方需要设定相同的波特率,以确保数据的准确传输。
2. 数据格式的规定:包括数据位、校验位和停止位等,通讯双方需要设置相同的数据格式。
3. 通信控制的实现:通过编程控制单片机的串口发送和接收功能,实现数据的传输。
二、I2C通信I2C(Inter-Integrated Circuit)是一种串行总线协议,它可实现多个单片机的通信和协同工作。
I2C通信需要引入一个主设备和多个从设备的概念,主设备控制通信的起止和数据的传输,从设备用于接收和发送数据。
I2C通信需要注意以下几个方面:1. I2C地址的分配:每个从设备通过唯一的地址与主设备进行通信,地址的分配需要事先规划好。
2. 数据的读写操作:通过发送特定的控制信号,主设备可以向从设备发送读或写的命令,并接收从设备返回的数据。
3. 时序的控制:I2C通信依赖于时钟信号和数据信号的同步,通信双方需要根据协议规定好时序的控制。
三、SPI通信SPI(Serial Peripheral Interface)通信是一种全双工、同步的通信协议。
它通过4根线进行通信,包括时钟、数据输入、数据输出和片选信号。
SPI通信适用于多个主设备与多个从设备之间的通信,可以实现数据的传输和设备的控制。
SPI通信需要注意以下几个方面:1. 主从设备的选定:SPI通信中,每次只有一个主设备能够与从设备进行通信,其他设备通过片选信号进行选择。
单片机多机通信代码单片机多机通信是指通过单片机实现多个设备之间的数据传输和通信。
在现代的智能家居系统、工业自动化系统以及物联网等领域,单片机多机通信扮演着重要的角色。
为了实现单片机多机通信,需要首先确定通信的方式和协议。
常见的通信方式包括串口通信、SPI通信、I2C通信等。
在选择通信方式时,需要考虑设备之间的距离、通信速率、通信复杂度等因素。
协议方面,可以使用现有的通信协议,如Modbus、CAN、TCP/IP等,也可以根据具体需求自定义通信协议。
在单片机多机通信的实现过程中,首先需要配置单片机的通信接口。
例如,在使用串口通信时,需要设置波特率、数据位数、停止位数等参数。
接下来,需要编写相应的程序代码来实现数据的发送和接收。
发送数据时,可以使用单片机的串口发送函数将数据发送给其他设备;接收数据时,则需要使用单片机的串口接收函数来接收其他设备发送的数据。
在多机通信中,一台设备可以充当主机,负责控制其他设备的工作,也可以充当从机,接收主机发送的指令并执行相应的操作。
主机和从机之间可以通过发送和接收数据来实现通信。
例如,在智能家居系统中,主机可以控制灯光的开关、温度的调节等操作,而从机则负责接收主机发送的指令并执行相应的操作。
在实际应用中,单片机多机通信可以实现设备之间的信息交互和协同工作。
例如,在工业自动化系统中,可以通过多机通信实现各个设备之间的数据共享和协作,提高生产效率和质量。
在物联网中,可以通过多机通信实现各个物联设备之间的联动和互联,实现智能化控制和管理。
单片机多机通信是一种重要的通信方式,可以实现设备之间的数据传输和通信。
通过合理选择通信方式和协议,并编写相应的程序代码,可以实现设备之间的信息交互和协同工作,从而提高系统的功能和性能。
单片机实现双机通信自己的单片机是一种集成电路芯片,可以实现各种功能。
双机通信是指两台或多台计算机通过网络或其他方式进行数据传输和通信的过程。
在很多应用中,需要使用单片机实现双机通信,以实现数据传输和信息交换等功能。
单片机实现双机通信的基本原理是通过通信端口(例如串口或网络接口等)进行数据的发送和接收。
在这个过程中,需要使用一些通信协议来规定数据的格式和传输的方式。
下面是一种基于串口通信的单片机双机通信的实现方法。
首先,我们需要确定通信的硬件配置。
通常情况下,可以通过串口连接两台单片机,其中一台设置为发送方,另外一台设置为接收方。
发送方将待发送的数据通过串口发送出去,接收方则接收这些数据。
在单片机程序代码的编写方面,我们需要首先配置串口的通信参数,例如波特率、数据位、停止位、奇偶校验等。
这些参数需要在发送方和接收方进行一致配置,以保证数据的正确传输。
接下来,我们需要实现发送和接收的程序。
首先,发送方需要将待发送的数据存储在发送缓冲区中,然后通过串口将数据发送出去。
接收方则需要实时监听串口接收缓冲区中是否有数据到达,并将接收到的数据存储在接收缓冲区中。
另外,为了保证数据的正确传输,通常还要实现一些数据校验机制,例如奇偶校验、循环冗余校验(CRC)等。
这些校验机制可以用于检测和纠正数据传输中的错误。
在程序编写的过程中,还需要考虑到程序的稳定性和容错性。
例如,在发送方发送数据时,可能会遇到发送缓冲区已满的情况,此时需要实现相应的处理机制,例如等待一段时间后再次发送。
同样,在接收方接收数据时,也可能会遇到接收缓冲区溢出的情况,此时需要及时处理,以避免数据的丢失。
最后,在实际应用中,还需要考虑一些高级的功能,例如数据压缩、加密、数据传输速度的控制等。
这些功能可以根据具体的需求进行实现。
总之,单片机实现双机通信是一项复杂的任务,需要考虑到硬件和软件两个方面的因素。
在程序编写的过程中,需要考虑到通信参数的配置、发送和接收的程序编写、数据校验、稳定性和容错性等方面的问题。
一、多机通信原理在多机通信中,主机必须要能对各个从机进行识别,在51系列单片机中可以通过SCON 寄存器的SM2位来实现。
当串口以方式2或方式3发送数据时,每一帧信息都是11位,第9位是数据可编程位,通过给TB8置1或置0来区别地址帧和数据帧,当该位为1时,发送地址帧;该位为0时,发送数据帧。
在多机通信过程中,主机先发送某一从机的地址,等待从机的应答,所有的从机接收到地址帧后与本机地址进行比较,若相同,则将SM2置0准备接收数据;若不同,则丢弃当前数据,SM2位不变。
二、多机通信电路图此处,U1作为主机,U2为从机1,U3为从机2。
三、C语言程序(1)主机程序#include<reg51.h>#include<string.h>#define _SUCC_ 0x0f//数据传送成功#define _ERR_ 0xf0//数据传送失败unsigned char Table[9]={0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39}; unsigned char Buff[20]; //数据缓冲区unsigned char temp=0xff;sbit KEY1=P1^6;sbit KEY2=P1^7;//unsigned char addr;//延时1ms函数void delay_1ms(unsigned int t){unsigned int x,y;for(x=t;x>0;x--)for(y=110;y>0;y--);}//缓冲区初始化void Buff_init(){unsigned char i; //将Table里的数据放到缓冲区里for(i=0;i<9;i++){Buff[i]= Table[i];delay_1ms(100);}}//串口初始化函数void serial_init(){TMOD=0x20; //定时器1工作于方式2TH1=0xfd;TL1=0xfd; //波特率为9600PCON=0;SCON=0xd0; //串口工作于方式3TR1=1; //开启定时器TI=0;RI=0;}//发送数据函数void SEND_data(unsigned char *Buff){unsigned char i;unsigned char lenth;unsigned char check;lenth=strlen(Buff); //计算数据长度check=lenth;TI=0; //发送数据长度TB8=0; //发送数据帧SBUF=lenth;while(!TI);TI=0;for(i=0;i<lenth;i++) //发送数据{check=check^Buff[i];TB8=0;SBUF=Buff[i];while(!TI);TI=0;}TB8=0; //发送校验字节SBUF=check;while(!TI);TI=0;}//向指定从机地址发送数据void ADDR_data(unsigned addr){while(temp!=addr) //主机等待从机返回其地址作为应答信号{TI=0; //发送从机地址TB8=1; //发送地址帧SBUF=addr;while(!TI);TI=0;RI=0;while(!RI);temp=SBUF;RI=0;}temp=_ERR_; //主机等待从机数据接收成功信号while(temp!=_SUCC_){SEND_data(Buff);RI=0;while(!RI);temp=SBUF;RI=0;}}void main(){Buff_init();serial_init();while(1){if(KEY1==0){delay_1ms(5);if(KEY1==0){while(!KEY1);ADDR_data(0x01);}}if(KEY2==0){delay_1ms(5);if(KEY2==0){while(!KEY2);ADDR_data(0x02);}}}}(2)从机1程序#include<reg51.h>#include<string.h>#define addr 0x01//从机1的地址#define _SUCC_ 0x0f//数据传送成功#define _ERR_ 0xf0//数据传送失败unsigned char aa=0xff;//主机与从机之间通信标志unsigned char Buff[20];//数据缓冲区//串口初始化函数void serial_init(){TMOD=0x20; //定时器1工作于方式2TH1=0xfd;TL1=0xfd; //波特率为9600PCON=0;SCON=0xd0; //串口工作于方式3TR1=1; //开启定时器TI=0;RI=0;}//接收数据函数unsigned char RECE_data(unsigned char *Buff) {unsigned char i,temp;unsigned char lenth;unsigned char check;RI=0; //接收数据长度while(!RI);if(RB8==1) //若接收到地址帧,则返回0xfereturn 0xfe;lenth=SBUF;RI=0;check=lenth;for(i=0;i<lenth;i++) //接收数据{while(!RI);if(RB8==1) //若接收到地址帧,则返回0xfereturn 0xfe;Buff[i]=SBUF;check=check^(Buff[i]);RI=0;}while(!RI); //接收校验字节if(RB8==1) //若接收到地址帧,则返回0xfereturn 0xfe;temp=SBUF;RI=0;check=temp^check; //将从主机接收到的校验码与自己计算的校验码比对if(check!=0) //校验码不一致,表明数据接收错误,向主机发送错误信号,函数返回0xff {TI=0;TB8=0;SBUF=_ERR_;while(!TI);TI=0;return 0xff;}TI=0; //校验码一致,表明数据接收正确,向主机发送成功信号,函数返回0x00 TB8=0;SBUF=_SUCC_;while(!TI);TI=0;return 0;}void main(){serial_init();while(1){SM2=1; //接收地址帧while(aa!=addr) //从机等待主机请求自己的地址{RI=0;while(!RI);aa=SBUF;RI=0;}TI=0; //一旦被请求,从机返回自己的地址作为应答,等待接收数据 TB8=0;SBUF=addr;while(!TI);TI=0;SM2=0; //接收数据帧aa=0xff; //从机接收数据,并将数据保存到数据缓冲区while(aa==0xff){aa=RECE_data(Buff);}if(aa==0xfe)continue;P1=Buff[1]; //查看接收到的数据}}(3)从机2程序#include<reg51.h>#include<string.h>#define addr 0x02//从机2的地址#define _SUCC_ 0x0f//数据传送成功#define _ERR_ 0xf0//数据传送失败unsigned char aa=0xff;//主机与从机之间通信标志unsigned char Buff[20];//数据缓冲区//串口初始化函数void serial_init(){TMOD=0x20; //定时器1工作于方式2TH1=0xfd;TL1=0xfd; //波特率为9600PCON=0;SCON=0xd0; //串口工作于方式3TR1=1; //开启定时器TI=0;RI=0;}//接收数据函数unsigned char RECE_data(unsigned char *Buff){unsigned char i,temp;unsigned char lenth;unsigned char check;RI=0; //接收数据长度while(!RI);if(RB8==1) //若接收到地址帧,则返回0xfereturn 0xfe;lenth=SBUF;RI=0;check=lenth;for(i=0;i<lenth;i++) //接收数据{while(!RI);if(RB8==1) //若接收到地址帧,则返回0xfereturn 0xfe;Buff[i]=SBUF;check=check^(Buff[i]);RI=0;}while(!RI); //接收校验字节if(RB8==1) //若接收到地址帧,则返回0xfereturn 0xfe;temp=SBUF;RI=0;check=temp^check; //将从主机接收到的校验码与自己计算的校验码比对if(check!=0) //校验码不一致,表明数据接收错误,向主机发送错误信号,函数返回0xff {TI=0;TB8=0;SBUF=_ERR_;while(!TI);TI=0;return 0xff;}TI=0; //校验码一致,表明数据接收正确,向主机发送成功信号,函数返回0x00 TB8=0;SBUF=_SUCC_;while(!TI);TI=0;return 0;}void main(){serial_init();while(1){SM2=1; //接收地址帧while(aa!=addr) //从机等待主机请求自己的地址{RI=0;while(!RI);aa=SBUF;RI=0;}TI=0; //一旦被请求,从机返回自己地址作为应答,等待接收数据TB8=0;SBUF=addr;while(!TI);TI=0;SM2=0; //接收数据帧aa=0xff; //从机接收数据,并将数据保存到数据缓冲区while(aa==0xff){aa=RECE_data(Buff);}if(aa==0xfe)continue;P1=Buff[2]; //查看接收到的数据}}。
89C52单片机多机通信一、设置定时器的工作方式及初值:TMOD=0x20;TH1=0xF4;TL1=0xF4;二、设置串口寄存器的工作方式SCON=0x90;PCON|=0x80;其中SCON各位为PCON各位为SM2=1时:RB8=1 产生中断RB8=0 不产生中断SM2=0时,产生中断四、多机通信过称:主机>>>>>>地址码+RB8=1>>>>>从机从机判断地址码与之对应则SM2=0主机>>>>>>数据码+RB8=0>>>>>从机从机接收数据五、参考程序(经过实验认证)主机#include<reg52.h>int a;void init(){EA=0;TMOD=0x20;TH1=0xF4;TL1=0xF4;SCON=0x90;PCON|=0x80;EA=1;ES=1;ET1=1;TR1=1;TI=0;RI=0;SM2=1;}void delay(){int j,k;for(j=0;j<300;j++)for(k=0;k<1000;k++); }main(){init();TB8=1;SBUF=0x01;delay();TB8=0;SBUF=0x88;delay();TB8=0x02;SBUF=0x66;while(1);}从机1:地址0x01#include<reg52.h>int a;void init(){EA=0;TMOD=0x20;TH1=0xF4;TL1=0xF4;SCON=0x90;PCON|=0x80;EA=1;ES=1;ET1=1;TR1=1;TI=0;RI=0;SM2=1;}void delay(){int j,k;for(j=0;j<1000;j++) for(k=0;k<1000;k++); }main()while(1)P1=0xff;}void serial () interrupt 4{ if(RI==1){ RI=0;if(SBUF==0x01) SM2=0;else if((SBUF!=0x01)&&(TB8==1)) SM2=1;else {P1=SBUF;delay();}}else TI=0;} /* */从机2 地址0x02#include<reg52.h>int a;void init(){EA=0;TMOD=0x20;TH1=0xF4;TL1=0xF4;SCON=0x90;PCON|=0x80;EA=1;ES=1;TR1=1;TI=0;RI=0;SM2=1;}void delay(){int j,k;for(j=0;j<1000;j++)for(k=0;k<300;k++);}main(){init();while(1)P1=0xff;}void serial () interrupt 4{ if(RI==1){ RI=0;if(SBUF==0x02) SM2=0;else if((SBUF!=0x02)&&(TB8==1)) SM2=1;else {P1=SBUF;delay();}}else TI=0; } /* */。
51单片机的多机通信原理1. 什么是51单片机的多机通信?51单片机的多机通信是指在多个51单片机之间进行数据传输和通信的过程。
通过多机通信,可以实现不同单片机之间的数据共享和协作,从而实现更加复杂的功能。
2. 多机通信的原理是什么?多机通信的原理是通过串口进行数据传输。
在多个单片机之间,可以通过串口进行数据的发送和接收。
通过定义好的协议,可以实现数据的传输和解析,从而实现多机之间的通信。
3. 多机通信的步骤是什么?多机通信的步骤包括以下几个方面:(1)定义好通信协议:在多机通信之前,需要定义好通信协议,包括数据的格式、传输方式等。
(2)设置串口参数:在单片机中,需要设置好串口的参数,包括波特率、数据位、停止位等。
(3)发送数据:在发送数据之前,需要将数据按照协议进行格式化,然后通过串口发送出去。
(4)接收数据:在接收数据之前,需要设置好串口的中断,然后在中断中接收数据,并按照协议进行解析。
(5)处理数据:在接收到数据之后,需要对数据进行处理,包括数据的存储、显示等。
4. 多机通信的应用场景有哪些?多机通信的应用场景非常广泛,包括以下几个方面:(1)智能家居系统:通过多机通信,可以实现智能家居系统中不同设备之间的数据共享和协作。
(2)工业控制系统:在工业控制系统中,多机通信可以实现不同设备之间的数据传输和控制。
(3)智能交通系统:在智能交通系统中,多机通信可以实现不同设备之间的数据共享和协作,从而实现更加智能化的交通管理。
(4)机器人控制系统:在机器人控制系统中,多机通信可以实现不同机器人之间的数据传输和控制,从而实现更加复杂的任务。
5. 多机通信的优缺点是什么?多机通信的优点包括以下几个方面:(1)实现数据共享和协作:通过多机通信,可以实现不同设备之间的数据共享和协作,从而实现更加复杂的功能。
(2)提高系统的可靠性:通过多机通信,可以实现数据的备份和冗余,从而提高系统的可靠性。
(3)提高系统的扩展性:通过多机通信,可以实现系统的模块化设计,从而提高系统的扩展性。
51 单片机串口多机通信的实现和编程
一、51 单片机的主从模式,首先要设定工作方式3:(主从模式+波特率可变)
SCON 串口功能寄存器:SM0=1;SM1=1(工作方式3)
注:主机和从机都要为工作方式3。
【工作方式2 (SM0 SM1 :1 0):串行口为11 位异步通信接口。
发送或接收
一帧信息包括1 位起始位0、8 位数据位、1 位可编程位、1 位停止位1。
发
送数据:发送前,先根据通信协议由软件设置TB8 为奇偶校验位或数据标识位,然后将要发送的数据写入SBUF,即能启动发送器。
发送过程是由执行任何一条以SBUF 为目的寄存器的指令而启动的,把8 位数据装入SBUF,
同时还把TB8 装到发送移位寄存器的第9 位上,然后从TXD(P3.1)端口输出
一帧数据。
接收数据:先置REN=1,使串行口为允许接收状态,同时还要将RI 清0。
然后再根据SM2 的状态和所接收到的RB8 的状态决定此串行口在
信息到来后是否置R1=1,并申请中断,通知CPU 接收数据。
当SM2=0 时,
不管RB8 为0 还是为1,都置RI=1,此串行口将接收发送来的信息。
当
SM2=1 时,且RB8=1,表示在多机通信情况下,接收的信息为地址帧, 此时
置RI=1,串行口将接收发来的地址。
当SM2=1 时,且RB8=0,表示在多机通
信情况下,接收的信息为数据帧, 但不是发给本从机的,此时RI 不置为1,。
基于51单片机的多机通信系统设计多机通信系统是指通过一台主机与多台从机之间进行数据交互和通信的系统。
在本设计中,我们将使用51单片机实现一个基于串行通信的多机通信系统。
系统硬件设计如下:1.主机:使用一个51单片机作为主机,负责发送数据和接收数据。
2.从机:使用多个51单片机作为从机,每个从机负责接收数据和发送数据给主机。
3.串口:主机和从机之间通过串口进行通信。
我们可以使用RS232标准通信协议。
系统软件设计如下:1.主机设计:a.初始化串口:设置串口参数,如波特率、数据位、停止位等。
b.发送数据:将需要发送的数据存储在发送缓冲区中,通过串口发送给从机。
c.接收数据:接收从机发送的数据,并存储在接收缓冲区中。
2.从机设计:a.初始化串口:设置串口参数,如波特率、数据位、停止位等。
b.接收数据:接收主机发送的数据,并存储在接收缓冲区中。
c.发送数据:将需要发送的数据存储在发送缓冲区中,通过串口发送给主机。
系统工作流程如下:1.主机启动,执行初始化操作,包括初始化串口。
2.从机启动,执行初始化操作,包括初始化串口。
3.主机发送数据给从机:主机将需要发送的数据存储在发送缓冲区中,通过串口发送给从机。
4.从机接收并处理数据:从机接收主机发送的数据,并存储在接收缓冲区中,对接收到的数据进行处理。
5.从机发送数据给主机:从机将需要发送的数据存储在发送缓冲区中,通过串口发送给主机。
6.主机接收并处理数据:主机接收从机发送的数据,并存储在接收缓冲区中,对接收到的数据进行处理。
7.主机和从机循环执行步骤3-6,实现多机之间的数据交互和通信。
多机通信系统的设计考虑到以下几个方面:1.硬件设计:需要合理选择单片机和串口的类型和参数,确保系统的稳定性和可靠性。
2.软件设计:需要设计适应系统需求的通信协议和数据处理提取方法,保证数据的准确性和完整性。
3.通信协议:需要定义主机和从机之间的通信协议,包括数据的格式、传输方式等,以便实现正确的数据交互。
目录一、题目要求与功能分析 (2)1.1题目要求 (2)1.2功能及整体模块分析 (2)二方案论证 (3)2.1设计目的 (3)2.2设计思路 (3)2.2.1原理分析和讨论 (3)2.2.2题设分析 (4)三、电路设计 (6)3.1 整体功能框架设计 (6)3.2 硬件电路设计 (7)3.2.1 主机硬件电路设计 (8)3.2.2 从机硬件电路设计 (11)3.3软件电路设计 (13)3.3.1 协议设计 (13)3.3.2 主机程序流程图设计 (14)3.3.3 从机程序流程图设计 (15)四系统的调试与实现 (17)4.1主机模块功能调试 (17)4.2从机模块调试 (17)4.3整体设计功能调试 (17)五总结与体会 (19)参考文献 (20)附录 (21)一、题目要求与功能分析1.1题目要求本小组的试验题目如下:一、任务:设计实现多台单片机系统之间的串行通信二、基本要求(难度系数0.8):(1)设计一个主从式多机通信系统,包含1台主机和3台从机,主机和从机全部为单片机;(2)选择合适总线接口芯片,正确连接主机和从机;(3)编程实现分布式数据采集功能,主机可以获取各分机当前AD转换结果,并显示。
三、发挥部分:(1)完善通信功能。
(根据完成情况加分,上限+0.2)1.2功能及整体模块分析随着工业化要求提高,分布式系统发展以及控制设备与监控设备之间通讯需要,多机通信系统设计的监控系统逐步普及。
此多机通信系统具有友好的人机操作界面、强大的IO设备端口驱动能力,可与各种PLC、智能仪表、智能模块、板卡、变频器等实时通讯。
在检测大量模拟量的工业现场使用相似的多机通讯系统;单片机接口丰富,与A/D转换模块组合可以完成相同的工作,并且系统可靠、成本低。
本次实验的目的是就是应用单片机的串口通信功能实现一个分布式采集系统。
整个系统中包含一片主机和三片从机,主机的任务是实现对三片从机的AD 转换结果的采集并在数码管上显示之。