高中数学新课标典型例题 离散型随机变量的期望与方差总结
- 格式:doc
- 大小:186.00 KB
- 文档页数:6
12.2 离散型随机变量的期望值和方差一、知识梳理1.期望:若离散型随机变量ξ,当ξ=x i的概率为P(ξ=x i)=P i (i=1,2,…,n,…),则称Eξ=∑x i p i为ξ的数学期望,反映了ξ的平均值.期望是算术平均值概念的推广,是概率意义下的平均.Eξ由ξ的分布列唯一确定.2.方差:称Dξ=∑(x i-Eξ)2p i为随机变量ξ的均方差,简称方差. D叫标准差,反映了ξ的离散程度.3.性质:(1)E(aξ+b)=aEξ+b,D(aξ+b)=a2Dξ(a、b 为常数).(2)二项分布的期望与方差:若ξ~B(n,p),则Eξ=np,D ξ=npq(q=1-p).Dξ表示ξ对Eξ的平均偏离程度,Dξ越大表示平均偏离程度越大,说明ξ的取值越分散.二、例题剖析【例1】设ξ是一个离散型随机变量,其分布列如下表,试求E ξ、Dξ.拓展提高 既要会由分布列求E ξ、D ξ,也要会由E ξ、D ξ求分布列,进行逆向思维.如:若ξ是离散型随机变量,P (ξ=x 1)=53,P (ξ=x 2)=52,且x 1<x 2,又知E ξ=57,D ξ=256.求ξ的分布列.解:依题意ξ只取2个值x 1与x 2,于是有E ξ=53x 1+52x 2=57, D ξ=53x 12+52x 22-E ξ2=256. 从而得方程组⎪⎩⎪⎨⎧=+=+.1123,723222121x x x x【例2】 人寿保险中(某一年龄段),在一年的保险期内,每个被保险人需交纳保费a 元,被保险人意外死亡则保险公司赔付3万元,出现非意外死亡则赔付1万元.经统计此年龄段一年内意外死亡的概率是p 1,非意外死亡的概率为p 2,则a 需满足什么条件,保险公司才可能盈利?【例3】 把4个球随机地投入4个盒子中去,设ξ表示空盒子的个数,求E ξ、D ξ.特别提示求投球的方法数时,要把每个球看成不一样的.ξ=2时,此时有两种情况:①有2个空盒子,每个盒子投2个球;②1个盒子投3个球,另1个盒子投1个球.【例4】 若随机变量A 在一次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数.(1)求方差D ξ的最大值;(2)求ξξE D 12-的最大值. 【例5】 袋中装有一些大小相同的球,其中有号数为1的球1个,号数为2的球2个,号数为3的球3个,…,号数为n 的球n 个.从袋中任取一球,其号数作为随机变量ξ,求ξ的概率分布和期望.【例6】(湖北卷)某地最近出台一项机动车驾照考试规定;每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,使可领取驾照,不再参加以后的考试,否则就一直考到第4次为止。
高二数学高三新课:离散型随机变量的期望和方差人教版【本讲教育信息】一. 教学内容:高三新课:离散型随机变量的期望和方差二. 本周教学重、难点: 1. 期望:(1)计算公式: ++++=n n p x p x p x E 2211ξ (2)性质:① b aE b a E +=+ξξ)( ② 若B ~ξ(p n ,),则np E =ξ③ 若ξ服从几何分布且),()(p k g k p ==ξ,则pE 1=ξ 2. 方差:(1)计算公式: +⋅-++⋅-+⋅-=n n p E x p E x p E x D 2222121)()()(ξξξξ (2)性质:① ξξD a b a D 2)(=+② 若),(~p n B ξ,则)1(p q npq D -==ξ ③ 若ξ服从几何分布且),()(p k g k p ==ξ,则2pq D =ξ ④ 22)(ξξξE E D -=【典型例题】[例1] 某射手射击所得环数ξ的分布列ξ4 5 6 7 8 9 10P 0.02 0.04 0.06 0.09 0.28 0.29 0.22 试估计该射手n 次射击的平均环数。
解:根据这名射手射击所得环数的分布列,在n 次射击中预计大约有n n P 02.0)4(=⨯=ξ次得4环,n n P 04.0)5(=⨯=ξ次得5环,n n P 22.0)10(=⨯=ξ次得10环,n 次射击总环数约等于n n n 22.01004.0502.04⨯++⨯+⨯)22.01004.0502.04(⨯++⨯+⨯= n ,从而平均环数等于32.822.01004.0502.04=⨯++⨯+⨯ , 即32.8=ξE[例2] 某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进入下组练习,否则一直打完5发子弹后才能进入下一组练习。
若某射手在某组练习中射击一次的命中概率为0.8,求在这组练习中耗用子弹数ξ的分布列,并求出ξ的期望值和方差值。
离散型随机变量的数学期望和方差1.已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. (Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 解:(Ⅰ)对于甲:对于乙:0.20.40.2⨯+⨯.(Ⅱ)ξ表示依方案乙所需化验次数,ξ的期望为20.430.440.2 2.8E ξ=⨯+⨯+⨯=.2.甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者. (Ⅰ)求甲、乙两人同时参加A 岗位服务的概率;(Ⅱ)求甲、乙两人不在同一个岗位服务的概率; (Ⅲ)设随机变量ξ为这五名志愿者中参加A 岗位服务的人数,求ξ的分布列.解:(Ⅰ)记甲、乙两人同时参加A 岗位服务为事件A E ,那么3324541()40A A P E C A ==,即甲、乙两人同时参加A 岗位服务的概率是140. (Ⅱ)记甲、乙两人同时参加同一岗位服务为事件E ,那么4424541()10A P E C A ==,所以,甲、乙两人不在同一岗位服务的概率是9()1()10P E P E =-=. (Ⅲ)随机变量ξ可能取的值为1,2.事件“2ξ=”是指有两人同时参加A 岗位服务,则235334541(2)4C A P C A ξ===.所以3(1)1(2)4P P ξξ==-==,ξ的分布列是ξ1 3P34 143. 设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
开锁次数的数学期望和方差例 有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数ξ的数学期望和方差.分析:求)(k P =ξ时,由题知前1-k 次没打开,恰第k 次打开.不过,一般我们应从简单的地方入手,如3,2,1=ξ,发现规律后,推广到一般.解:ξ的可能取值为1,2,3,…,n .;12112121)111()11()3(;111111)11()2(,1)1(nn n n n n n n n P nn n n n n P nP =-⋅--⋅-=-⋅--⋅-===-⋅-=-⋅-====ξξξ nk n k n k n n n n n n n k n k n n n n k P 111212312111)211()211()111()11()(=+-⋅+-+---⋅--⋅-=+-⋅+----⋅--⋅-== ξ;所以ξ的分布列为:2131211=⋅++⋅+⋅+⋅=n n n n n E ξ; n n n n n k n n n n n n D 1)21(1)21(1)213(1)212(1)211(22222⋅+-++⋅+-++⋅+-+⋅+-+⋅+-= ξ ⎥⎦⎤⎢⎣⎡⋅+++++++-++++=n n n n n n 22222)21()321)(1()321(1 1214)1(2)1()12)(1(611222-=⎥⎦⎤⎢⎣⎡+++-++=n n n n n n n n n 说明:复杂问题的简化处理,即从个数较小的看起,找出规律所在,进而推广到一般,方差的公式正确使用后,涉及一个数列求和问题,合理拆项,转化成熟悉的公式,是解决的关键.次品个数的期望例 某批数量较大的商品的次品率是5%,从中任意地连续取出10件,ξ为所含次品的个数,求ξE .分析:数量较大,意味着每次抽取时出现次品的概率都是0.05,ξ可能取值是:0,1,2,…,10.10次抽取看成10次独立重复试验,所以抽到次品数ξ服从二项分布,由公式np E =ξ可得解.解:由题,()05.0,10~B ξ,所以5.005.010=⨯=ξE .说明:随机变量ξ的概率分布,是求其数学期望的关键.因此,入手时,决定ξ取哪些值及其相应的概率,是重要的突破点.此题k k k C k P --⋅==1010)05.01()05.0()(ξ,应觉察到这是()05.0,10~B ξ.根据分布列求期望和方差例 设ξ 是一个离散型随机变量,其分布列如下表,求q 值,并求ξ ξ D E 、.分析:根据分布列的两个性质,先确定q 的值,当分布列确定时,ξ ξ D E 、只须按定义代公式即可.解: 离散型随机变量的分布满足(1),,3,2,1,0=≥i P i (2).1321=+++P P P 所以有⎪⎪⎩⎪⎪⎨⎧≤≤-≤=+-+.1,1210,1212122q q q q 解得 .211-=q 故ξ 的分布列为⎪⎭⎫ ⎝⎛-⨯+-⨯+⨯-=∴2231)12(021)1(ξ E .2122321 -=-+-= ⎪⎭⎫ ⎝⎛-⨯--+-⨯-+⨯---=223)]21(1[)12()21(21)]21(1[ 222ξ D ⎪⎭⎫ ⎝⎛-+-+⨯-=2232)12(21)22( 32 .12223123622223 -=-+-+-+-=小结:解题时不能忽视条件i i p k P ==)(ξ时,10≤≤i p ,⋅⋅⋅=,2,1i 否则取了1>q 的值后,辛辛苦苦计算得到的是两个毫无用处的计算.产品中次品数分布列与期望值例 一批产品共100件,其中有10件是次品,为了检验其质量,从中以随机的方式选取5件,求在抽取的这5件产品中次品数分布列与期望值,并说明5件中有3件以上(包括3件)为次品的概率.(精确到0.001)分析:根据题意确定随机变量及其取值,对于次品在3件以上的概率是3,4,5三种情况的和.解:抽取的次品数是一个随机变量,设为ξ ,显然ξ 可以取从0到5的6个整数. 抽样中,如果恰巧有k 个(5,4,3,2,1,0=k )次品,则其概率为510059010)(C C C k P k k -⋅==ξ按照这个公式计算,并要求精确到0.001,则有.0)5( ,0)4( ,07.0)3( ,070.0)2( ,340.0)1( ,583.0)0(============ξ ξ ξ ξ ξ ξ P P P P P P 故ξ 的分布列为.501.00504007.03070.02340.01583.00=⨯+⨯+⨯+⨯+⨯+⨯=ξ E由分布列可知,.007.0)3( ,00007.0)3( =≥∴++=≥ξ ξ P P 这就是说,所抽取的5件品中3件以上为次品的可能性很小,只有7%.评定两保护区的管理水平例 甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等.而两个保护区内每个季度发现违反保护条例的事件次数的分布列分别为:甲保护区:乙保护区:分析:一是要比较一下甲、乙两个保护区内每季度发生的违规事件的次数的均值,即数学期望;二是要看发生违规事件次数的波动情况,即方差值的大小.(当然,亦可计算其标准差,同样说明道理.)解:甲保护区的违规次数1ξ的数学期望和方差为:;3.12.032.023.013.001=⨯+⨯+⨯+⨯=ξE;21.12.0)3.13(2.0)3.12(3.0)3.11(3.0)3.10(22221=⨯-+⨯-+⨯-+⨯-=ξD 乙保护区的违规次数2ξ的数学期望和方差为:;3.14.025.011.002=⨯+⨯+⨯=ξE41.04.0)3.12(5.0)3.11(1.0)3.10(2222=⨯-+⨯-+⨯-=ξD ;因为2121,ξξξξD D E E >=,所以两个保护区内每季度发生的违规平均次数是相同的,但乙保护区内的违规事件次数更集中和稳定,而甲保护区的违规事件次数相对分散和波动.(标准差64.0,1.12211≈===ξσξξσξD D 这两个值在科学计算器上容易获得,显然,σξσξ>1)说明:数学期望仅体现了随机变量取值的平均大小,但有时仅知道均值大小还是不够的,比如:两个随机变量的均值相等了(即数学期望值相等),这就还需要知道随机变量的取值如何在均值周期变化,即计算其方差(或是标准差).方差大说明随机变量取值分散性大;方差小说明取值分散性小或者说取值比较集中、稳定.射击练习中耗用子弹数的分布列、期望及方差例 某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进入下一组的练习,否则一直打完5发子弹后才能进入下一组练习,若该射手在某组练习中射击命中一次,并且已知他射击一次的命中率为0.8,求在这一组练习中耗用子弹数ξ 的分布列,并求出ξ 的期望ξ E 与方差ξ D (保留两位小数). 分析:根据随机变量不同的取值确定对应的概率,在利用期望和方差的定义求解. 解: 该组练习耗用的子弹数ξ 为随机变量,ξ 可以取值为1,2,3,4,5.ξ =1,表示一发即中,故概率为;8.0)1(==ξ Pξ =2,表示第一发未中,第二发命中,故;16.08.02.08.0)8.01()2(=⨯=⨯-==ξ Pξ =3,表示第一、二发未中,第三发命中,故;032.08.02.08.0)8.01()3(22=⨯=⨯-==ξ Pξ =4,表示第一、二、三发未中,第四发命中,故0064.08.02.08.0)8.01()4(33=⨯=⨯-==ξ Pξ =5,表示第五发命中,故.0016.02.01)8.01()5(44==⋅-==ξ P因此,ξ 的分布列为0016.050064.04032.0316.028.01⨯+⨯+⨯+⨯+⨯=ξ E,25.1008.00256.0096.032.08.0 =++++=0016.0)25.15(0064.0)25.14(032.0)25.13(16.0)25.12(8.0)25.11(22222⨯-+⨯-+⨯-+⨯-+⨯-=ξ D .31.00225.00484.0098.009.005.0 =++++=说明:解决这类问题首先要确定随机变量的所有可能取值,然后再根据概率的知识求解对应的概率.准备礼品的个数例 某寻呼台共有客户3000人,若寻呼台准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问:寻呼台能否向每一位顾客都发出奖邀请?若能使每一位领奖人都得到礼品,寻呼台至少应准备多少礼品?分析:可能来多少人,是一个随机变量ξ.而ξ显然是服从二项分布的,用数学期望来反映平均来领奖人数,即能说明是否可行.解:设来领奖的人数)3000,,2,1,0(, ==k k ξ,所以k k k C k P --⋅==300003000)04.01()04.0()(ξ,可见()04.0,30000~B ξ,所以,12004.03000=⨯=ξE (人)100>(人). 答:不能,寻呼台至少应准备120份礼品.说明:“能”与“不能”是实际问题转到数学中来,即用数字来说明问题.数字期望反映了随机变量取值的平均水平.用它来刻画、比较和描述取值的平均情况,在一些实际问题中有重要的价值.因此,要想到用期望来解决这一问题.。
离散型随机变量的数学期望和方差知识点一、离散型随机变量的数学期望1.定义一般地,如果离散型随机变量的分布列为2.意义:反映离散型随机变量取值的平均水平。
nnii3.性质:若X是随机变量,Y=aX+b,其中a,b是实数,则Y也是随机变量,且E(aX+b)=aE(X)+b二、离散型随机变量的方差1.定义一般地,如果离散型随机变量的分布列为则称D(X)=工(x—E(X))2p为随机变量的方差。
iii=12.意义:反映离散型随机变量偏离均值的程度。
3.性质:D(aX+b)=a2D(X)三、二项分布的均值与方差如果X〜B(n,p),则E(X)=np,D(X)=np(1-p)。
题型一离散型随机变量的均值【例1】设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()A.0.2B.0.1C.-0.2D.0.4【例2】随机抛掷一枚质地均匀的骰子,则所得点数§的数学期望为()A.0.6B.1C.3.5D.2【例3】某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分•小王选对每题的概率为0.8,则其第一大题得分的均值为•【例4】(2016年高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元•在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X W n)20.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【过关练习】 1.今有两台独立工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达的台数为E ,则E (勺等于() A .0.765B .1.75 C .1.765D .0.22 2•某射手射击所得环数d 的分布列如下: 3.已知随机变量d 的分布列为贝y x =,P (l W d <3)=,E (d )=. 4.(2015年高考重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白棕5个,这三种粽子的外观完全相同.从中任意选取3个. (1) 求三种粽子各取到1个的概率; (2) 设X表示取到的豆沙粽个数,求X 的分布列与数学期望. 题型二离散型随机变量方差的计算 【例1】若X 的分布列为 其中p W (0,1),贝%) A .D (X )=p 3B. C .D (X )=p —p 2D. D (X )=p 2 D (X )=pq 2【例2】设随机变量E 的分布列为P (^=k )=cA (^k\i^n-k ,k =o,1,2,…,n ,且E (^)=24,则D ©的值为()A .8 c? C.gB .12 D .16【例3】若D©=1,则D(f-D(f))=.3【例4】若随机变量X]〜B(n,0.2),坞〜2(6,p)X3〜B(n,p),且E(X J=2,D(X^,则6禺)=()A.0.5B.VT3C.、i25D.3.5【例5】根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:求工期延误天数Y 的均值与方差.【过关练习】1.某人从家乘车到单位,途中有3个路口.假设在各路口遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇到红灯的次数的方差为()A.0.48B.1.2C.0.72D.0.62.设投掷一个骰子的点数为随机变量X,则X的方差为.3•盒中有2个白球,3个黑球,从中任取3个球,以X表示取到白球的个数,n表示取到黑球的个数.给出699下列结论:①E(X)=5,E(n)=5;®E(X2)=E(n);@E(n2)=E(X);④D(X)=D(")=25・其中正确的是.(填上所有正确结论的序号)4•海关大楼顶端镶有A、B两面大钟,它们的日走时误差分别为X]、坞(单位:s),其分布列如下:根据这两面大钟日走时误差的均值与方差比较这两面大钟的质量.课后练习【补救练习】1.若随机变量d〜B(n,0.6),且E(0=3,则P(^=1)的值为()A.2X0.44B.2X0.45C.3X0.44D.3X0.642.已知d〜B(n,p),E(d)=8,D(d)=1.6,则n与p的值分别为()A.100和0.08B.20和0.4C.10和0.2D.10和0.83•有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本均值E(X甲)=E(X乙),方差分别为D(X甲乙)=11,D(X)=3.4.由此可以估计()ffl甲乙A.甲种水稻比乙种水稻分蘖整齐B.乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D.甲、乙两种水稻分蘖整齐程度不能比较4.一次数学测验有25道选择题构成,每道选择题有4个选项,其中有且只有一个选项正确,每选一个正确答案得4分,不做出选择或选错的不得分,满分100分,某学生选对任一题的概率为0.8,则此学生在这一次测试中的成绩的期望为;方差为.【巩固练习】1.现有10张奖券,8张2元的、2张5元的,某人从中随机抽取3张,则此人得奖金额的数学期望是()A.6B.7.8C.9D.122.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4发子弹,则命中后剩余子弹数目的均值为()A.2.44B.3.376C.2.376D.2.43•已知随机变量X+Y=8,若X〜B(10,0.6),则E(Y),D(Y)分别是()A.6,2.4B.2,2.4C.2,5.6D.6,5.64.马老师从课本上抄录一个随机变量d的概率分布列如下表:请小牛同学计算d的数学期望.“?”处的数值相同.据此,小牛给出了正确答案E(勺=.5.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的2概率为3,得到乙、丙两公司面试的概率均为P,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数,若P(X=O)=12,则随机变量X的数学期望E(X)=.6•随机变量E的分布列如下:其中a,b,c成等差数列,若E(0=3,则D(^)=•7•某城市出租汽车的起步价为6元,行驶路程不超出3km时按起步价收费,若行驶路程超出3km,则按每超出1km加收3元计费(超出不足1km的部分按1km计).已知出租车一天内行车路程可能为200,220,240,260,280,300(单位:km),它们出现的概率分别为0.12,0.18,0.20,0.20,0.18,0.12,设出租车行车路程d是一个随机变量,司机收费为"(元),则n=3<—3,求出租车行驶一天收费的均值.8•为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设d为成活沙柳的株数,数学期望E(d)=3,标准差丫苑为g6(1)求n,p的值并写出d的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.【拔高练习】1.设E为离散型随机变量,则E(E©_^=()A.0B.1C.2D.不确定2.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多21者赢得比赛.假设每局甲获胜的概率为3,乙获胜的概率为3,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).3.A,B两个投资项目的利润率分别为随机变量X1和^•根据市场分析,X]和X2的分布列分别为:(1)在A,B两个项目上各投资100万元,3(万元)和与(万元)分别表示投资项目A和B所获得的利润,求方差D(Y1),D(Y2);⑵将x(0W x W100)万元投资A项目,(100—朗万元投资B项目,沧)表示投资A项目所得利润的方差与投资B 项目所得利润的方差的和.求夬朗的最小值,并指出x为何值时,沧)取到最小值.。
离散型随机变量的期望与方差知识讲解一、离散型随机变量的期望与方差1.离散型随机变量的数学期望定义:一般地,设一个离散型随机变量X 所有可能的取的值是1x ,2x ,…,n x ,这些值对应的概率是1p ,2p ,…,n p ,则1122()n n E x x p x p x p =+++,叫做这个离散型随机变量X的均值或数学期望(简称期望).注:离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平.2.离散型随机变量的方差定义:一般地,设一个离散型随机变量X 所有可能取的值是1x ,2x ,…,n x ,这些值对应的概率是1p ,2p ,…,n p ,则2221122()(())(())(())n n D X x E x p x E x p x E x p =-+-++-叫做这个离散型随机变量X 的方差.离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小(离散程度).()D X 叫做离散型随机变量X 的标准差,它也是一个衡量离散型随机变量波动大小的量.3.期望的计算:X 为随机变量,a b ,为常数,则2()()()()E aX b aE X b D aX b a D X +=++=,;4.典型分布的期望与方差:1)二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np .2)二项分布:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.3)超几何分布:若离散型随机变量X 服从参数为N M n ,,的超几何分布,则()nM E X N=,2()()()(1)n N n N M M D X N N --=-.典型例题一.选择题(共18小题)1.(2018•上城区校级模拟)若X 是离散型随机变量,P (X=x 1)=,P (X=x 2)= ,且x 1<x 2,又已知E (X )= ,D (X )=,则x 1+x 2的值为( ) A . B . C .3 D .【解答】解:∵E (X )= ,D (X )=,∴, 解得或(舍),∴x 1+x 2=3. 故选:C .2.(2018•湘潭四模)若X ~B (5,),则( )A .E (X )=1且B .且D (X )=1C .E (X )=1且D .且D (X )=1【解答】解:∵X ~B (5,),∴E (X )=5× =1,D (X )=5× (1﹣ )=.故选:A .3.(2018•城中区校级模拟)从某企业生产的某种产品中抽取若干件,经测量得这些产品的一项质量指标值Z 服从正态分布N (200,150),某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,则E(X)等于()附:≈12.2.若Z~N(μ,σ2),则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.A.34.13 B.31.74 C.68.26 D.95.44【解答】解:由于≈12.2,则P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.682 6,所以一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意,X~B(100,0.682 6),∴E(X)=100×0.682 6=68.26.故选:C.4.(2017秋•凉州区校级期末)已知随机变量ξ的分布列为则Dξ的值为()A.B. C. D.【解答】解:Eξ=1×+2×+3×+4×=,Dξ=×(1﹣)2+×(2﹣)2+×(3﹣)2+×(4﹣)2=,故选:C.5.(2018春•城北区校级期末)某运动员投篮命中率为0.6,他重复投篮5次,若他命中一次得10分,没命中不得分,命中次数为X,得分为Y,则EX,DY分别为()A.0.6,60 B.3,12 C.3,120 D.3,1.2【解答】解:由题意,重复5次投篮,命中的次数X服从二项分布,即X~B(5,0.6),由二项分布期望与方差的计算结论有E(X)=5×0.6=3,D(X)=5×0.6×0.4=1.2.∵Y=10X,∴D(Y)=100D(X)=100×1.2=120.故选:C.6.(2018春•吉安期中)一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c,a,b,c∈(0,1),且无其它得分情况,已知他投篮一次得分的数学期望为1,则ab的最大值为()A.B.C.D.【解答】解:一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c,a,b,c∈(0,1),且无其它得分情况,他投篮一次得分的数学期望为1,∴,∴2≤3a+2b=1,∴ab.当且仅当3a=2b时取等号,∴ab的最大值为.故选:B.7.(2018春•新罗区校级月考)某10人组成兴趣小组,其中有5名团员.从这10人中任选4人参加某项活动,用X表示4人中的团员人数,则P(X=3)=()A.B.C.D.【解答】解:P(X=3)==.故选:D.8.(2017•宁波模拟)随机变量X的取值为0,1,2,若P(X=0)=,E(X)=1,则D(X)=()A.B.C.D.【解答】解:设P(X=1)=p,P(X=2)=q,∵E(X)=0×+p+2q=1①,又+p+q=1,②由①②得,p=,q=,∴D(X)=(0﹣1)2+=,故选:B.9.(2017春•鄞州区校级期末)设ξ~B(n,p),Eξ=12,Dξ=4,则n的值是()A.17 B.18 C.19 D.20【解答】解:ξ~B(n,p),Eξ=12,Dξ=4,可得:,解得p=,n=18.故选:B.10.(2017春•高台县校级期末)如图是2007的全国少数民族运动会上,七位评委为某民族舞蹈打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差为()A.4.84 B.2.4 C.1.6 D.1.7【解答】解:去掉最高分和最低分后的5个数据分别为84,84,85,84,88,∴==85,∴s2=[(84﹣85)2+(84﹣85)2+(85﹣85)2+(84﹣85)2+(88﹣85)2]=(1+1+0+1+9)=2.4.故选:B.11.(2017春•和平区校级期末)已知某一随机变量x的概率分布如下,且E(x)=5.9,则a的值为()A.5 B.6 C.7 D.8【解答】解:由0.5+0.2+b=1,得b=0.3,由E(x)=5.9,得4×0.5+0.2a+9×0.3=5.9,解得a=6.故选:B.12.(2016秋•荆州期末)已知随机变量X+Y=8,若X~B(10,0.6),则E(Y),D(Y)分别是()A.6和2.4 B.6和5.6 C.2和5.6 D.2和2.4【解答】解:∵随机变量X+Y=8,X~B(10,0.6),∴E(X)=10×0.6=6,D(X)=10×0.6×(1﹣0.6)=2.4,∴E(Y)=E(8﹣X)=8﹣E(X)=8﹣6=2,D(Y)=D(8﹣X)=(﹣1)2D(X)=D(X)=2.4.故选:D.13.(2016秋•桥西区校级期末)已知随机变量X满足D(X)=3,则D(3X+2)=()A.2 B.27 C.18 D.20【解答】解:∵随机变量X满足D(X)=3,∴D(3X+2)=9D(X)=9×3=27.故选:B.14.(2017春•广安期末)节日期间,某种鲜花进货价是每束2.5元,销售价每束5元;节日卖不出去的鲜花以每束1.6元价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量X服从如下表所示的分布:若进这种鲜花500束,则利润的均值为()A.706元B.690元C.754元D.720元【解答】解:由分布列可以得到EX=200×0.2+300×0.35+400×0.3+500×0.15=340,∴利润是(340×5+160×1.6)﹣500×2.5=706,故选:A.15.(2017春•乾安县校级期末)设随机变量X的分布列为,,,则P(X≥2)=()A.B.C.D.【解答】解:∵随机变量X的分布列为,,,∴=1,解得a=3,∴P(X≥2)=P(X=2)+P(X=3)==.故选:B.16.(2017春•石家庄期末)随机变量X~B(n,),E(X)=3,则n=()A.8 B.12 C.16 D.20【解答】解:E(X)==3,∴n=12.故选:B.17.(2017春•怀仁县校级期末)同时抛掷2枚质地均匀的硬币4次,设2枚硬币正好出现1枚正面向上、1枚反面向上的次数为X,则X的数学期望是()A.1 B.C.2 D.【解答】解:∵一次同时抛掷2枚质地均匀的硬币,恰好出现1枚正面向上1枚反面向上的概率为=,∴X~B(4,)∴EX=4×=2.故选:C.18.(2017春•故城县校级期末)已知随机变量ξ,且ξ服从二项分布B(10,0.6),则E(ξ)和D(ξ)的值分别是()A.6和2.4 B.2和2.4 C.2和5.6 D.6和5.6【解答】解:∵随机变量ξ,且ξ服从二项分布B(10,0.6),∴E(ξ)=10×0.6=6,D(ξ)=10×0.6×0.4=2.4,故选:A.二.解答题(共2小题)19.(2014•广州模拟)某高校在2011年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.(Ⅰ)分别求第3,4,5组的频率;(Ⅱ)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,(A)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙同时进入第二轮面试的概率;(B)学校决定在这6名学生中随机抽取2名学生接受考官D的面试,第4组中有ξ名学生被考官D面试,求ξ的分布列和数学期望.【解答】解:(Ⅰ)根据所给的频率分步直方图中小正方形的长和宽,得到第三组的频率为0.06×5=0.3;第四组的频率为0.04×5=0.2;第五组的频率为0.02×5=0.1.(Ⅱ)(A)由题意知本题是一个等可能事件的概率,试验发生包含的事件数是C303,设M:学生甲和学生乙同时进入第二轮面试满足条件的事件数是C281,∴P(M)==(B)由题意知变量ξ的可能取值是0,1,2该变量符合超几何分布,∴、、∴分布列是∴20.春节期间,小王用私家车送4位朋友到三个旅游点去游玩,每位朋友在每一个景点下车的概率为,用ξ表示4位朋友在第三个景点下车的人数,求:(1)离散型随机变量ξ的概率分布;(2)离散型随机变量ξ的均值.【解答】解:(1)离散型随机变量ξ的可能取值为0,1,2,3,4,P(ξ=0)=()4=,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,P(ξ=4)=()4=,∴ξ的分布列为:(2)由(1)得离散型随机变量ξ的均值:Eξ==.。
离散型随机变量的期望与方差知识集结知识元离散型随机变量的期望与方差知识讲解1.离散型随机变量的期望与方差【知识点的知识】1、离散型随机变量的期望数学期望:一般地,若离散型随机变量ξ的概率分布为x1x2…x n…P p1p2…p n…则称Eξ=x1p1+x2p2+…+x n p n+…为ξ的数学期望,简称期望.数学期望的意义:数学期望离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平.平均数与均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令p1=p2=…=p n,则有p1=p2=…=p n=,Eξ=(x1+x2+…+x n)×,所以ξ的数学期望又称为平均数、均值.期望的一个性质:若η=aξ+b,则E(aξ+b)=aEξ+b.2、离散型随机变量的方差;方差:对于离散型随机变量ξ,如果它所有可能取的值是x1,x2,…,x n,…,且取这些值的概率分别是p1,p2,…,p n…,那么,称为随机变量ξ的均方差,简称为方差,式中的Eξ是随机变量ξ的期望.标准差:Dξ的算术平方根叫做随机变量ξ的标准差,记作.方差的性质:.方差的意义:(1)随机变量的方差的定义与一组数据的方差的定义式是相同的;(2)随机变量的方差、标准差也是随机变量的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;(3)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛.例题精讲离散型随机变量的期望与方差例1.在某公司的一次投标工作中,中标可以获利12万元,没有中标损失成本费0.5万元、若中标的概率为0.6,设公司盈利为X万元,则D(X)=()A.7B.31.9C.37.5D.42.5例2.设随机变量ξ服从分布B(n,p),且E(ξ)=1.2,D(ξ)=0.96,则()A.n=6,p=0.2B.n=4,p=0.3C.n=5,p=0.24D.n=8,p=0.15例3.已知A,B两个不透明盒中各有形状、大小都相同的红球、白球若干个.A盒中有m个红球与10-m个白球,B盒中有10-m个红球与m个白球(0<m<10),若从A,B盒中各取一个球,ξ表示所取的2个球中红球的个数,则当Dξ取到最大值时,m的值为()A.3B.5C.7D.9当堂练习单选题练习1.随机变量ξ的分布列如表,且E(ξ)=1.1,则D(ξ)=()A.0.36B.0.52C.0.49D.0.68练习2.在某公司的一次投标工作中,中标可以获利12万元,没有中标损失成本费0.5万元、若中标的概率为0.6,设公司盈利为X万元,则D(X)=()A.7B.31.9C.37.5D.42.5练习3.设随机变量ξ服从分布B(n,p),且E(ξ)=1.2,D(ξ)=0.96,则()A.n=6,p=0.2B.n=4,p=0.3C.n=5,p=0.24D.n=8,p=0.15练习4.已知A,B两个不透明盒中各有形状、大小都相同的红球、白球若干个.A盒中有m个红球与10-m个白球,B盒中有10-m个红球与m个白球(0<m<10),若从A,B盒中各取一个球,ξ表示所取的2个球中红球的个数,则当Dξ取到最大值时,m的值为()A.3B.5C.7D.9解答题练习1.'为了积极支持雄安新区建设,某投资公司计划明年投资1000万元给雄安新区甲、乙两家科技企业,以支持其创新研发计划,经有关部门测算,若不受中美贸易战影响的话,每投入100万元资金,在甲企业可获利150万元,若遭受贸易战影响的话,则将损失50万元;同样的情况,在乙企业可获利100万元,否则将损失20万元,假设甲、乙两企业遭受贸易战影响的概率分别为0.6和0.5.(1)若在甲、乙两企业分别投资500万元,求获利1250万元的概率;(2)若在两企业的投资额相差不超过300万元,求该投资公司明年获利约在什么范围内?'练习2.'某蛇养殖基地因国家实施精准扶贫,大力扶持农业产业发展,拟扩大养殖规模.现对该养殖基地已经售出的王锦蛇的体长(单位:厘米)进行了统计,得到体长的频数分布表如下:若王锦蛇、乌梢蛇成年母蛇的购买成本分别为650元/条、600元/条,每条母蛇平均可为养殖场获得1200元/年的销售额,且每条蛇的繁殖年限均为整数,将每条蛇的繁殖年限的频率看作概率,以每条蛇所获得的毛利润(毛利润=总销售额-购买成本)的期望值作为购买蛇类的依据,试问:应购买哪类蛇?'练习3.'中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.②记抽到45岁以上的人数为x,求随机变量x的分布列及数学期望.'练习4.'已知甲、乙两名工人在同样条件下每天各生产100件产品,且每生产1件正品可获利20元,生产1件次品损失30元,甲、乙两名工人100天中出现次品件数的情况如表所示.(1)将甲每天生产的次品数记为x(单位:件),日利润记为y(单位:元),写出y与x的函数关系式;(2)如果将统计的100天中产生次品量的频率作为概率,记X表示甲、乙两名工人1天中各自日利润不少于1950元的人数之和,求随机变量X的分布列和数学期望.'练习5.'“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.(1)求X为“回文数”的概率;(2)设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E(ξ).'。
专题72 离散型随机变量的期望与方差(理)专题知识梳理1. 离散型随机变量的均值与方差 若离散型随机变量X 的概率分布为(1)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (2)方差称V (X )=为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,V (X )越小,稳定性越高,波动性越小,其算术平方根为随机变量X 的标准差.2. 均值与方差的性质 (1)E (aX+b )=aE (X )+b.(2)V (aX+b )=a 2V (X ). (a ,b 为常数)3. 两点分布、二项分布、超几何分布的期望、方差 (1)若X 服从两点分布,则E (X )= p ,V (X )=p (1−p ).(2)若X 服从二项分布,即X~B (n ,p ),则E (X )=np ,V (X )=np (1−p ). (3)若X 服从超几何分布,即X ~H (n ,M ,N )时,E (X )=__nMN __.考点探究考向1 离散型随机变量的均值与方差【例】(2016·苏锡常镇二调)一个口袋中装有大小相同的3个白球和1个红球,从中有放回地摸球, 每次摸出一个,若有3次摸到红球即停止. (1)求恰好摸4次停止的概率;21[-E()]ni i i x X p =∑(2)记4次之内(含4次)摸到红球的次数为X ,求随机变量X 的概率分布与数学期望.【解析】(1)设事件“恰好摸4次停止”的概率为P ,则2231319()444256P C =⨯⨯⨯=.所以恰好摸4次停止的概率为9256.(2)由题意,随机变量X 的所有可能的取值为0,1,2,3.044381(=0)()4256P C =⨯=X , 1341327(=1)()()4464P C =⨯⨯=X , 22241327(=2)()()44128P C =⨯⨯=X , 81272713(=3)125664128256P =---=X , X 的分布列为所以E (X )=8127271315012325625625625632⋅+⋅+⋅+⋅=. 题组训练1.某学校组建了由2名男选手和n 名女选手组成的“汉字听写大会”集训队,每次参赛均从集训队中任意选派2名选手参加省队选拔赛.(1) 若n =2,记某次选派中被选中的男生人数为随机变量X ,求随机变量X 的概率分布和数学期望; (2) 若n ≥2,该校要参加三次“汉字听写大会”,每次从集训队中选2名选手参赛,求n 为何值时,三次比赛 恰有一次参赛学生性别相同的概率取得最大值. 【解析】(1) 当n =2时,X 可能的取值为0,1,2.P (X =0)==,P (X =1)==,P (X =2)==,则随机变量X 的概率分布如下表:所以E (X )=0×+1×+2×=1.∴022224C C C ⋅16112224C C C⋅23022224C C C ⋅16162316(2) 一次参加比赛全是男生或全是女生的概率为P ==. 三次比赛恰有一次参赛学生性别相同的概率为f (P )=P (1−P )2=3P 3−6P 2+3P , 则f '(P )=9P 2−12P +3=3(P −1)(3P −1),易知当P =时,f (P )取得最大值,所以=,解得n =2.2.某商场举办“迎新年摸球”活动,主办方准备了甲、乙两个箱子,其中甲箱中有四个球、乙箱中有三个球(每个球的大小、形状完全相同),每一个箱子中只有一个红球,其余都是黑球.若摸中甲箱中的红球,则可获奖金m 元;若摸中乙箱中的红球,则可获奖金n 元.活动规定:①参与者每个箱子只能摸一次,一次摸一个球;②可选择先摸甲箱,也可先摸乙箱;③如果在第一个箱子中摸到红球,则可继续在第二个箱子中摸球,否则活动终止.(1)如果参与者先在乙箱中摸球,求其恰好获得奖金n 元的概率;(2)若要使得该参与者获奖金额的期望值较大,请你帮他设计摸箱子的顺序,并说明理由.【解析】(1)设参与者先在乙箱中摸球,且恰好获得奖金n 元为事件M .则P (M )=13×34=14,即参与者先在乙箱中摸球,且恰好获得奖金n 元的概率为14.(2)参与者摸球的顺序有两种,分别讨论如下:①先在甲箱中摸球,参与者获奖金x 可取0,m ,m +n ,则P (x =0)=34,P (x =m )=14×23=16,P (x =m +n )=14×13=112,E (x )=0×34+m ×16+(m +n )×112=m 4+n12.②先在乙箱中摸球,参与者获奖金h 可取0,n ,m +n ,则P (h =0)=23,P (h =n )=13×34=14,P (h =m +n )=13×14=112,E (h )=0×23+n ×14+(m +n )×112=m 12+n3. E (x )-E (h )=2m -3n 12.故当m n >32时,先在甲箱中摸球,再在乙箱中摸球,参与者获奖金期望值较大;当m n =32时,两种顺序参与者获奖金期望值相等;当m n <32时,先在乙箱中摸球,再在甲箱中摸球,参与者获奖金期望值较大.考向2 均值与方差的性质的应用【例】袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n=1,2,3,4).现从袋中任取一个球,X 表示所取球的标号. (1)求X 的概率分布、均值和方差;(2)若Y=aX+b ,E (Y )=1,V (Y )=11,试求a ,b 的值.22222C C C ++nn 22-232+++n n n n 13C 1322-232+++n n n n 13【解析】(1)由题意知X 的所有可能取值为0,1,2,3,4,则P (X=0)==,P (X=1)==,P (X=2)==,P (X=3)==,P (X=4)==.故X 的概率分布为所以E (X )=0×+1×+2×+3×+4×=1.5. V (X )=(0−1.5)2×+(1−1.5)2×+(2−1.5)2×+(3−1.5)2×+(4−1.5)2×=2.75.(2)由V (Y )=a 2V (X ),得a 2×2.75=11,即a=±2.又E (Y )=aE (X )+b ,所以当a=2时,由1=2×1.5+b ,得b=−2. 当a=−2时,由1=−2×1.5+b ,得b=4. 故或 题组训练1.设随机变量X 的概率分布为P (X=k )=,k=1,2,3,4,5. 求E (X+2)2,V (2X−1). 【解析】因为E (X )=1×+2×+3×+4×+5×==3,E (X 2)=1×+22×+32×+42×+52×=11,V (X )=(1−3)2×+(2−3)2×+(3−3)2×+(4−3)2×+(5−3)2×=×(4+1+0+1+4)=2,故E (X+2)2=E (X 2+4X+4)=E (X 2)+4E (X )+4=11+12+4=27, V (2X−1)=4V (X )=8.考向3 离散型随机变量期望与方差的应用【例】购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10000元的赔偿金.假定在一年度内有10000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10000元的概率为1-4100.999.110120C C 1211120C C 12012120C C 11013120C C 32014120C C 15121201103201512120110320152-2a b =⎧⎨=⎩,-24.a b =⎧⎨=⎩,1515151515151551515151515151********5(1)求一投保人在一年度内出险的概率p;(2)设保险公司开办该项险种业务除赔偿金外的成本为50000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).【解析】各投保人是否出险互相独立,且出险的概率都是p,记投保的10000人中出险的人数为ξ,则ξ~B(104,p).(1)记A表示事件:保险公司为该险种至少支付10000元赔偿金,则A发生当且仅当ξ=0,P(A)=1-P(A)=1-P(ξ=0)=1-(1-p)104,又P(A)=1-0.999104,故p=0.001.(2)该险种总收入为10000a元,支出是赔偿金总额与成本的和.支出10000ξ+50000.盈利η=10000a-(10000ξ+50000),盈利的期望为E(η)=10000a-10000E(ξ)-50000,由ξ~B(104,10-3)知,E(ξ)=10000×10-3,E(η)=104a-104E(ξ)-5×104=104a-104×104×10-3-5×104.E(η)≥0⇔104a-104×10-5×104≥0⇔a-10-5≥0⇔a≥15(元).故每位投保人应交纳的最低保费为15元.题组训练1.因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出两种拯救果树的方案,每种方案都需分两年实施.若实施方案一,预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为第一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计第一年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为第一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案第一年与第二年相互独立,令ξi(i=1,2)表示方案i实施两年后柑桔产量达到灾前产量的倍数.(1)写出ξ1、ξ2的分布列;(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?(3)不管哪种方案,如果实施两年后柑桔产量达不到、恰好达到、超过灾前产量,预计利润分别为10万元、15万元、20万元.问实施哪种方案的平均利润更大?【解析】(1)ξ1的所有取值为0.8、0.9、1.0、1.125、1.25,ξ2的所有取值为0.8、0.96、1.0、1.2、1.44.ξ1、ξ2的分布列分别为:(2)令A 、B P (A )=0.15+0.15=0.3, P (B )=0.24+0.08=0.32.可见,方案二两年后柑桔产量超过灾前产量的概率更大. (3)令η表示方案i 的预计利润,则所以E (η1)=14.75,E (η2)=14.1,可见,方案一的预计利润更大.2.一个摸球游戏,规则如下:在一不透明的纸盒中,装有6个大小相同、颜色各异的玻璃球.参加者交费1元可玩1次游戏,从中有放回地摸球3次.参加者预先指定盒中的某一种颜色的玻璃球,然后摸球:当所指定的玻璃球不出现时,游戏费被没收;当所指定的玻璃球出现1次、2次、3次时,参加者可相应获得游戏费的0倍、1倍、k 倍的奖励(k ∈N *),且游戏费仍退还给参加者.记参加者玩1次游戏的收益为X 元.(1) 求概率P (X=0)的值;(2) 为使收益X 的数学期望不小于0元,求k 的最小值.【解析】(1) 事件“X=0”表示“有放回地摸球3回,所指定的玻璃球只出现1次”,则P (X=0)=3×16×(56)2=2572.(2) 由题意得,X 的可能值为k ,−1,1,0,且P (X=k )=(16)3=1216,P (X=−1)=(56)3=125216,P (X=1)=3×(16)2×56=572,P (X=0)=3×16×(56)2=2572,结合(1)知,参加游戏者的收益X 的数学期望为 E (X )=k×1+(−1)×125+1×5+0×25=k -110(元), 为使收益X 的数学期望不小于0元,所以k ≥110,即k min =110. 故k 的最小值为110.3.某班组织的数学文化节活动中,通过抽奖产生了5名幸运之星.这5名幸运之星可获得A 、B 两种奖品中的一种,并规定:每个人通过抛掷一枚质地均匀的骰子决定自己最终获得哪一种奖品,抛掷点数小于3的获得A 奖品,抛掷点数不小于3的获得B 奖品.(1)求这5名幸运之星中获得A 奖品的人数大于获得B 奖品的人数的概率;(2)设X 、Y 分别为获得A 、B 两种奖品的人数,并记ξ=||X -Y ,求随机变量ξ的分布列及数学期望. 【解析】这5名幸运之星中,每人获得A 奖品的概率为26=13,B 奖品的概率为46=23.(1)要获得A 奖品的人数大于获得B 奖品的人数,则A 奖品的人数可能为3,4,5,则所求概率为P =C 35(13)3(23)2+C 45(13)4(23)+C 55(13)5=51243. (2)ξ的可能取值为1,3,5,且P(ξ=1)=C 35(13)3(23)2+C 25(13)2(23)3=4081,P(ξ=3)=C 45(13)4(23)+C 15(13)(23)4=1027,P(ξ=5)=C 05(23)5+C 55(13)5=1181,所以ξ的分布列是:故随机变量ξ的数学期望E (ξ)=1×4081+3×1027+5×1181=18581.。
开锁次数的数学期望和方差
例 有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数ξ的数学期望和方差.
分析:求)(k P =ξ时,由题知前1-k 次没打开,恰第k 次打开.不过,一般我们应从简单的地方入手,如3,2,1=ξ,发现规律后,推广到一般.
解:ξ的可能取值为1,2,3,…,n .
;12112121)111()11()3(;111111)11()2(,1)1(n
n n n n n n n n P n
n n n n n P n
P =-⋅--⋅-=-⋅--⋅-===-⋅-=-⋅-====ξξξ n
k n k n k n n n n n n n k n k n n n n k P 111212312111)211()211()111()11()(=+-⋅+-+---⋅--⋅-=+-⋅+----⋅--⋅-== ξ;所以ξ的分布列为:
2
31211=⋅++⋅+⋅+⋅=n n n n n E ξ; n n n n n k n n n n n n D 1)21(1)21(1)213(1)212(1)211(22222⋅+-++⋅+-++⋅+-+⋅+-+⋅+-
= ξ ⎥⎦
⎤⎢⎣⎡⋅+++++++-++++=n n n n n n 22222)21()321)(1()321(1 12
14)1(2)1()12)(1(611222-=⎥⎦⎤⎢⎣⎡+++-++=n n n n n n n n n 说明:复杂问题的简化处理,即从个数较小的看起,找出规律所在,进而推广到一般,方差的公式正确使用后,涉及一个数列求和问题,合理拆项,转化成熟悉的公式,是解决的关键.
次品个数的期望
例 某批数量较大的商品的次品率是5%,从中任意地连续取出10件,ξ为所含次品的个数,求ξE .
分析:数量较大,意味着每次抽取时出现次品的概率都是0.05,ξ可能取值是:0,1,2,…,10.10次抽取看成10次独立重复试验,所以抽到次品数ξ服从二项分布,由公式np E =ξ可得解.
解:由题,()05.0,10~B ξ,所以5.005.010=⨯=ξE .
说明:随机变量ξ的概率分布,是求其数学期望的关键.因此,入手时,决定ξ取哪些
值及其相应的概率,是重要的突破点.此题k k k C k P --⋅==1010)05.01()05.0()(ξ,应觉察
到这是()05.0,10~B ξ.
根据分布列求期望和方差
例 设ξ 是一个离散型随机变量,其分布列如下表,求q 值,并求ξ ξ D E
、.
分析:根据分布列的两个性质,先确定q 的值,当分布列确定时,ξ ξ D E
、只须按定义代公式即可.
解: 离散型随机变量的分布满足
(1),,3,2,1
,0 =≥i P i (2).1321=+++
P P P 所以有⎪⎪⎩
⎪⎪⎨⎧≤≤-≤=+-+.
1,1210,1212122q q q q 解得 .211-=q 故ξ 的分布列为
⎪⎭⎫ ⎝⎛-⨯+-⨯+⨯-=∴2231)12(021)1(ξ E .2122
321 -=-+-= ⎪⎭
⎫ ⎝⎛-⨯--+-⨯-+⨯---=223)]21(1[)12()21(21)]21(1[ 222ξ D ⎪⎭
⎫ ⎝⎛-+-+⨯-=2232)12(21)22( 32 .12223123622223 -=-+-+-+-=
小结:解题时不能忽视条件i i p k P ==)(ξ时,10≤≤i p ,⋅⋅⋅=,2,1i 否则取了1>q 的值后,辛辛苦苦计算得到的是两个毫无用处的计算.
产品中次品数分布列与期望值
例 一批产品共100件,其中有10件是次品,为了检验其质量,从中以随机的方式选取5件,求在抽取的这5件产品中次品数分布列与期望值,并说明5件中有3件以上(包括3件)为次品的概率.(精确到0.001)
分析:根据题意确定随机变量及其取值,对于次品在3件以上的概率是3,4,5三种情况的和.
解:抽取的次品数是一个随机变量,设为ξ ,显然ξ 可以取从0到5的6个整数. 抽样中,如果恰巧有k 个(5,4,3,2,1,0=k )次品,则其概率为
5
10059010)(C C C k P k k -⋅==ξ
按照这个公式计算,并要求精确到0.001,则有
.
0)5( ,0)4( ,07.0)3( ,070.0)2( ,340.0)1( ,583.0)0(============ξ ξ ξ ξ ξ ξ P P P P P P 故ξ 的分布列为
.501.00504007.03070.02340.01583.00=⨯+⨯+⨯+⨯+⨯+⨯=ξ E
由分布列可知,
.
007.0)3( ,00007.0)3( =≥∴++=≥ξ ξ P P 这就是说,所抽取的5件品中3件以上为次品的可能性很小,只有7%.
评定两保护区的管理水平
例 甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等.而两个保护区内每个季度发现违反保护条例的事件次数的分布列分别为:
甲保护区:
乙保护区:
试评定这两个保护区的管理水平.
分析:一是要比较一下甲、乙两个保护区内每季度发生的违规事件的次数的均值,即数学期望;二是要看发生违规事件次数的波动情况,即方差值的大小.(当然,亦可计算其标准差,同样说明道理.)
解:甲保护区的违规次数1ξ的数学期望和方差为:
;3.12.032.023.013.001=⨯+⨯+⨯+⨯=ξE
;21.12.0)3.13(2.0)3.12(3.0)3.11(3.0)3.10(22221=⨯-+⨯-+⨯-+⨯-=ξD 乙保护区的违规次数2ξ的数学期望和方差为:
;3.14.025.011.002=⨯+⨯+⨯=ξE
41.04.0)3.12(5.0)3.11(1.0)3.10(2222=⨯-+⨯-+⨯-=ξD ;
因为2121,ξξξξD D E E >=,所以两个保护区内每季度发生的违规平均次数是相同的,但乙保护区内的违规事件次数更集中和稳定,而甲保护区的违规事件次数相对分散和波动.
(标准差64.0,1.12211≈===
ξσξξσξD D 这两个值在科学计算器上容易获得,
显然,σξσξ>1)
说明:数学期望仅体现了随机变量取值的平均大小,但有时仅知道均值大小还是不够
的,比如:两个随机变量的均值相等了(即数学期望值相等),这就还需要知道随机变量的取值如何在均值周期变化,即计算其方差(或是标准差).方差大说明随机变量取值分散性大;方差小说明取值分散性小或者说取值比较集中、稳定.
射击练习中耗用子弹数的分布列、期望及方差
例 某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进入下一组的练习,否则一直打完5发子弹后才能进入下一组练习,若该射手在某组练习中射击命中一次,并且已知他射击一次的命中率为0.8,求在这一组练习中耗用子弹数ξ 的分布列,并
求出ξ 的期望ξ E 与方差ξ D (保留两位小数)
. 分析:根据随机变量不同的取值确定对应的概率,在利用期望和方差的定义求解. 解: 该组练习耗用的子弹数ξ 为随机变量,ξ 可以取值为1,2,3,4,5.
ξ =1,表示一发即中,故概率为
;8.0)1(==ξ P
ξ =2,表示第一发未中,第二发命中,故
;16.08.02.08.0)8.01()2(=⨯=⨯-==ξ P
ξ =3,表示第一、二发未中,第三发命中,故
;032.08.02.08.0)8.01()3(22=⨯=⨯-==ξ P
ξ =4,表示第一、二、三发未中,第四发命中,故
0064.08.02.08.0)8.01()4(33=⨯=⨯-==ξ P
ξ =5,表示第五发命中,故
.0016.02.01)8.01()5(44==⋅-==ξ P
因此,ξ 的分布列为
0016.050064.04032.0316.028.01⨯+⨯+⨯+⨯+⨯=ξ E
,25.1008.00256.0096.032.08.0 =++++=
0016.0)25.15(0064.0)25.14(032.0)25.13(16.0)25.12(8.0)25.11(22222⨯-+⨯-+⨯-+⨯-+⨯-=ξ D .31.00225.00484.0098.009.005.0 =++++=
说明:解决这类问题首先要确定随机变量的所有可能取值,然后再根据概率的知识求解对应的概率.
准备礼品的个数
例 某寻呼台共有客户3000人,若寻呼台准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问:寻呼台能否向每一位顾客都发出奖邀请?若能使每一位领奖人都得到礼品,寻呼台至少应准备多少礼品?
分析:可能来多少人,是一个随机变量ξ.而ξ显然是服从二项分布的,用数学期望来反映平均来领奖人数,即能说明是否可行.
解:设来领奖的人数)3000,,2,1,0(, ==k k ξ,所以
k k k C k P --⋅==300003000)04.01()04.0()(ξ,可见()04.0,30000
~B ξ,所以,12004.03000=⨯=ξE (人)100>(人).
答:不能,寻呼台至少应准备120份礼品.
说明:“能”与“不能”是实际问题转到数学中来,即用数字来说明问题.数字期望反映了随机变量取值的平均水平.用它来刻画、比较和描述取值的平均情况,在一些实际问题中有重要的价值.因此,要想到用期望来解决这一问题.。