引物设计常见问题与解答
- 格式:pdf
- 大小:234.05 KB
- 文档页数:13
引物设计知识点汇总引物设计在分子生物学和遗传学研究中起着至关重要的作用。
引物是用于特异性扩增DNA片段的短寡核苷酸序列,需要准确设计以保证扩增效率和特异性。
本文将汇总引物设计的相关知识点,包括引物选择、引物设计策略和引物设计工具等。
一、引物选择引物的选择是引物设计的第一步,关键点如下:1. 引物长度:一般选择18-22个碱基对的短寡核苷酸作为引物长度,过短的引物可能导致非特异性扩增,过长的引物则增加了扩增难度。
2. 引物的GC含量:引物的GC含量应在40%-60%之间,过高或过低的GC含量可能导致不稳定的引物结合和扩增效率下降。
3. 引物的翻译调谐能力:引物的序列应尽可能避免出现自身互补的二级结构,避免引物之间的相互结合,以保证扩增特异性。
4. 引物的特异性:引物应具有较高的特异性,即只特异性地扩增目标DNA片段,而不扩增非目标DNA。
二、引物设计策略在引物设计过程中,有以下几种常用的引物设计策略:1. 引物序列比对:将引物序列与目标序列比对,选择引物与目标序列高度互补的区域作为引物的设计区域。
2. 引物性能评估:使用引物设计工具对设计的引物进行性能评估,评估指标包括特异性、互补性、剪切位点等。
3. 引物序列调整:根据引物评估的结果,对引物序列进行调整,如调整引物的长度、GC含量等。
4. 引物结构优化:通过调整引物的二级结构和碱基组成,优化引物的稳定性和特异性。
三、引物设计工具引物设计工具可以帮助研究人员快速设计合适的引物,常见的引物设计工具有:1. Primer3:Primer3是一个广泛使用的引物设计软件,提供了丰富的设计选项和参数调整,可以根据用户需求生成高质量的引物序列。
2. NCBI Primer-BLAST:NCBI Primer-BLAST结合了引物设计和引物特异性评估的功能,能够为用户提供特异性较高的引物设计方案。
3. OligoAnalyzer:OligoAnalyzer是一款在线工具,可以评估引物的各项性质,如熔解温度、稳定性等。
1、我想问下:为什么引物不能退火之后跑胶验证纯度呢?两条引物退火成功率达不到百分之百,里面会存在单链引物,引物退火后跑胶有杂链很正常,不能以此来判断单链引物纯度。
2、老师您好,我想自己设计测序引物,请问对于测序引物有什么要求吗?在待测目的基因前面100bp左右设计引物,GC含量不能太高或太低,3’端不能有错配,引物的长度建议是18-20bp以内。
3、甲基化的建议反向测序,是什么意思?正向测序有甲基化的结构,会导致测序峰图双峰或者严重的时候导致信号突然中断,就可以反向测序,然后正反双向测序结果拼接起来就可以得到完整的序列。
4、老师请问一个测序反应有效的大概有多长?普通序列一个测序反应有效长度大概是800bp左右。
5、请问RNA最长能合多少呢30bp以内。
6、稀释后引物保存时间多久?稀释后的引物一般4℃保存3个月内是没有问题的7、你们的积分的兑换时间有限制吗?积分不清零的8、测序为什么前70bp不准呢一代测序,由于仪器的缺陷,所以前面会有几十bp是不准确的,严重的时候会有70bp左右不准确。
9、老师请问那引物最长能合多长呢?引物最长能合139bp。
10、金开瑞引物合成与外面其他公司引物合成相比,优势有哪些?我们公司技术服务内容比较多,内部和外部引物合成需求都是一起合成,效果和质量的反馈方面,我们综合有内部使用和外部使用反馈,更全面。
11、只做常规的pcr,用什么纯化方式的引物呢?常规的pcr脱盐纯化就可以满足实验了。
12、引物测序时,单向、双向、测通之间的具体区别是什么呀?这个主要是根据待测目的序列的长度来决定的,如果待测目的序列700bp以内的话可以选择正向或者反向都行;1500bp以内的序列一般双向测序就可以了;如果是待测目的序列大于1500bp就可以填测通,这边会根据测序结果自动安排测序反应,直到完全测通,我们会默认测通后拼接。
13、不同纯化方法,你们收费不一样是吗不一样的,脱盐纯化<PEGA纯化<HPLC纯化。
PCR常见问题分析及对策PCR常见问题分析及对策(无扩增产物、非特异性扩增、拖尾、假阳性) 问题1:无扩增产物现象:正对照有条带,而样品则无原因:1.模板:含有抑制物,含量低2.Buffer对样品不合适3.引物设计不当或者发生降解4.反应条件:退火温度太高,延伸时间太短对策:1.纯化模板或者使用试剂盒提取模板DNA或加大模板的用量2.更换Buffer或调整浓度3.重新设计引物(避免链间二聚体和链内二级结构)或者换一管新引物4.降低退火温度、延长延伸时间问题2:非特异性扩增现象:条带与预计的大小不一致或者非特异性扩增带原因:1.引物特异性差2.模板或引物浓度过高3.酶量过多4.Mg2+浓度偏高5.退火温度偏低现非特异条带而另一来源的酶则不出现,酶量过多有时也会出现非特异性扩增。
其对策有:①必要时重新设计引物。
②减低酶量或调换另一来源的酶。
③降低引物量,适当增加模板量,减少循环次数。
④适当提高退火温度或采用二温度点法(93℃变性,65℃左右退火与延伸)。
出现片状拖带或涂抹带PCR扩增有时出现涂抹带或片状带或地毯样带。
其原因往往由于酶量过多或酶的质量差,dNTP浓度过高,Mg2+浓度过高,退火温度过低,循环次数过多引起。
其对策有:①减少酶量,或调换另一来源的酶。
②减少dNTP的浓度。
③适当降低Mg2+浓度。
④增加模板量,减少循环次数。
克隆PCR产物的最优条件是什么?最佳插入片段:载体比需实验确定。
1:1(插入片段:载体)常为最佳比,摩尔数比1:8或8:1也行。
应测定比值范围。
连接用5ul 2X连接液, 50ng质粒DNA,1Weiss单位的T4连接酶,插入片段共10ul。
室温保温1小时,或4oC过夜。
在这2种温度下,缺T-凸出端的载体会自连,产生蓝斑。
室温保温1小时能满足大多数克隆要求,为提高连接效率,需4oC过夜。
PCR产物是否需要用凝胶纯化?如凝胶分析扩增产物只有一条带,不需要用凝胶纯化。
如可见其他杂带,可能是积累了大量引物的二聚体。
引物合成常见问题分析引物合成常见问题分析1.需要合成多少OD的oligo?一般来说,20BP 2 OD引物可以做400-500次50ul标准PCR反应,以及 2000—2500 次的测序反应。
因此,2 OD 的DNA 量足以进行一般的实验工作。
如果是做基因拼接或退火后做连接,1 OD就足够了,无论是 PAGE 纯化,还是HPLC 纯化,增大每次的纯化量会大大降低制品的纯度。
所以,为了保证制品质量,我们一般把每次的纯化量控制在 2 OD 左右。
如何测定引物的OD值:DNA的量与260nm处的吸光度值(OD值)成正比,因此使用紫外分光光度计定量是最科学的,测定时溶液的光密度最好稀释到0.2-1.0之间。
进行OD值测定时,分光光度计上显示的数值为每毫升溶液中的OD值。
例如:您拿到一管引物DNA干粉,用1ml水溶解成母液。
取该母液50μL稀释成1ml,在1ml标准比色杯中测定其吸光度为0.25,说明该50μL中含有0.25OD的DNA,也即说明原来1ml母液中含有5OD的DNA。
2.如何检测Oligo DNA的纯度?实验室检测时比较方便的作法是进行PAGE凝胶电泳。
一般用加有7M尿素的16%的聚丙烯酰胺凝胶进行电泳即可,小于12bp的短链使用20% 的凝胶,大于60bp 的引物使用12% 的凝胶。
取0.2-0.5OD的引物,用尿素饱和液溶解或引物溶液中加入尿素干粉直到饱和,上样前加热变性(95℃,2mins)。
600V电压进行电泳,一定时间后(约2-3小时)剥胶,用荧光TLC板在紫外灯下观察,在主带之下没有杂带,说明纯度是好的。
如果条件许可,也可以用银染方式染色。
3.使用3%的Agarose凝胶电泳合成的 Oligo DNA 制品,为什么有很多条带?由于Oligo DNA 是单链 DNA ,容易形成复杂的立体结构,因此进行Agarose 电泳时,容易出现多条泳带(更不能用Agarose 电泳来进行定量了)。
引物设计知识点总结引物是在分子生物学和遗传学研究中广泛使用的一种技术。
它主要用于DNA或RNA的扩增、测序和检测等实验。
引物设计的质量和准确性对实验结果有着重要的影响。
本文将对引物设计的知识点进行总结和讨论。
一、引物设计的基本原则引物设计需要考虑以下几个基本原则:1. 引物长度:引物的长度一般在18-30个碱基对之间。
过短的引物可能导致扩增效率低下,过长的引物则可能增加非特异性扩增的风险。
2. 引物温度:引物的熔解温度(Tm)应在50-65摄氏度之间。
引物的Tm过高可能导致非特异性扩增,而过低则可能导致扩增效率下降。
3. 引物结构:引物的序列应避免高度互补部分,以减少二次结构的形成。
此外,引物的3'端应尽量避免含有GC丰富序列,以减少引物自身的二聚体形成。
二、引物序列的选择在引物设计中,需要根据具体的实验目的和DNA序列来选择引物的序列。
以下是常见的引物序列选择策略:1. 引物长度:引物的长度一般为18-30个碱基对。
对于较短的DNA序列或需要快速扩增的实验,可以选择较短的引物;对于复杂的基因或需要高度特异性扩增的实验,可以选择较长的引物。
2. 引物位置:引物应位于目标序列的末端,以提高特异性。
通常,引物应位于目标序列的保守区域,并避免位于变异或多态性较高的区域。
3. 引物序列:引物的序列应避免高度互补部分,以减少二次结构的形成。
此外,引物的GC含量应适中,避免过高或过低。
三、引物设计工具为了帮助科研人员进行引物设计,许多在线工具和软件被开发出来。
以下是一些常用的引物设计工具:1. Primer3:Primer3是一个广泛使用的引物设计工具,可以根据用户输入的序列和参数,自动设计引物。
2. NCBI Primer-BLAST:NCBI Primer-BLAST可以在设计引物的同时,对引物与目标序列的特异性进行评估。
3. OligoAnalyzer:OligoAnalyzer可以评估引物的物理属性,如熔解温度和GC含量,并检查引物是否存在二聚体结构。
引物设计常见问题与解答先看一下Tm的定义:Tm = Temperature at which 50% of a given oligonucleotide is hybridized to its complementary strand. In the absence of destabilizing agents, like formamide or urea, Tm will depend on 3 major parameters: The sequence: a GC-rich sequence has a higher melting temperature. The strand concentration: high oligonucleotide concentrations favor hybrid formation, which results in a higher melting temperature. The salt concentration: high ionic strength results in a higher Tm as cations stabilize the DNA duplexes.引物设计软件都可以给出Tm,引物长度,碱基组成,引物使用缓冲的离子强度有关。
长度为25mer以下的引物,Tm计算公式为:Tm = 4℃(G + C)+ 2℃(A + T)对于更长的寡聚核苷酸,Tm计算公式为:Tm = 81.5 + 16.6 x Log10[Na+] + 0.41 (%GC) – 600/size公式中,Size = 引物长度。
Tm叫溶解温度(melting temperature, Tm),即是DNA双链溶解所需的温度。
大家可以理解,这个温度是由互补的DNA区域决定的,而不互补的区域对DNA的溶解是没有作用的。
因此,对于引物的Tm,只有和模板互补的区域对Tm才有贡献。
引物设计注意问题1.3,端不要出现连续的3个碱基相连的情况,比如GGG或 CCC,否则容易引起错配。
2.3,端的△G不宜过高,过高会在错配位点形成双链结构并引起DNA聚合反应,其绝对值应该小一些,最好不要超过9。
3.发夹结构(Hairpin Formation)△G绝对值不要超过4.5kcal/mol,碱基对不要超过3个。
4.上下游引物的GC%需要控制在40%~60%,而且上下游引物之间的GC%不要相差太大。
5.Tm 值可以控制在50~70度之间。
6.错配(False priming)一般的原则要使错误引发效率在100以下。
7. 等级评定(rating)搜索出的引物,其扩增产物很短,你可以不选择它,或是引物3端≥2个A或T,或引物内部连续的G或C太多,或引物3端≥2个G或C,这样的引物应作为次选,没得选了就选它。
8. 内部稳定性(Internal stability)一般引物的内部稳定性是中间高、两边低的弧形,最起码保证3端不要过于稳定。
△G绝对值越大结构越稳定。
9. 3端的二聚体应该避免,这个要看退火温度决定,一个50°的退火温度肯定和65°对二聚体的影响不一样了,一般来讲尽量控制在-4.5kcal/mol以下。
10. GC含量在40%—60%,一般50%左右比较合适,它直接影响引物各端稳定性,3端来两个G或C,稳定性就上去了,粘在模板上很牢。
11. GC钳(GC Clamp)一条理想的引物应该有一个稳定性较强的5 末端和相对稳定性较弱的3 末端。
这一段有较强稳定性的5 末端称为GC钳。
选择有合适稳定性的引物能在确保不产生非特异性条带的前提下尽量降低退火温度。
而3 末端稳定性低的引物较好的原因是在引物发生错配时,由于 3 末端不太稳定引物结合不稳定而难以延伸。
12. 二聚体(Dimer)3 末端配对很容易引起引物二聚体扩增。
13. 如果期待的产物长度等于或小于500 bp,选用短的(16~18 mer)的引物:若产物长5 kb,则用20~23 mer的引物。
高中生物学pcr技术中引物相关问题归类分一、引物特异性问题引物特异性是PCR技术中的关键问题之一,它直接影响到PCR 产物的数量和纯度。
引物特异性主要取决于其与模板序列的匹配程度。
以下是一些引物特异性相关问题:1. 引物长度和碱基组成:引物长度和碱基组成对引物特异性有一定影响。
一般来说,引物长度适中,不宜过长或过短。
碱基组成上,避免使用GC含量过高或AT含量过低的引物,以免影响引物的稳定性。
2. 模板序列变化:模板序列中任何微小的变化都可能导致引物与模板的错配,从而影响PCR产物的数量和纯度。
因此,在设计和选择引物时,应仔细考虑模板序列的变化,确保引物与模板序列的匹配度。
3. 酶切位点的干扰:如果模板序列中含有酶切位点,则需要注意酶切位点对引物特异性的影响。
在设计引物时,应避免将酶切位点设计在引物自身或与其互补的序列中,以减少错配的可能性。
二、引物自身互补问题PCR过程中,引物自身互补也是常见的问题之一。
引物在退火过程中可能会发生自身互补,从而导致非特异性产物的产生。
以下是一些关于引物自身互补的相关问题:1. 引物浓度和退火温度:引物浓度和退火温度是影响引物自身互补的重要因素。
降低引物浓度或提高退火温度可以减少引物自身互补的可能性。
2. 引物长度和碱基组成:引物长度和碱基组成也会影响引物自身互补的可能性。
选择适当的引物长度和碱基组成,可以提高引物的稳定性,减少自身互补的发生。
三、其他相关问题1. Mg2+浓度的影响:Mg2+浓度是PCR过程中的关键因素之一。
过高或过低的Mg2+浓度都可能导致PCR产物的数量和纯度受到影响。
在设计和优化PCR反应体系时,应注意Mg2+浓度的选择。
2. 延伸温度的选择:PCR产物延伸温度也是影响PCR产物的数量和纯度的因素之一。
选择适当的延伸温度可以减少非特异性产物的产生,提高PCR产物的纯度。
总之,在高中生物学PCR技术中,引物特异性、引物自身互补和其他相关问题是需要关注和解决的。
引物设计知识点归纳总结引物设计是生物学和生物技术领域中非常重要的一个环节。
在分子生物学研究、基因工程、医学诊断、疾病预防等方面,引物设计都起着至关重要的作用。
引物设计的好坏直接影响到PCR扩增、序列特异性分析、RNA干扰、原位杂交、基因克隆等实验的效果和结果。
因此,深入理解引物设计的相关知识点对于提高实验效率和结果的可靠性非常重要。
本文将介绍引物设计的相关知识点,并对其进行归纳总结。
1. 引物设计的基本原则引物是在分子生物学实验中用于对特定DNA或RNA序列进行扩增、检测或特异性结合的人工合成的寡核苷酸序列。
设计好的引物对于实验的成功至关重要,而引物设计的基本原则包括:(1) 引物长度:引物长度一般在18-25碱基对之间,过短的引物可能导致扩增效率低,而过长的引物可能导致特异性差。
(2) GC含量:引物的GC含量应该在40%-60%之间,过高或过低的GC含量会影响引物的结合性能和特异性。
(3) 引物序列选择:引物的序列选择要尽量避免重复序列、近似重复序列和具有高度变异性的区域。
(4) 引物特异性:引物的特异性是指引物能够与目标序列特异性结合,而不结合其他非特异序列,引物特异性的好坏直接影响到实验结果的准确性和可靠性。
2. 引物设计的常见问题及解决方法在引物设计过程中,常常会遇到一些常见问题,例如引物特异性不足、引物二聚体形成、引物偏向性扩增等问题。
针对这些问题,有一些解决方法可以参考:(1) 引物特异性不足:可以通过生物信息软件对引物进行预测和评估,合理选择引物序列,避免与非特异序列发生交叉杂交。
(2) 引物二聚体形成:引物二聚体是指引物之间相互结合形成二聚体,导致引物的扩增效率降低。
可以通过调整引物长度和序列,以及优化PCR扩增条件来避免引物二聚体的形成。
(3) 引物偏向性扩增:引物偏向性扩增是指引物对特定序列的扩增效率高于其他序列,可以通过优化PCR扩增条件,如调整引物浓度、反应体系等来解决。
引物设计常见问题与解答先看一下Tm的定义:Tm = Temperature at which 50% of a given oligonucleotide is hybridized to its complementary strand. In the absence of destabilizing agents, like formamide or urea, Tm will depend on 3 major parameters: The sequence: a GC-rich sequence has a higher melting temperature. The strand concentration: high oligonucleotide concentrations favor hybrid formation, which results in a higher melting temperature. The salt concentration: high ionic strength results in a higher Tm as cations stabilize the DNA duplexes.引物设计软件都可以给出Tm,引物长度,碱基组成,引物使用缓冲的离子强度有关。
长度为25mer以下的引物,Tm计算公式为:Tm = 4℃(G + C)+ 2℃(A + T)对于更长的寡聚核苷酸,Tm计算公式为:Tm = 81.5 + 16.6 x Log10[Na+] + 0.41 (%GC) – 600/size公式中,Size = 引物长度。
Tm叫溶解温度(melting temperature, Tm),即是DNA双链溶解所需的温度。
大家可以理解,这个温度是由互补的DNA区域决定的,而不互补的区域对DNA的溶解是没有作用的。
因此,对于引物的Tm,只有和模板互补的区域对Tm才有贡献。
计算Tm 时,只计算互补的区域(除非你的酶切位点也与模板互补)。
不少战友设计的引物都Tm过低,是因为他们误把保护碱基和酶切位点都计算到Tm里了,最后的结果是导致了PCR反应的诸多困难。
所以,设计引物的时候,先不管5'端的修饰序列,把互补区的Tm控制在55度以上(我喜欢控制在58以上,具体根据PCR的具体情况,对于困难的PCR,需要适当提高Tm),再加上酶切位点和保护碱基,这样的引物通常都是可用的,即使有小的问题,也可以挽回。
Tm温度高的引物就比较容易克服3‘发卡、二聚体及3'非特异结合等问题。
简单的计算公式可以用2+4的公式。
若你计算的Tm值达到了快90 ,不包括酶切位点。
引物公司给你发的单子是包括酶切位点的。
自己可以再估计一下。
如你设计了带酶切位点的引物,总长分别为29、33个碱基,去掉酶切位点和保护碱基,分别为17、21个碱基。
引物公司给的单子是70多度,实际用的只有50度,用55度扩的结果也差不多。
其它关于Tm值的计算,有用PP5.0进行评价的,需要考虑的参数包括:base number、GC%、Tm、hairpin、dimer、false priming、cross dimer。
一般退火温度为Tm-5度,退火温度的计算可以不把加入的酶切位点及保护碱基考虑进去,如上所言,PCR几个循环后,引物外侧的序列已经参入了扩增片断中,所以你可以在预变性后多加几步,温度比你Tm值低些(这样可能会增加非特异性),Tm值是你包括酶切位点及保护碱基的Primer 计算出来的。
1.一般在5'端加保护碱基,如果你扩增后把目的条带做胶回收转入T-ECTOR 或者其它的载体的话,酶切时可以不需加保护碱基2.有人的经验加入酶切位点的引物可以和未加入时使用相同的退火温度,结果也还是令人满意上面是我以前在园子里看到的精彩的帖子,所以收藏了一下.上面说的比较明白.如果加上酶切位点和保护碱基,计算出来的Tm一般教高,而我们设的退火温度原则是Tm-5,一般都是用55度左右,所以我坚持我的观点.不要算进去。
1.引物是如何合成的?目前引物合成基本采用固相亚磷酰胺三酯法。
DNA合成仪有很多种, 主要都是由ABI/PE 公司生产,无论采用什么机器合成,合成的原理都相同,主要差别在于合成产率的高低,试剂消耗量的不同和单个循环用时的多少。
申能博彩公司采用的合成仪主要机型为ABI3900高通量合成仪,合成长链主要采用Beckman 1000M和PE8909 DNA合成仪,引物修饰和高OD数合成采用ABI394等。
亚磷酰胺三酯法合成DNA片段,具有高效、快速的偶联以及起始反应物比较稳定的特点。
亚磷酰胺三酯法是将DNA固定在固相载体上完成DNA链的合成的,合成的方向是由待合成引物的3'端向5'端合成的,相邻的核苷酸通过3'→5'磷酸二酯键连接。
第一步是将预先连接在固相载体CPG上的活性基团被保护的核苷酸与三氯乙酸反应,脱去其5'-羟基的保护基团DMT,获得游离的5'-羟基;第二步,合成DNA的原料,亚磷酰胺保护核苷酸单体,与活化剂四氮唑混合,得到核苷亚磷酸活化中间体,它的3'端被活化,5'-羟基仍然被DMT保护,与溶液中游离的5'-羟基发生缩合反应。
第三步,带帽(capping)反应,缩合反应中可能有极少数5'-羟基没有参加反应(少于2%),用乙酸酐和1-甲基咪唑终止其后继续发生反应,这种短片段可以在纯化时分离掉。
第四步,在氧化剂碘的作用下,亚磷酰形式转变为更稳定的磷酸三酯。
经过以上四个步骤,一个脱氧核苷酸被连接到固相载体的核苷酸上。
再以三氯乙酸脱去它的5'-羟基上的保护基团DMT,重复以上步骤,直到所有要求合成的碱基被接上去。
合成过程中可以观察TCA处理阶段的颜色判定合成效率。
通过氨水高温处理,连接在CPG上的引物被切下来,通过OPC, PAGE等手段纯化引物,成品引物用C18浓缩,脱盐,沉淀。
沉淀后的引物用水悬浮,测定OD260定量,根据定单要求分装。
2.引物纯化方式有哪些,如何选择?◆C18柱脱盐:有人称其为简易反相柱,它对DNA有特异性的吸附,可以被有机溶解洗脱,但不会被水洗脱,所以能有效地去除盐分。
它不能有效去除比目的片段短的小片段。
实际上,它是一种脱盐的作用。
这种方法一般不会对普通PCR反应产生影响。
对于需要用于测序、克隆的引物不能使用这个级别。
◆OPC纯化:OPC纯化是根据DNA保护基(DMTr基)和Cartridge柱中树脂间的亲合力作用的原理进行纯化目的DNA片段。
OPC法纯化的DNA纯度大于95%。
适用于40mer以下引物的纯化。
◆PAGE纯:PAGE纯化法是使用变性聚丙烯酰胺凝胶电泳,对DNA片段进行分离,然后从凝胶中回收目的DNA的方法。
PAGE纯化法也是一种非常有效的DNA纯化方法,纯化后的DNA纯度大于95%,对长链Oligo DNA (大于50mer)的纯化特别有效。
◆HPLC纯化:HPLC纯化是使用高效液相色谱的原理,对DNA片段进行纯化。
纯度可以大于99%。
主要用于短链和修饰引物的纯化。
该法的弱点是成本较高,批量生产效率不高。
3.引物的OD数如何定量?答:引物合成引物OD数是这样测定的:用紫外分光光度计,波长260nm,石英比色杯,光程为1厘米,测定溶液的光密度。
测定时溶液的光密度最好稀释到0.2-1.0之间。
DNA干粉用一定体积的水充分振荡溶解以后,用1ml水稀释测OD值。
需要根据稀释倍数换算出母液的OD值。
4.投诉定量不准是怎么回事儿?答:我们偶尔收到用户投诉定量不准的报告,出现这种情况的可能性有(1)生产人员定量错误。
这种可能性有,但是不大,因为我们的生产人员都是经过严格的培训,程序化规范操作和换算。
公司内部的考核机制也使得分装人员没有必要故意少给用户OD数,因为无论OD数是否达到定单要求,我们都统计为工作量,没有达到OD数的,分装人员将清单及时报到序列录入部门安排重合就可以了。
合成产量的高低是序列录入部门人员的考核指标之一。
一般情况下,引物都有留样。
接到用户投诉后,我们都会找出留样重新定量,一般都没有问题。
(2)分装没有问题,但引物抽干或收样过程中,引物干粉可能意外丢失。
这种情况很少见。
(3)系统误差,我们认为10%左右为允许误差。
使用过程中,引物工作浓度范围很宽,定量上的少许偏差不影响实验。
(4)用户没有能够正确理解引物OD数的含义,没有能够正确使用分光光度计,特别是使用微量测定;用户没有将OD读数,正确地转换成母液中OD数。
这种情况比较常见。
(5)用户收到引物干粉时,打开引物管盖前没有离心或其他误操作导致引物干粉部分丢失。
例如,验证标2OD引物量是否准确,简单的做法是:加入1ml水,彻底溶解混匀后,取100ul, 加入900ul水,用光径为1cm的石英比色杯,波长260nm, 此时光吸收的读数为0.2。
5.需要什么级别的引物?答:引物常用的纯化方式C18脱盐,OPC纯化,PAGE纯化,HPLC纯化。
根据实验需要,确定订购引物的纯度级别。
6.最长可以合成多长的引物?答:引物越长,出现问题的概率就越大。
我们合成过120base的引物,但是产率很低。
除非需要,建议合成片段长度不要超过80mer,按照目前的引物合成效率,80mer的粗产品,全长(还不一定正确)引物的百分比不会超过40%,后续处理还有丢失很多,最后的产量是很低。
7.需要合成多少OD数?答:根据实验目的确定。
一般PCR扩增,2 OD引物,可以做200-500次50ul标准PCR反应。
如果是做基因拼接或退火后做连接,1 OD就足够了。
但是有些研究人员,就做几次PCR,但是却要5-10 OD。
做全基因构建的引物都比较长,但是我们有些研究人员也要求高OD数。
片段越长, 最后全长得率就越低,出错的几率就越大。
超出需要之外的OD数要求,其实也是对社会资源的一种浪费,同时也从一个侧面反映了部分研究人员,特别是新手的自信心不足,总觉得需要重复多次才能成功。
8.如何检测引物的纯度?答:实验室方便的作法是用PAGE方法。
使用加有7M尿素的16%的聚丙烯酰胺凝胶进行电泳。
取0.2-0.5OD的引物,用尿素饱和液溶解或引物溶液中加入尿素干粉直到饱和,上样前加热变性(95℃,2mins)。
加入尿素的目的一是变性,二是增加样品比重,容易加样。
600V电压进行电泳,一定时间后(约2-3小时),剥胶,用荧光TLC板在紫外灯下检测带型,在主带之下没有杂带,说明纯度是好的。
如果条件许可,也可以用EB 染色或银染方式染色。
9.如何计算引物的浓度?答:引物保存在高浓度的状况下比较稳定。
引物一般配制成10-50pmol/ul。