两角和差正余弦公式的证明
- 格式:pdf
- 大小:867.81 KB
- 文档页数:15
三角函数两角和差公式证明过程一、两角和的余弦公式cos(A + B)=cos Acos B-sin Asin B的证明。
1. 利用单位圆证明(几何法)- 在单位圆x^2+y^2 = 1上,设角A、B的终边分别与单位圆交于点P_1(cos A,sin A)和P_2(cos B,sin B)。
- 则→OP_1=(cos A,sin A),→OP_2=(cos B,sin B)。
- 角A + B的终边与单位圆交于点P。
- 根据向量的数量积定义,→OP_1·→OP_2=|→OP_1||→OP_2|cos(A - B),因为|→OP_1|=|→OP_2| = 1,所以→OP_1·→OP_2=cos(A - B)。
- 又因为→OP_1·→OP_2=cos Acos B+sin Asin B,所以cos(A - B)=cos AcosB+sin Asin B。
- 令B=-B,则cos(A + B)=cos Acos(-B)+sin Asin(-B)。
- 由于cos(-B)=cos B,sin(-B)=-sin B,所以cos(A + B)=cos Acos B-sin Asin B。
2. 利用复数证明(代数法)- 设z_1=cos A + isin A,z_2=cos B + isin B。
- 根据复数乘法法则z_1z_2=(cos A + isin A)(cos B + isin B)- 展开得z_1z_2=cos Acos B-sin Asin B+i(sin Acos B+cos Asin B)。
- 另一方面,根据复数的三角形式乘法z_1z_2=cos(A + B)+isin(A + B)。
- 比较实部可得cos(A + B)=cos Acos B-sin Asin B。
二、两角和的正弦公式sin(A + B)=sin Acos B+cos Asin B的证明。
1. 利用两角和的余弦公式推导。
两⾓和与差的余弦公式的五种推导⽅法之对⽐两⾓和与差的余弦公式是三⾓函数恒等变换的基础,其他三⾓函数公式都是在此公式基础上变形得到的,因此两⾓和与差的余弦公式的推导作为本章要推导的第⼀个公式,往往得到了⼴⼤教师的关注. 对于不同版本的教材采⽤的⽅法往往不同,认真体会各种不同的两⾓和与差的余弦公式的推导⽅法,对于提⾼学⽣的分析问题、提出问题、研究问题、解决问题的能⼒有很⼤的作⽤.下⾯将两⾓和与差的余弦公式的五种常见推导⽅法归纳如下:⽅法⼀:应⽤三⾓函数线推导差⾓公式的⽅法设⾓α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.过点P作PM⊥x轴,垂⾜为M,那么OM即为α-β⾓的余弦线,这⾥要⽤表⽰α,β的正弦、余弦的线段来表⽰OM.过点P作PA⊥OP1,垂⾜为A,过点A作AB⊥x轴,垂⾜为B,再过点P作PC⊥AB,垂⾜为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB+CP=OA cosα+AP sinα=cosβcosα+sinβsinα.综上所述,.说明:应⽤三⾓函数线推导差⾓公式这⼀⽅法简单明了,构思巧妙,容易理解. 但这种推导⽅法对于如何能够得到解题思路,存在⼀定的困难. 此种证明⽅法的另⼀个问题是公式是在均为锐⾓的情况下进⾏的证明,因此还要考虑的⾓度从锐⾓向任意⾓的推⼴问题.⽅法⼆:应⽤三⾓形全等、两点间的距离公式推导差⾓公式的⽅法设P1(x1,y1),P2(x2,y2),则有|P1P2 |= .在直⾓坐标系内做单位圆,并做出任意⾓α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、.∵,且,∴,∴,∴,∴,∴,.说明:该推导⽅法巧妙的将三⾓形全等和两点间的距离结合在⼀起,利⽤单位圆上与⾓有关的四个点,建⽴起等式关系,通过将等式的化简、变形就可以得到符合要求的和⾓与差⾓的三⾓公式. 在此种推导⽅法中,推导思路的产⽣是⼀个难点,另外对于三点在⼀条直线和三点在⼀条直线上时这⼀特殊情况,还需要加以解释、说明.⽅法三:应⽤余弦定理、两点间的距离公式推导差⾓公式的⽅法设,则.在△OPQ中,∵,∴,∴.说明:此题的解题思路和构想都是容易实现的. 因为要求两⾓和与差的三⾓函数,所以构造出和⾓和差⾓是必须实现的. 构造出的和⾓或差⾓的余弦函数⼜需要和这两个⾓的三⾓函数建⽴起等式关系,因此借助于余弦定理、两点间的距离公式建⽴起等式关系容易出现,因此此种⽅法是推导两⾓和与差的余弦的⽐较容易理解的⼀种⽅法. 但此种⽅法必须是在学习完余弦定理的前提下才能使⽤,因此此种⽅法在必修四中⼜⽆法使⽤. 另外也同样需要考虑三点在⼀条直线上的情况.⽅法四:应⽤三⾓形⾯积公式推导推导差⾓公式的⽅法设α、β是两个任意⾓,把α、β两个⾓的⼀条边拼在⼀起,顶点为O,过B点作OB的垂线,交α另⼀边于A,交β另⼀边于C,则有S△OAC=S△OAB+S△OBC..根据三⾓形⾯积公式,有,∴.∵,,,∴,∵,∴sin(α+β)=sinαcosβ+sinβcosα.根据此式和诱导公式,可继续证出其它和⾓公式及差⾓公式.(1)sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα;(2)cos(α+β)=sin[90-(α+β)]=sin[(90-α)-β]=sin(90-α)cosβ-sinβcos(90-α)=cosαcosβ-sinαsinβ;(3)cos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβ.说明:此种推导⽅法通过三⾓形的⾯积的和巧妙的将两⾓和的三⾓函数与各个⾓的三⾓函数和联系在⼀起,体现了数形结合的特点. 缺点是公式还是在两个⾓为锐⾓的情况下进⾏的证明,因此同样需要将⾓的范围进⾏拓展.(五)应⽤数量积推导余弦的差⾓公式在平⾯直⾓坐标系xOy内,作单位圆O,以Ox为始边作⾓α,β,它们的终边与单位圆的交点为A,B,则=(cosα,sinα),=(cosβ,sinβ).由向量数量积的概念,有.由向量的数量积的坐标表⽰,有.于是,有.说明:应⽤数量积推导余弦的差⾓公式⽆论是构造两个⾓的差,还是得到每个⾓的三⾓函数值都是容易实现的,⽽且从向量的数量积的定义和坐标运算两种形式求向量的数量积将⼆者之间结合起来,充分体现了向量在数学中的桥梁作⽤.综上所述,从五种不同的推导两⾓和与差的余弦公式的过程可以看出,不同的推导⽅法体现出不同的数学特点,不同的巧妙构思,相同的结果,也进⼀步体验了数学的博⼤精深.。
两角和与差的余弦公式的五种推导方式之对照第一种推导方式:我们知道余弦函数的定义为:cosθ = adj/hyp其中,adj表示邻边的长度,hyp表示斜边的长度。
现在考虑两个角度的和,即θ1+θ2、根据余弦函数的定义,我们可以得到:cos(θ1 + θ2) = adj1/hyp1现在我们将θ1和θ2分别表示为它们的余弦函数:cosθ1 = adj1/hyp1cosθ2 = adj2/hyp2将这两个式子相加,得到:cosθ1 + cosθ2 = (adj1 + adj2) / (hyp1 + hyp2)这就是两角和的余弦公式。
第二种推导方式:我们知道余弦函数的定义为:cosθ = adj/hyp我们还知道余弦函数的复合角公式,即:cos(θ1 + θ2) = cosθ1⋅cosθ2 - sinθ1⋅sinθ2现在我们将θ1和θ2表示为它们的余弦函数和正弦函数:cosθ1 = adj1/hyp1cosθ2 = adj2/hyp2sinθ1 = opp1/hyp1sinθ2 = opp2/hyp2将这些式子代入复合角公式中,得到:cos(θ1 + θ2) = (adj1/hyp1)⋅(adj2/hyp2) -(opp1/hyp1)⋅(opp2/hyp2)= (adj1⋅adj2 - opp1⋅opp2) / (hyp1⋅hyp2)这就是第二种推导方式。
第三种推导方式:我们知道余弦函数的定义为:cosθ = adj/hyp我们还知道正弦函数的平方与余弦函数的平方之和等于1,即:sin²θ + cos²θ = 1现在我们考虑θ1和θ2的和,即(θ1+θ2)。
我们可以得到:cos(θ1 + θ2) = adj1+2/hyp1+2现在我们将θ1+2表示为(θ1+θ2)的余弦函数和正弦函数:cos(θ1 + θ2) = adj1+2/hyp1+2= (adj1⋅cosθ2 - opp1⋅sinθ2) / (hyp1⋅cosθ2 + hyp2⋅sinθ2) = (adj1⋅adj2 - opp1⋅opp2) / (hyp1⋅ hyp2)这就是第三种推导方式。
两角和与差的余弦公式的五种推导方法之对比两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β的正弦、余弦的线段来表示OM.过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB+CP=OA cosα+AP sinα=cosβcosα+sinβsinα.综上所述,.说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解. 但这种推导方法对于如何能够得到解题思路,存在一定的困难. 此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推广问题.方法二:应用三角形全等、两点间的距离公式推导差角公式的方法设P1(x1,y1),P2(x2,y2),则有|P1P2 |= .在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、.∵,且,∴,∴,∴,∴,∴,.说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点,建立起等式关系,通过将等式的化简、变形就可以得到符合要求的和角与差角的三角公式. 在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明.方法三:应用余弦定理、两点间的距离公式推导差角公式的方法设,则.在△OPQ中,∵,∴,∴.说明:此题的解题思路和构想都是容易实现的. 因为要求两角和与差的三角函数,所以构造出和角和差角是必须实现的. 构造出的和角或差角的余弦函数又需要和这两个角的三角函数建立起等式关系,因此借助于余弦定理、两点间的距离公式建立起等式关系容易出现,因此此种方法是推导两角和与差的余弦的比较容易理解的一种方法. 但此种方法必须是在学习完余弦定理的前提下才能使用,因此此种方法在必修四中又无法使用. 另外也同样需要考虑三点在一条直线上的情况.方法四:应用三角形面积公式推导推导差角公式的方法设α、β是两个任意角,把α、β两个角的一条边拼在一起,顶点为O,过B点作OB的垂线,交α另一边于A,交β另一边于C,则有S△OAC=S△OAB+S△OBC..根据三角形面积公式,有,∴.∵,,,∴,∵,∴sin(α+β)=sinαcosβ+sinβcosα.根据此式和诱导公式,可继续证出其它和角公式及差角公式.(1)sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα;(2)cos(α+β)=sin[90-(α+β)]=sin[(90-α)-β]=sin(90-α)cosβ-sinβcos(90-α)=cosαcosβ-sinαsinβ;(3)cos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβ.说明:此种推导方法通过三角形的面积的和巧妙的将两角和的三角函数与各个角的三角函数和联系在一起,体现了数形结合的特点. 缺点是公式还是在两个角为锐角的情况下进行的证明,因此同样需要将角的范围进行拓展.(五)应用数量积推导余弦的差角公式在平面直角坐标系xOy内,作单位圆O,以Ox为始边作角α,β,它们的终边与单位圆的交点为A,B,则=(cosα,sinα),=(cosβ,sinβ).由向量数量积的概念,有.由向量的数量积的坐标表示,有.于是,有.说明:应用数量积推导余弦的差角公式无论是构造两个角的差,还是得到每个角的三角函数值都是容易实现的,而且从向量的数量积的定义和坐标运算两种形式求向量的数量积将二者之间结合起来,充分体现了向量在数学中的桥梁作用.综上所述,从五种不同的推导两角和与差的余弦公式的过程可以看出,不同的推导方法体现出不同的数学特点,不同的巧妙构思,相同的结果.。
两角和与差的正弦余弦和正切公式推导过程首先,我们假设有两个角α和β,它们的和为α+β,差为α-β。
我们将利用这两个和与差来推导公式。
1.两角和的正弦公式的推导:首先,根据三角恒等式sin(α+β) = sinαcosβ+cosαsinβ,我们可以将α+β的正弦表示为两个正弦的和的形式。
然后,利用三角恒等式可以写出cos(-β)=cosβ,sin(-β)= -sinβ,我们可以将α+(-β)的正弦再次表示为两个正弦的和的形式。
即,sin(α+β) = sinαcosβ+ cosαsinβ = sinαcos(-β) + cosαsin(-β)。
这样,我们可以得到:sin(α+β) = sinαcosβ + cosαsinβ = sinαcos(-β) +cosαsin(-β)。
2.两角和的余弦公式的推导:首先,根据三角恒等式cos(α+β) = cosαcosβ - sinαsinβ,我们可以将α+β的余弦表示为两个余弦的和的形式。
然后,利用三角恒等式可以写出cos(-β)=cosβ,sin(-β)= -sinβ,我们可以将α+(-β)的余弦再次表示为两个余弦的和的形式。
即,cos(α+β) = cosαcosβ- sinαsinβ = cosαcos(-β) - sinαsin(-β)。
这样,我们可以得到:cos(α+β) = cosαcosβ - sinαsinβ = cosαcos(-β) -sinαsin(-β)。
3.两角差的正弦公式的推导:首先,根据三角恒等式sin(α-β) = sinαcos(-β) - cosαsin(-β),我们可以将α-β的正弦表示为两个正弦的差的形式。
然后,利用三角恒等式可以写出cos(-β)=cosβ,sin(-β)= -sinβ,我们可以将α-(-β)的正弦再次表示为两个正弦的差的形式。
即,sin(α-β) = sinαcos(-β) - cosαsin(-β) = sinαcosβ + cosαsinβ。
两角和与差的三角函数公式知识点两角和与差的三角函数公式属于高中数学的重要内容,主要通过利用三角函数的性质,研究两个角的和与差的三角函数值之间的关系。
在解决三角方程、证明恒等式等问题时,这些公式的应用非常广泛。
本文将从公式的定义、推导及应用方面进行详细解析。
一、两角和的三角函数公式1.余弦和公式:cos(A+B) = cosAcosB - sinAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A+B。
我们知道,其对应的三条直角边分别是x、x'、x"和y、y'、y",根据三角函数的定义,我们可以得到如下关系:x = cosA,y = sinAx' = cosB,y' = sinBx" = cos(A+B),y" = sin(A+B)那么,点P、Q和R的连线所对应的三角形的三个内角之和应该等于180°,即有:∠POR+∠POQ+∠QOR=180°∠A+∠B+∠(A+B)=180°2A+B=180°将以上结果代入三角函数的定义中,我们可以得到:cos(A+B) = x" = x'x - y'y = cosAcosB - sinAsinB2.正弦和公式:sin(A+B) = sinAcosB + cosAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A+B。
同样,根据三角函数的定义,我们可以得到如下关系:x = cosA,y = sinAx' = cosB,y' = sinBx" = cos(A+B),y" = sin(A+B)那么,点P、Q和R的连线所对应的三角形的三个边长之和应该等于2,即有:PR+PQ+QR=2∠POR+∠POQ+∠QOR=360°∠A+∠B+∠(A+B)=360°2A+B=360°将以上结果代入三角函数的定义中,我们可以得到:sin(A+B) = y" = xy' + yx' = sinAcosB + cosAsinB二、两角差的三角函数公式1.余弦差公式:cos(A-B) = cosAcosB + sinAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A-B。
两角和与差的正弦余弦正切公式在三角函数中,我们经常需要计算两个角的和或差的正弦、余弦或正切值。
这些公式被广泛应用于数学、物理、工程等领域的问题求解中。
本文将详细介绍两角和与差的正弦、余弦和正切公式。
一、两角和与差的正弦公式首先,我们来讨论两个角的和的正弦公式。
设有两个角A和B,那么它们的和角记为(A+B)。
根据三角函数的定义,我们知道正弦的定义为一个角的对边与斜边之比,可以表示为sin(x)=opposite/hypotenuse。
根据这个定义,我们可以得到如下的两角和的正弦公式:sin(A+B) = sinA*cosB + cosA*sinB这个公式很重要,可以帮助我们计算两个角的和的正弦值。
在实际应用中,我们经常需要计算两个角的和的正弦,而不是两个角分别的正弦。
所以这个公式非常有用。
接下来,我们来讨论两个角的差的正弦公式。
设有两个角A和B,那么它们的差角记为(A-B)。
根据三角函数的定义,我们可以得到如下的两角差的正弦公式:sin(A-B) = sinA*cosB - cosA*sinB这个公式与两角和的正弦公式类似,也非常有用。
二、两角和与差的余弦公式类似于正弦公式,我们也可以推导出两角和与差的余弦公式。
设有两个角A和B,那么它们的和角记为(A+B)。
根据三角函数的定义,我们知道余弦的定义为一个角的邻边与斜边之比,可以表示为cos(x)=adjacent/hypotenuse。
根据这个定义,我们可以得到如下的两角和的余弦公式:cos(A+B) = cosA*cosB - sinA*sinB同样地,我们也可以得到两角差的余弦公式:cos(A-B) = cosA*cosB + sinA*sinB这两个公式和两角和与差的正弦公式一样重要,经常被应用于实际问题中。
三、两角和与差的正切公式最后,我们来讨论两角和与差的正切公式。
设有两个角A和B,那么它们的和角记为(A+B)。
根据三角函数的定义,我们知道正切的定义为一个角的对边与邻边之比,可以表示为tan(x)=opposite/adjacent。
两角和与差的余弦公式的六种推导方法沈阳市教育研究院王恩宾两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β的正弦、余弦的线段来表示OM.过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB+CP =OA cosα+AP sinα=cosβcosα+sinβsinα.综上所述,.说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解.但这种推导方法对于如何能够得到解题思路,存在一定的困难.此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推广问题.方法二:应用三角形全等、两点间的距离公式推导差角公式的方法设P1(x1,y1),P2(x2,y2),则有|P1P2 |= .在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、.∵,且,∴,∴,∴,∴,∴,.说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点,建立起等式关系,通过将等式的化简、变形就可以得到符合要求的和角与差角的三角公式.在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明.方法三:应用余弦定理、两点间的距离公式推导差角公式的方法设,则.在△OPQ中,∵,∴,∴.说明:此题的解题思路和构想都是容易实现的. 因为要求两角和与差的三角函数,所以构造出和角和差角是必须实现的. 构造出的和角或差角的余弦函数又需要和这两个角的三角函数建立起等式关系,因此借助于余弦定理、两点间的距离公式建立起等式关系容易出现,因此此种方法是推导两角和与差的余弦的比较容易理解的一种方法. 但此种方法必须是在学习完余弦定理的前提下才能使用,因此此种方法在必修四中又无法使用. 另外也同样需要考虑三点在一条直线上的情况.方法四:应用三角形面积公式推导推导差角公式的方法设α、β是两个任意角,把α、β两个角的一条边拼在一起,顶点为O,过B点作OB 的垂线,交α另一边于A,交β另一边于C,则有S△OAC=S△OAB+S△OBC..根据三角形面积公式,有,∴.∵,,,∴,∵,∴sin(α+β)=sinαcosβ+sinβcosα.根据此式和诱导公式,可继续证出其它和角公式及差角公式.(1)sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα;(2)cos(α+β)=sin[90-(α+β)]=sin[(90-α)-β]=sin(90-α)cosβ-sinβcos(90-α)=cosαcosβ-sinαsinβ;(3)cos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβ.说明:此种推导方法通过三角形的面积的和巧妙的将两角和的三角函数与各个角的三角函数和联系在一起,体现了数形结合的特点. 缺点是公式还是在两个角为锐角的情况下进行的证明,因此同样需要将角的范围进行拓展.(五)应用数量积推导余弦的差角公式在平面直角坐标系xOy内,作单位圆O,以Ox为始边作角α,β,它们的终边与单位圆的交点为A,B,则=(cosα,sinα),=(cosβ,sinβ).由向量数量积的概念,有.由向量的数量积的坐标表示,有.于是,有.说明:应用数量积推导余弦的差角公式无论是构造两个角的差,还是得到每个角的三角函数值都是容易实现的,而且从向量的数量积的定义和坐标运算两种形式求向量的数量积将二者之间结合起来,充分体现了向量在数学中的桥梁作用.附方法六:等积法推导余弦的差角公式广东佛山袁锦前如图:在△ABC中,AD⊥BC于D,BE⊥AC于E,设∠DAC=α,∠ABD=β,求:cos(α-β)解:在△ABD中,BD=c·cosβ,AD=b·cosα在△ACD中,CD= b c·sinα,AD= c·sinβ11cos cos sin sin 22ABD ACDSSbc bc αβαβ∴+=+ ()1cos cos sin sin 2bc αβαβ=+ …………………………..○1 又∵2BAD πβ∠=-()c sin =c sin 22BE ππβααβ⎡⎤⎛⎫⎡⎤∴=⋅-+⋅--⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦()c cos αβ=⋅-()11cos 22ABCSAC BE bc αβ∴=⋅=- …………………………………………○2 由○1○2可得: ()cos =cos cos sin sin αβαβαβ-+。
两角及差正余弦公式的证明两角和差正余弦公式的证明:我们知道,任意角的正弦、余弦等三角函数都可以通过单位圆的定义得到。
所以,为了证明两角和差正余弦公式,我们先来考察它们在单位圆上的几何意义。
一、两角和公式的几何意义:设在单位圆上有点A和点B,OA和OB分别为半径。
假设点A对应的角为θ1,点B对应的角为θ2,那么点P是单位圆上点A和点B对应的角的和,即θ1+θ2、我们要研究的是点P的坐标。
首先,我们可以将圆心O作为直角坐标系的原点,点A和点B所在的直线即为直角坐标系的x轴。
我们知道,点A和点B的坐标分别可以表示为:A(x1, y1) = (cosθ1, sinθ1)B(x2, y2) = (cosθ2, sinθ2)点P的坐标为(x, y) = (cos(θ1 + θ2), sin(θ1 + θ2))。
我们需要推导出点P的坐标。
为此,我们利用三角恒等式:cos(α + β) = cosαcosβ - sinαsinβsin(α + β) = sinαcosβ + cosαsinβ我们令α=θ1,β=θ2,代入上面的恒等式,得到:cos(θ1 + θ2) = cosθ1cosθ2 - sinθ1sinθ2sin(θ1 + θ2) = sinθ1cosθ2 + cosθ1sinθ2即点P的坐标为:P(x, y) = (cosθ1cosθ2 - sinθ1sinθ2, sinθ1cosθ2 +cosθ1sinθ2)可以看出,点P的坐标与三角函数的和公式是完全对应的。
这就证明了两角和公式的几何意义,也就是说,两个角的正余弦的和等于一个新角的正余弦。
二、两角差公式的几何意义:在上面的单位圆中,点A和点B表示的角分别为θ1和θ2,设点Q 为点A和点B对应的角的差,即θ1-θ2、我们要研究的是点Q的坐标。
同样地,我们可以得到点Q的坐标为(x, y) = (cos(θ1 - θ2), sin(θ1 - θ2))。
仿照上面的方法,我们利用三角恒等式:cos(α - β) = cosαcosβ + sinαsinβsin(α - β) = sinαcosβ - cosαsinβ令α=θ1,β=θ2,代入上面的恒等式,得到:cos(θ1 - θ2) = cosθ1cosθ2 + sinθ1sinθ2sin(θ1 - θ2) = sinθ1cosθ2 - cosθ1sinθ2即点Q的坐标为:Q(x, y) = (cosθ1cosθ2 + sinθ1sinθ2, sinθ1cosθ2 -cosθ1sinθ2)可以看出,点Q的坐标与三角函数的差公式是完全对应的。
两角和与差的正弦余弦正切公式及二倍角公式1.两角和的正弦公式:设角A和角B的正弦分别为sinA和sinB,则它们的和角C的正弦为sinC。
根据三角函数的定义,有sinA = a/c和sinB = b/c,其中a、b、c分别为三角形ABC的对边、邻边和斜边。
根据正弦公式,sinC = c/c =1、所以,两角和的正弦公式为sin(A + B) = sinC = 12.两角和的余弦公式:设角A和角B的余弦分别为cosA和cosB,则它们的和角C的余弦为cosC。
根据三角函数的定义,有cosA = b/c和cosB = a/c。
根据余弦公式,cosC = cos(A + B) = cos(AcosB - BsinA) = cosAcosB + sinAsinB = (b/c)(a/c) + (a/c)(b/c) = 2ab/c²。
3.两角和的正切公式:设角A和角B的正切分别为tanA和tanB,则它们的和角C的正切为tanC。
根据三角函数的定义,有tanA = a/b和tanB = b/a。
根据正切公式,tanC = tan(A + B) = (tanA + tanB) / (1 - tanAtanB) = (a/b + b/a) / (1 - (a/b)(b/a)) = (a² + b²) / (ab - ab) = a² + b² / ab。
4.两角差的正弦公式:设角A和角B的正弦分别为sinA和sinB,则它们的差角C的正弦为sinC。
根据三角函数的定义,有sinA = a/c和sinB = b/c。
根据差角公式,sinC = sin(A - B) = sin(AcosB + BsinA) = sinAcosB - cosAsinB = a/c(b/c) - (b/c)(a/c) = 2a b/c²。
5.两角差的余弦公式:设角A和角B的余弦分别为cosA和cosB,则它们的差角C的余弦为cosC。
两角和差的公式一、两角和差公式的内容。
1. 两角和的正弦公式。
- sin(A + B)=sin Acos B+cos Asin B2. 两角差的正弦公式。
- sin(A - B)=sin Acos B-cos Asin B3. 两角和的余弦公式。
- cos(A + B)=cos Acos B-sin Asin B4. 两角差的余弦公式。
- cos(A - B)=cos Acos B+sin Asin B5. 两角和的正切公式。
- tan(A + B)=(tan A+tan B)/(1 - tan Atan B)(A,B,A + B≠ kπ+(π)/(2),k∈ Z)6. 两角差的正切公式。
- tan(A - B)=(tan A-tan B)/(1+tan Atan B)(A,B,A - B≠ kπ+(π)/(2),k∈ Z)二、公式的推导。
1. 两角和的余弦公式推导(向量法,以人教版为例)- 设单位向量→OA=(cos A,sin A),→OB=(cos B,sin B)。
- 则→OA·→OB=|→OA||→OB|cos(A - B)= cos(A - B)(因为单位向量模长为1)。
- 又→OA·→OB=cos Acos B+sin Asin B。
- 所以cos(A - B)=cos Acos B+sin Asin B。
- 令B=-B,则cos(A + B)=cos Acos(-B)+sin Asin(-B)=cos Acos B-sin Asin B。
2. 两角和的正弦公式推导。
- 利用诱导公式sin(A + B)=cos[(π)/(2)-(A + B)]=cos[((π)/(2)-A)-B]。
- 根据两角差的余弦公式cos[((π)/(2)-A)-B]=cos((π)/(2)-A)cos B+sin((π)/(2)-A)sin B。
- 因为cos((π)/(2)-A)=sin A,sin((π)/(2)-A)=cos A。
两角和与差的余弦公式的五种推导方法之对比令狐采学两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β的正弦、余弦的线段来表示OM.过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB+CP =OAcosα+APsinα=cosβcosα+sinβsinα.综上所述,.说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解. 但这种推导方法对于如何能够得到解题思路,存在一定的困难. 此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推广问题.方法二:应用三角形全等、两点间的距离公式推导差角公式的方法设P1(x1,y1),P2(x2,y2),则有|P1P2 |= .在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、.∵,且,∴,∴,∴,∴,∴,.说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点,建立起等式关系,通过将等式的化简、变形就可以得到符合要求的和角与差角的三角公式. 在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明.方法三:应用余弦定理、两点间的距离公式推导差角公式的方法设,则.在△OPQ中,∵,∴,∴.说明:此题的解题思路和构想都是容易实现的. 因为要求两角和与差的三角函数,所以构造出和角和差角是必须实现的. 构造出的和角或差角的余弦函数又需要和这两个角的三角函数建立起等式关系,因此借助于余弦定理、两点间的距离公式建立起等式关系容易出现,因此此种方法是推导两角和与差的余弦的比较容易理解的一种方法. 但此种方法必须是在学习完余弦定理的前提下才能使用,因此此种方法在必修四中又无法使用. 另外也同样需要考虑三点在一条直线上的情况.方法四:应用三角形面积公式推导推导差角公式的方法设α、β是两个任意角,把α、β两个角的一条边拼在一起,顶点为O,过B点作OB的垂线,交α另一边于A,交β另一边于C,则有S△OAC=S△OAB+S△OBC..根据三角形面积公式,有,∴.∵,,,∴,∵,∴sin(α+β)=sinαcosβ+sinβcosα.根据此式和诱导公式,可继续证出其它和角公式及差角公式.(1)sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα;(2)cos(α+β)=sin[90-(α+β)]=sin[(90-α)-β]=sin(90-α)cosβ-sinβcos(90-α)=cosαcosβ-sinαsinβ;(3)cos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβ.说明:此种推导方法通过三角形的面积的和巧妙的将两角和的三角函数与各个角的三角函数和联系在一起,体现了数形结合的特点. 缺点是公式还是在两个角为锐角的情况下进行的证明,因此同样需要将角的范围进行拓展.(五)应用数量积推导余弦的差角公式在平面直角坐标系xOy内,作单位圆O,以Ox为始边作角α,β,它们的终边与单位圆的交点为A,B,则=(cosα,sinα),=(cosβ,sinβ).由向量数量积的概念,有.由向量的数量积的坐标表示,有.于是,有.说明:应用数量积推导余弦的差角公式无论是构造两个角的差,还是得到每个角的三角函数值都是容易实现的,而且从向量的数量积的定义和坐标运算两种形式求向量的数量积将二者之间结合起来,充分体现了向量在数学中的桥梁作用.综上所述,从五种不同的推导两角和与差的余弦公式的过程可以看出,不同的推导方法体现出不同的数学特点,不同的巧妙构思,相同的结果.。
两角和与差的正弦、余弦、正切公式
两角和与差的正弦余弦正切公式:sin(α±β)=sinα·cosβ±cosα·sinβ,
cos(α+β)=cosα·cosβ-sinα·sinβ,tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)。
1、两角和(差)公式包括两角和差的正弦公式、两角和差的余弦公式、两角和差的正切公式。
两角和与差的公式是三角函数恒等变形的基础,其他三角函数公式都是在此公式基础上变形得到的。
正弦公式是描述正弦定理的相关公式,而正弦定理是三角学中的一个基本定理,它指出:在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径。
几何意义上,正弦公式即为正弦定理。
2、先利用单位圆(向量)推到两角和与差的余弦公式,再利用诱导公式推导正弦公式,最后利用同角三角函数的基本关系推到正切公式。
3、正弦和差公式始终是sin与cos相乘; 余弦和差公式始终是cos与cos相乘,sin与sin相乘,两角和与差的正弦公式:正=正余余正符号同两角和与差的余弦公式:余=余余正正符号异。
两角和与差的余弦公式的推导余弦公式是三角形中的一项基本公式,用于计算三边长度和夹角的关系。
两角和与差的余弦公式是在余弦公式的基础上,推导出两个角度和的余弦公式和两个角度差的余弦公式。
设三角形的边长分别为a、b、c,夹角分别为A、B、C。
1.推导两角和的余弦公式首先,根据余弦定理,我们有以下关系式:a² = b² + c² - 2bc cosAb² = a² + c² - 2ac cosBc² = a² + b² - 2ab cosC现在我们考虑求解cos(A+B)的值。
根据三角函数的和差化积公式,我们有:cos(A+B) = cosA cosB - sinA sinB首先,我们考虑cosA*cosB的项。
将上述余弦定理的第一个式子代入,我们有:cosA*cosB = [b² + c² - a²]/[2bc] * [a² + c² - b²]/[2ac]= (b² + c² - a²)(a² + c² - b²) / (4abc²)接下来,我们考虑sinA*sinB的项。
由正弦定理可得:sinA = a sinC / csinB = b sinC / csinA*sinB = (a sinC / c) * (b sinC / c)= (a b sin²C) / c²将上述两个项代入cos(A+B)的式子中,我们有:cos(A+B) = (b² + c² - a²)(a² + c² - b²) / (4abc²) - (a b sin²C) / c²整理上述式子,可以得到两角和的余弦公式:cos(A+B) = (b² + c² - a²)(a² + c² - b²) - a² b² sin²C / c²) / (4abc²)2.推导两角差的余弦公式同样地,根据三角函数的和差化积公式,我们有:cos(A-B) = cosA cos(-B) - sinA sin(-B)由于sin(-B) = -sinBcos(A-B) = cosA cosB + sinA sinB利用余弦定理,我们可以将cosA和cosB表示为:cosA = (b² + c² - a²) / (2bc)cosB = (c² + a² - b²) / (2ac)将上述两个项代入cos(A-B)的式子中,我们有:cos(A-B) = [(b² + c² - a²) / (2bc)] * [(c² + a² - b²) /(2ac)] + [(a sinC / c) * (b sinC / c)]= [(b² + c² - a²)(c² + a² - b²) + ab sin²C] / (2abc²)整理上述式子,可以得到两角差的余弦公式:cos(A-B) = [(b² + c² - a²)(c² + a² - b²) + ab sin²C] /(2abc²)通过上述推导,我们得到了两角和与差的余弦公式。
两角和差正余弦公式的证明两角和差的正余弦公式是三角函数中非常重要的公式之一、下面将证明这个公式。
假设有两个角A和B,我们要证明两角和的正余弦公式:1.两角和的正弦公式:sin(A + B) = sinA * cosB + cosA * sinB2.两角和的余弦公式:cos(A + B) = cosA * cosB - sinA * sinB证明两角和的正弦公式:根据正弦函数的定义,我们有:sinA = y1 / r1 ,sinB = y2 / r2其中y1和y2分别为角A和B的对边长度,r1和r2分别为角A和B 的斜边长度。
由三角形的性质可知,两角和C=A+B,对应的三角形的对边为y=y1+y2,斜边为r=r1+r2根据正弦函数的定义,sin(A + B) = y / r。
将y和r的表达式代入,我们得到:sin(A + B) = (y1 + y2) / (r1 + r2)将分子进行展开,我们有:sin(A + B) = y1 / (r1 + r2) + y2 / (r1 + r2)由于 r1 / (r1 + r2) = cosB ,r2 / (r1 + r2) = cosA ,根据三角函数的定义,我们可以将上式写成:sin(A + B) = y1 / r1 * cosB + y2 / r2 * cosA即:sin(A + B) = sinA * cosB + cosA * sinB因此,两角和的正弦公式得证。
证明两角和的余弦公式:根据余弦函数的定义,我们有:cosA = x1 / r1 ,cosB = x2 / r2其中x1和x2分别为角A和B的邻边长度,r1和r2分别为角A和B 的斜边长度。
对于两角和C=A+B,对应的三角形的邻边为x=x1+x2,斜边为r=r1+r2根据余弦函数的定义,cos(A + B) = x / r。
将x和r的表达式代入,我们得到:cos(A + B) = (x1 + x2) / (r1 + r2)将分子进行展开,我们有:cos(A + B) = x1 / (r1 + r2) + x2 / (r1 + r2)由于 x1 / (r1 + r2) = cosA ,x2 / (r1 + r2) = cosB ,根据三角函数的定义,我们可以将上式写成:cos(A + B) = cosA * cosB + sinA * sinB即:cos(A + B) = cosA * cosB - sinA * sinB因此,两角和的余弦公式得证。