《大学物理》模拟题及答案
- 格式:docx
- 大小:48.58 KB
- 文档页数:7
《大学物理上》模拟复习题一一.选择题1.质量为m 的铁锤竖直落下,打在木桩上并停下,设打击时间为∆t ,打击前铁锤速率为v ,则在打击木桩的时间内,铁锤所受平均合外力的大小为(A) mv/∆t .(B) mv/∆ t -mg . (C) mv/∆ t +mg . (D) 2mv/∆t .2. 一圆锥摆,如图1.2,摆球在水平面内作圆周运动.则(A) 摆球的动量、摆球对悬点的角动量、摆球与地球组成系统的机械能都守恒.(B) 摆球的动量、摆球对悬点的角动量、摆球与地球组成系统的机械能都不守恒.(C) 摆球的动量不守恒,摆球对悬点的角动量、摆球与地球组成系统的机械能守恒.(D) 摆球的动量、摆球对悬点的角动量守恒, 摆球与地球组成系统的机械能不守恒.3. 一物体作简谐振动,振动方程为x =A cos(ωt +π/4 ) 在t=T/4(T 为周期)时刻,物体的加速度为(A) 222ωA -. (B)222ωA .(C) 232ωA -.(D)232ωA .4. 以下说法错误的是(A) 波速与质点振动的速度是一回事,至少它们之间相互有联系;(B) 波速只与介质有关,介质一定,波速一定,不随频率波长而变,介质确定后,波速为常数;(C) 质元的振动速度随时间作周期变化;(D) 虽有关系式v = λν,但不能说频率增大,波速增大. 5. 两根轻弹簧和一质量为m 的物体组成一振动系统,弹簧的倔强系数为k 1和k 2,并联后与物体相接.则此系统的固有频率为ν等于(A) π2//)(21m k k +. (B) π2/)/(2121m k k k k +.(C) π2)/(21k k m +. (D)π2)/()(2121m k k k k +.6. 下面各种情况中可能存在的是(A) 由pV =(M/M mol )RT 知,在等温条件下,逐渐增大压强,当p →∞时,V →0; (B) 由pV =(M/M mol )RT 知,在等温条件下,逐渐让体积膨胀,当V →∞时,p →0;图1.1(C) 由E =(M/M mol )iRT /2知,当T →0时,E →0;(D) 由绝热方程式V γ-1T =恒量知,当V →0时,T →∞、E →∞.7. AB 两容器分别装有两种不同的理想气体,A 的容积是B 的两倍,A 容器内分子质量是B 容器分子质量的1/2.两容器内气体的压强温度相同,(如用n 、ρ、M 分别表示气体的分子数密度、气体质量密度、气体质量)则(A) n A =2n B , ρA =ρB , M A = 2M B . (B) n A = n B /2 , ρA =ρB /4 , M A = M B /2. (C) n A = n B , ρA =2ρB , M A = 4M B . (D) n A = n B , ρA =ρB /2 , M A = M B .8. 如图1.3所示,折射率为n 2 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知 n 1 <n 2 >n 3,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①②示意)的光程差是(A) 2n 2e .(B) 2n 2e -λ/(2 n 2 ). (C) 2n 2e -λ. (D) 2n 2e -λ/2.9. 如图1.4所示,s 1、s 2是两个相干光源,它们到P 点的距离分别为r 1和 r 2,路径s 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径s 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 (A) (r 2 + n 2 t 2)-(r 1 + n 1 t 1).(B) [r 2 + ( n 2-1) t 2]-[r 1 + (n 1-1)t 1].(C) (r 2 -n 2 t 2)-(r 1 -n 1 t 1).(D) n 2 t 2-n 1 t 1.10. 在光栅光谱中,假如所有偶数级次的主极大都恰好在每缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为(A) a = b . (B) a = 2b . (C) a = 3b . (D) b = 2a . 二.填空题1.如图2.1所示,一质点在几个力的作用下,沿半径为R 的圆周运动,其中一个力是恒力F 0,方向始终沿x 轴正向,即F 0= F 0i ,当质点从A 点沿逆时针方向走过3/4圆周到达B 点时,F 0所作的功为W .2. 如图2.2所示,加速度a 至少等于 时, 物体m 对斜面的正压力为零, 此时绳子的张力 T = .图1.3ss图1.4 图2.2图2.13. 铀238的核(质量为238原子质量单位),放射一个α粒子(氦原子核,质量为4个原子量单位)后蜕变为钍234的核,设铀核原是静止的,α粒子射出时速度大小为1.4×107m/s,则钍核的速度大小为 ,方向为 .4. 牛顿环装置中透镜与平板玻璃之间充以某种液体时,观察到第10级暗环的直径由1.42cm 变成1.27cm,由此得该液体的折射率n = .5. 如图2.3所示,波长为λ 的平行单色光斜入射到距离为d 的双缝上,入射角为θ ,在图中的屏中央O 处(O s 1=O s 2) ,两束相干光的位相差为 .三.计算题1.质量为M =0.03kg, 长为l =0.2m 的均匀细棒, 在一水平面内绕通过棒中心并与棒垂直的光滑固定轴自由转动. 细棒上套有两个可沿棒滑动的小物体,每个质量都为m =0.02kg. 开始时,两小物体分别被固定在棒中心的两侧且距中心各为r =0.05m,此系统以n 1=15rev/min 的转速转动. 若将小物体松开后,它们在滑动过程中受到的阻力正比于速度, 已知棒对中心的转动惯量为M l 2/12. 求(1) 当两小物体到达棒端时,系统的角速度是多少? (2) 当两小物体飞离棒端时, 棒的角速度是多少?2. 一弦线,左端系于音叉的一臂的A 点上,右端固定在B 点,并用7.20N 的水平拉力将弦线拉直,音叉在垂直于弦线长度的方向上作每秒50次的简谐振动(如图3.1).这样,在弦线上产生了入射波和反射波,并形成了驻波,弦的线密度η=2.0g/m, 弦线上的质点离开其平衡位置的最大位移为4cm,在t = 0时,O 点处的质点经过其平衡位置向下运动.O 、B 之间的距离为2.1m .如以O 为坐标原点,向右为x 轴正方向,试写出: (1) 入射波和反射波的表达式;(2) 驻波的表达式.3. 一气缸内盛有一定量的刚性双原子分子理想气体,气缸活塞的面积S =0.05m 2, 活塞与缸壁之间不漏气,摩擦忽略不计, 活塞左侧通大气,大气压强p 0=1.0×105pa,倔强系数k =5×104N/m 的一根弹簧的两端分别固定于活塞和一固定板上,如图 3.2,开始时气缸内气体处于压强、体积分别为p 1=p 0=1.0×105pa, V 1=0.015m 3的初态,今缓慢的加热气缸,缸内气体缓慢地膨胀到V 2=0.02m 3.求:在此过程中气体从外界吸收的热量.4. 波长为500nm 的单色光垂直照射到由两块光学平玻璃构成的空气劈尖上,在观察反射光的干涉现象中,距劈尖棱边 l = 1.56cm 的A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈尖的劈尖角θ .(2) 改用600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹,图3.1图3.2 图2.3还是暗条纹?《大学物理上》模拟复习题二一.选择题1. 圆盘绕O 轴转动,如图1.1所示.若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将(A) 增大. (B) 不变. (C) 减小.(D) 无法判断.2.一质点在平面上运动,已知质点位置矢量的表达式为 r = a t 2 i + b t 2 j (其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D) 一般曲线运动.3. 如图1.2,质量分别为m 1、m 2的物体A 和B 用弹簧连接后置于光滑水平桌面上,且A 、B 上面上又分别放有质量为m 3和m 4的物体C 和D ;A 与C 之间、B 与D 之间均有摩擦.今用外力压缩A 与B ,在撤掉外力,A 与B 被弹开的过程中,若A 与C 、B 与D 之间发生相对运动,则A 、B 、C 、D 及弹簧组成的系统(A) 动量、机械能都不守恒. (B) 动量守恒,机械能不守恒.(C) 动量不守恒,机械能守恒.(D) 动量、机械能都守恒.4. 以下说法不正确的是(A) 从运动学角度看,振动是单个质点(在平衡位置的往复)运动,波是振动状态的传播,质 点并不随波前进;(B) 从动力学角度看振动是单个质点受到弹性回复力的作用而产生的,波是各质元受到邻近质元的作用而产生的;(C) 从能量角度看,振动是单个质点的总能量不变,只是动能与势能的相互转化;波是能量的传递,各质元的总能量随时间作周期变化,而且动能与势能的变化同步;(D) 从总体上看,振动质点的集合是波动.5. 一辆汽车以25ms -1的速度远离一静止的正在呜笛的机车,机车汽笛的频率为600Hz ,汽车中的乘客听到机车呜笛声音的频率是(已知空气中的声速为330 ms -1)(A) 555Hz . (B) 646 Hz . (C) 558 Hz . (D) 649 Hz .图1.2图1.16. 由热力学第一定律可以判断一微小过程中d Q 、d E 、d A 的正负,下面判断中错误的是(A) 等容升压、等温膨胀 、等压膨胀中d Q >0; (B) 等容升压、等压膨胀中d E >0; (C) 等压膨胀时d Q 、d E 、d A 同为正; (D) 绝热膨胀时d E >0.7. 摩尔数相同的两种理想气体,一种是氦气,一种是氢气,都从相同的初态开始经等压膨胀为原来体积的2倍,则两种气体 (A) 对外做功相同,吸收的热量不同. (B) 对外做功不同,吸收的热量相同.(C) 对外做功和吸收的热量都不同.(D) 对外做功和吸收的热量都相同.8. 如图1.3所示的是两个不同温度的等温过程,则 (A) Ⅰ过程的温度高,Ⅰ过程的吸热多. (B) Ⅰ过程的温度高,Ⅱ过程的吸热多. (C) Ⅱ过程的温度高,Ⅰ过程的吸热多. (D) Ⅱ过程的温度高,Ⅱ过程的吸热多.9. 如图1.4所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1 为入射光在折射率为n 1 的媒质中的波长,则两束反射光在相遇点的位相差为(A) 2 π n 2 e / (n 1 λ1 ).(B) 4 π n 1 e / (n 2 λ1 ) +π.(C) 4 π n 2 e / (n 1 λ1 ) +π.(D) 4π n 2 e / (n 1 λ1 ).10. 在如图1.5所示的单缝夫琅和费衍射实验装置中,s 为单缝,L 为透镜,C 为放在L 的焦面处的屏幕,当把单缝s 沿垂直于透镜光轴的方向稍微向上平移时,屏幕上的衍射图样(A) 向上平移. (B) 向下平移. (C) 不动.(D) 条纹间距变大. 二.填空题1. 如图2.1所示,波源s 1和s 2发出的波在P 点相遇,P 点距波源s 1和s 2的距离分别为3λ和10λ/3,λ为两列波在介质中的波长,若P 点的合振幅总是极大值,则两波源振动方向 (填相同或不同),振动频率 ,(填相同或不同),波源s 2 的位相比s 1 的位相领先 .2. 一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能是总能的 ; 当这物块在平衡位置时,弹簧的长度比原长长∆ l ,这一振动系统的周期为 .图1.3图1.4图1.5 s 1s 2P 图2.13.以一定初速度斜向上抛出一个物体, 如果忽略空气阻力, 当该物体的速度v 与水平面的夹角为θ 时,它的切向加速度a t 的大小为a t = , 法向加速度a n 的大小为a n = . .4.对于处在平衡态下温度为T 的理想气体, (1/2)kT (k 为玻兹曼常量)的物理意义是 .5. 光的干涉和衍射现象反映了光的 性质, 光的偏振现象说明光波是 波. 三.计算题1.一质量为m 的陨石从距地面高h 处由静止开始落向地面,设地球质量为M ,半径为R ,忽略空气阻力,求:(1) 陨石下落过程中,万有引力的功是多少? (2) 陨石落地的速度多大?2. 一定滑轮的半径为R , 转动惯量为I ,其上挂一轻绳,绳的一端系一质量为m 的物体,另一端与一固定的轻弹簧相连,如图3.1所示,设弹簧的倔强系数为k ,绳与滑轮间无滑动,且忽略轴的摩擦力及空气阻力,现将物体m 从平衡位置下拉一微小距离后放手,证明物体作简谐振动,并求出其角频率.3. 一定量的理想气体经历如图3.2所示的循环过程,A →B 和C →D 是等压过程,B →C 和D →A 是绝热过程.己知:T C = 300K, T B = 400K,试求此循环的效率.4. 设光栅平面和透镜都与屏幕平行,在平面透射光栅上每厘米有5000条刻线,用它来观察波长为λ=589 nm 的钠黄光的光谱线.(1) 当光线垂直入射到光栅上时,能看到的光谱线的最高级数k m 是多少?(2) 当光线以30︒的入射角(入射线与光栅平面法线的夹角)斜入射到光栅上时,能看到的光谱线的最高级数k m 是多少?图3.1 图3.2《大学物理上》模拟复习题一答案一.选择题1. (A)mv/∆t .2. (A) 摆球的动量、摆球对悬点的角动量、摆球与地球组成系统的机械能都守恒.3.(C) 232ωA -.4.(D) 虽有关系式v = λν,但不能说频率增大,波速增大.5.(C).6. (B) 由pV =(M/M mol )RT 知,在等温条件下,逐渐让体积膨胀,当V →∞时,p →0;7. (D) n A = n B , ρA =ρB /2 , M A = M B .8. (D) 2n 2e -λ/2.9. (B) [r 2 + ( n 2-1) t 2]-[r 1 + (n 1-1)t 1]. 10. (A) a = b . 二.填空题1. -F 0R .2. cot θ, mg/sin θ3. 2.4×105m/s 与α粒子运动方向相反4. 1.255. 2πd sin θ /λ.三.计算题 1.(1)角动量守恒(M l 2/12+2mr 2)ω1=(M l 2/12+2ml 2)ω2ω2= (M l 2/12+2mr 2)ω1/(M l 2/12+2ml 2)=0.628rad/s(2) 小物体飞离棒端时小物体对棒无冲力,故棒的角速度仍为 ω2=0.628rad/s2.(1)波速u =(张力/线密度)1/2=(T/η)1/2=60m/s 波长 λ=u/ν=1.2m 因形成驻波,故行波振幅为A =4⨯10-2÷2=2⨯10-2m由旋矢法(如图)可知O 点振动的初位相为π/2,则入射波在原点O 引起的振动为y 0=2⨯10-2cos(100πt+π/2) (SI)所以入射波为y 1=2⨯10-2cos[100π (t -x /60)+π/2 ]=2⨯10-2cos(100πt-10πx /6+π/2) (SI), 反射波为y 2=2⨯10-2cos[100πt -10π(2l -x )/6+π/2+π]=2⨯10-2cos(100πt+10πx/6+π/2) (SI)驻波方程为y=y1+y2=4⨯10-2cos(10πx/6)cos(100πt+π/2) (SI)3. 从V1变到V2,弹簧压缩x=(V2-V1)/S,则p2=p0+kx/S= p0+k(V2-V1)/S2∆E=νC V(T2-T1)=(i/2)(p2V2-p1V1)=(i/2){[p0+k(V2-V1)/S2]V2-p0V1}=(i/2)[p0(V2-V1)+k V2(V2-V1)/S2]A=p0Sx+(1/2)kx2=p0(V2-V1)+(1/2) k [(V2-V1)/S]2,Q=∆E+A=p0(V2-V1)(i+2)/2+k(V2-V1)[(i+1)V2-V1]/(2S2)=7000J4. 因是空气薄膜,有n1>n2<n3,且n2=1,得δ=2e+λ/2,暗纹应δ=2e+λ/2=(2k+1)λ/2,所以2e=kλe=kλ/2因第一条暗纹对应k=0,故第4条暗纹对应k=3,所以e=3λ/2空气劈尖角θ=e/l=3λ/(2l)=4.8⨯10-5rad(2) 因δ/λ'=(2e+λ'/2)/λ'=3λ/λ'+1/2=3故A处为第三级明纹,棱边依然为暗纹.(3) 从棱边到A处有三条明纹,三条暗纹,共三条完整条纹.《大学物理上》模拟复习题二答案一.选择题1. (B) 不变.2. (B) 变速直线运动.3. (C) 动量不守恒,机械能守恒.4. (A) 从运动学角度看,振动是单个质点(在平衡位置的往复)运动,波是振动状态的传播,质 点并不随波前进;5. (B) 646 Hz .6. (D) 绝热膨胀时d E >0.7. (A) 对外做功相同,吸收的热量不同. 8. (A) Ⅰ过程的温度高,Ⅰ过程的吸热多. 9. (C) 4 π n 2 e / (n 1 λ1 ) +π. 10..(C) 不动. 二.填空题1.相同 相同,2π/3.2. 3/4 ; 2π(∆l /g )1/2.3. g sin θ, g cos θ .4.温度为T 时每个气体分子每个自由度平均分得的能量.5.波动 横 三.计算题 1. (1) A =()r GMm RhR d 2⎰+-=GMm [1/R -1/(R+h )]= GMm h /[R (R+h )](2)由动能定理 A=E k -E k0 有GMm h /[R (R+h )]=mv 2/2 v= {2GM h /[R (R+h )]}1/22. 平衡时 mg=kx 0振动时,设某时刻物体相对平衡位置的位移为x ,对物体和定滑轮分别列方程,有 mg-T=ma TR-k (x+x 0)R=I β a=R β x=R θ 于是得mgR -k (x+x 0)R=(mR 2+I )β -kxR=- kR 2θ= (mR 2+I )β = (mR 2+I )d 2θ /d t 2d 2θ /d t 2+[kR 2/(I+mR 2)]θ=0故物体作揩振动,其角频率为ω=[kR 2/(I+mR 2)]1/23.吸热过程AB为等压过程Q1=νC p(T B-T A)放热过程CD为等压过程Q2=νC p(T C-T D)η=1-Q2/Q1=1- (T C-T D)/(T B-T A)=1- (T C/T B)[(1-T D/T C)/(1-T A/T B) 而p Aγ-1T A-γ= p Dγ-1T D-γp Bγ-1T B-γ= p Cγ-1T C-γp A=p B p C=p D所以T A/T B=T D/T C故η=1-T C/T B=25%4. . (1) (a+b) sinθ=k maxλ<(a+b)k max<(a+b)/λ=3.39所以最高级数k max=3(1)(a+b) (sin30°+sinθ')=k'maxλk'max<(a+b) (sin30°+1)/λ=5.09所以k'max=5。
《大学物理》实验模拟题及答案一一、选择题1.由于实验环境中的温度、湿度、气流变化而引起的误差属于: BA.系统误差B. 随机误差C. 粗大误差D. 相对误差 2.选出消除系统误差的测量方法 A A. 交换法 B. 放大法 C. 模拟法 D. 以上都不是 3.在正常情况下,下列读数错误的是 DA. 分度值为mm 1的毫米刻度尺测得物体长度为cm 00.40B. 分度值为mm 01.0的螺旋测微器,测得某物体的长度为mm 021.15C. 分度值为mm 02.0的游标卡尺测得某物体的长度为cm 604.1D. 有量程mV 1000,分格数为100格的电压表测得电压值为mV 5.100 4. 对于间接测量量232y x Z -=,正确的不确定度传递关系是 C A .()()22243yxZ U U x U += B .()()22243yxZ yU U x U -=C .()()22243yxZ yU U x U +=D .()()22243yxZ U U x U ±=5. 某同学实验中某长度测量值为5.6258m ,则该同学所用仪器可能是 A A .毫米钢卷尺 B .螺旋测微计 C .10分度游标卡尺 D .厘米直尺6.下列哪种仪器的读数不需要估读 D A. 毫米刻度尺 B. 千分尺 C. 读数显微镜 D. 电阻箱7.在下面的李萨如图中,如果在X 轴方向信号的频率是100Hz ,那么在Y 轴方向信号的频率是:C8.下列测量结果中表达式正确的是 AA .()KHz f 0027.02584.25±=B .()2203785000mm S ±=C . mS S t 05.054.89±=D .()33055.010621.5m Kg ±⨯=ρ 9.在杨氏模量实验中,通常先预加1kg 砝码,其目的是 CA. 消除摩擦力 B .减小初读数,消除零误差 C. 拉直金属丝,避免金属弯曲对测量伸长量的影响 D .使系统稳定,底座水平 10. 用电子示波器观察李萨如图形时,若图形不稳定,应该调节 AA. 信号源频率调节旋扭B. 示波器扫描时间旋钮C. 示波器垂直衰减旋扭D. 示波器水平或竖直移位旋扭二、填空题1.正常测量的误差,按产生的原因和性质可分为 和 两大类; 实验测量按照测量值获得的方法不同可分为 和 两大类。
大学物理考试题库及答案一、选择题(每题2分,共20分)1. 在国际单位制中,下列哪个单位不是基本单位?A. 米(m)B. 千克(kg)C. 秒(s)D. 瓦特(W)答案:D2. 一个物体在平直道路上做匀速运动,下列哪个因素不会影响物体的运动状态?A. 道路摩擦力B. 道路坡度C. 物体质量D. 物体速度答案:C3. 下列哪个现象表明地球是圆的?A. 星星在夜空中闪烁B. 船只在海平面上逐渐消失C. 地平线D. 月亮的形状变化答案:B4. 关于牛顿第三定律,下列说法正确的是:A. 作用力与反作用力大小相等,方向相反B. 作用力与反作用力大小不等,方向相反C. 作用力与反作用力大小相等,方向相同D. 作用力与反作用力大小不等,方向相同答案:A5. 下列哪个物理量是标量?A. 速度B. 力C. 加速度D. 路程答案:D6. 一个物体从静止开始沿着光滑斜面下滑,下列哪个因素会影响物体的加速度?A. 物体质量B. 斜面角度C. 重力加速度D. 物体与斜面之间的摩擦力答案:B7. 下列哪个现象与电磁感应无关?A. 发电机B. 变压器C. 电动机D. 麦克斯韦方程组答案:D8. 光在真空中的传播速度约为:A. 1×10^5 km/sB. 3×10^5 km/sC. 1×10^8 m/sD. 3×10^8 m/s答案:D9. 下列哪个物理现象可以用光的波动理论解释?A. 光的直线传播B. 光的反射C. 光的折射D. 光的衍射答案:D10. 下列哪个物理学家提出了万有引力定律?A. 伽利略B. 牛顿C. 开普勒D. 卡文迪许答案:B二、填空题(每题2分,共20分)1. 国际单位制中的基本单位有:米(m)、千克(kg)、秒(s)、安培(A)、开尔文(K)、摩尔(mol)和坎德拉(cd)。
2. 牛顿第二定律的数学表达式为:F = ma。
3. 在真空中,光的速度为:3×10^8 m/s。
大学物理考试题及答案一、选择题1. 下列关于力的描述,正确的是()。
A. 力是物体间的相互作用,具有大小和方向。
B. 力的作用是相互的,作用力和反作用力大小相等,方向相反。
C. 力的作用效果与力的作用点有关。
D. 以上选项均正确。
答案:D2. 物体做匀速直线运动时,下列说法正确的是()。
A. 物体的速度不变。
B. 物体的加速度为零。
C. 物体所受合力为零。
D. 以上选项均正确。
答案:D3. 关于功的定义,下列说法正确的是()。
A. 功是力和力的方向的乘积。
B. 功是力和力的方向的点积。
C. 功等于力的大小乘以物体在力的方向上的位移。
D. 功是力对物体所做的功。
答案:C4. 根据牛顿第二定律,下列说法正确的是()。
A. 物体的加速度与作用力成正比。
B. 物体的加速度与物体的质量成反比。
C. 加速度的方向与作用力的方向相同。
D. 以上选项均正确。
答案:D5. 波长为λ的光波在介质中的波速为v,那么在真空中该光波的波速为()。
A. vB. λ/vC. 3×10^8 m/sD. 2×10^8 m/s答案:C二、填空题1. 物体在水平面上受到的摩擦力与物体对水平面的压力成正比,比例系数为_________。
答案:摩擦系数2. 一个质量为2kg的物体,受到一个10N的水平力作用,加速度为_________。
答案:5 m/s^23. 一个电路中,电阻R1为10Ω,电阻R2为20Ω,当它们串联时,总电阻为_________。
答案:30Ω4. 一束光从空气射入水中,如果水的折射率为1.33,那么光线的传播方向将_________。
答案:改变5. 一个半径为R的圆形线圈,通以电流I,放在均匀磁场中,线圈所受的磁力矩大小为_________。
答案:μ = I * (πR^2)三、计算题1. 一个质量为0.5kg的物体,受到一个斜向上的力F,大小为20N,与水平方向成30度角,求物体的加速度。
解:首先分解力F为水平分量和垂直分量。
期末考试模拟试题一、判断题:〔10⨯1=10分〕1. 质点作圆周运动时,加速度方向一定指向圆心。
〔 〕 2.根据热力学第二定律,不可能把吸收的热量全部用来对外做功 〔 〕 3. 刚体的转动惯量与转轴的位置有关。
〔 〕 4. 刚体所受合外力矩为零,其合外力不一定为零。
〔 〕 5. 静电场中的导体是等势体 。
〔 〕 6. 平衡态下分子的平均动能为kT 23〔 〕 7. 绝热过程中没有热量传递,系统的温度不变。
〔 〕 8. 最概然速率就是分子运动的最大速率。
〔 〕 9. 电场强度为零的点的电势一定为零 。
〔 〕 10.真空中电容器极板上电量不同时,电容值不变。
〔 〕 二、选择题:〔1836=⨯分〕1. 某质点的运动学方程为3536t t x -+=,那么该质点作〔 〕〔A 〕匀加速直线运动,加速度为正值; 〔B 〕匀加速直线运动,加速度为负值; 〔C 〕变加速直线运动,加速度为正值; 〔D 〕变加速直线运动,加速度为负值。
2. 质点作匀速率圆周运动,它的〔 〕〔A 〕切向加速度的大小和方向都在变化; 〔B 〕法向加速度的大小和方向都在变化; 〔C 〕法向加速度的方向变化,大小不变; 〔D 〕切向加速度的方向不变,大小变化。
3. 两容积不等的容器内分别盛有可视为理想气体的氦气和氮气,假设它们的压强和温度相同,那么两气体〔 〕〔A 〕单位体积内的分子数必相同; 〔B 〕单位体积内的质量必相同; 〔C 〕单位体积内分子的平均动能必相同; 〔D 〕单位体积内气体的内能必相同。
4. 摩尔数相同,分子自由度不同的两种理想气体,从同一初态开始等压膨胀到同一末态时,两气体〔 〕〔A 〕从外界吸热相同; 〔B 〕对外界作功相同; 〔C 〕内能增量相同; 〔D 〕上述三量均相同。
5.如下图,在封闭的球面S 内的A 点和B 点分别放置q+和q-电荷,且OA=OB,P点为球面上的一点,那么〔 〕〔A 〕0≠p E ,⎰=⋅Sd 0S E ;〔B 〕0=p E ,⎰≠⋅Sd 0S E ;〔C 〕0≠p E ;⎰≠⋅Sd 0S E ;〔D 〕0=p E ,⎰=⋅Sd 0S E 。
大学力学专业《大学物理(二)》模拟考试试题附解析姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、设描述微观粒子运动的波函数为,则表示_______________________;须满足的条件是_______________________;其归一化条件是_______________________。
2、在热力学中,“作功”和“传递热量”有着本质的区别,“作功”是通过__________来完成的; “传递热量”是通过___________来完成的。
3、从统计的意义来解释, 不可逆过程实质上是一个________________的转变过程, 一切实际过程都向着________________ 的方向进行。
4、同一种理想气体的定压摩尔热容大于定容摩尔热容,其原因是_______________________________________________。
5、两列简谐波发生干涉的条件是_______________,_______________,_______________。
6、将热量Q传给一定量的理想气体:(1)若气体的体积不变,则热量转化为_____________________________。
(2)若气体的温度不变,则热量转化为_____________________________。
(3)若气体的压强不变,则热量转化为_____________________________。
7、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。
8、一个半径为、面密度为的均匀带电圆盘,以角速度绕过圆心且垂直盘面的轴线旋转;今将其放入磁感应强度为的均匀外磁场中,的方向垂直于轴线。
大学基础教育《大学物理(一)》模拟考试试题含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一质量为0.2kg的弹簧振子, 周期为2s,此振动系统的劲度系数k为_______ N/m。
2、质点在平面内运动,其运动方程为,质点在任意时刻的位置矢量为________;质点在任意时刻的速度矢量为________;加速度矢量为________。
3、从统计的意义来解释, 不可逆过程实质上是一个________________的转变过程, 一切实际过程都向着________________ 的方向进行。
4、长为、质量为的均质杆可绕通过杆一端的水平光滑固定轴转动,转动惯量为,开始时杆竖直下垂,如图所示。
现有一质量为的子弹以水平速度射入杆上点,并嵌在杆中. ,则子弹射入后瞬间杆的角速度___________。
5、动量定理的内容是__________,其数学表达式可写__________,动量守恒的条件是__________。
6、一质点作半径为R的匀速圆周运动,在此过程中质点的切向加速度的方向______,法向加速度的大小______。
(填“改变”或“不变”)7、两列简谐波发生干涉的条件是_______________,_______________,_______________。
8、一质点的加速度和位移的关系为且,则速度的最大值为_______________ 。
9、两根相互平行的“无限长”均匀带正电直线1、2,相距为d,其电荷线密度分别为和如图所示,则场强等于零的点与直线1的距离a为_____________ 。
10、一质点沿半径R=0.4m作圆周运动,其角位置,在t=2s时,它的法向加速度=______,切向加速度=______。
二、名词解释(共5小题,每题3分,共15分)1、自由度:2、光的吸收:3、基态:4、刚体:5、半波损失:三、选择题(共10小题,每题2分,共20分)1、下面说法正确的是()。
大学物理学专业《大学物理(下册)》模拟考试试卷含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、设作用在质量为1kg的物体上的力F=6t+3(SI).如果物体在这一力的作用下,由静止开始沿直线运动,在0到 2.0 s的时间间隔内,这个力作用在物体上的冲量大小I=__________________。
2、静电场中有一质子(带电荷) 沿图示路径从a点经c点移动到b点时,电场力作功J.则当质子从b点沿另一路径回到a点过程中,电场力作功A=___________;若设a点电势为零,则b点电势=_________。
3、一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度与不透明部分宽度相等,则可能看到的衍射光谱的级次为____________。
4、一维保守力的势能曲线如图所示,则总能量为的粒子的运动范围为________;在________时,粒子的动能最大;________时,粒子的动能最小。
5、一平面余弦波沿Ox轴正方向传播,波动表达式为,则x = -处质点的振动方程是_____;若以x =处为新的坐标轴原点,且此坐标轴指向与波的传播方向相反,则对此新的坐标轴,该波的波动表达式是_________________________。
6、某人站在匀速旋转的圆台中央,两手各握一个哑铃,双臂向两侧平伸与平台一起旋转。
当他把哑铃收到胸前时,人、哑铃和平台组成的系统转动的角速度_____。
7、长为、质量为的均质杆可绕通过杆一端的水平光滑固定轴转动,转动惯量为,开始时杆竖直下垂,如图所示。
现有一质量为的子弹以水平速度射入杆上点,并嵌在杆中. ,则子弹射入后瞬间杆的角速度___________。
8、一根长为l,质量为m的均匀细棒在地上竖立着。
如果让竖立着的棒以下端与地面接触处为轴倒下,则上端到达地面时细棒的角加速度应为_____。
高等教育课程考试试卷
( 2 0
年
春 □
秋 □ 季学期 )
系别:
班级:
课程名称:《大学物理》
1、选择题(每小题 3 分,共 30 分)
1. 以下四种运动形式中,加速度保持不变的运动是( )。
A .抛体运动;
B .匀速圆周运动;
C .变加速直线运动;
D .单摆的运动.。
2、一质点沿 x 轴运动的规律是 x 5t 加
2 3t
3 m 。
则第三秒时的
速度的大小是(
) m / s 。
A . 10
B .50;
C .15;
D .12。
3. 刚体定轴转动,当它的角加速度很大时,作用在刚体上的 ( )。
A .力一定很大;
B .力矩一定很大;
C .力矩可以为零;
D .无法确定。
4、假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对 地球中心的( )。
A.动量不守恒,角动量守恒;
B.动量不守恒,角动量不守恒;
C.动量守恒,角动量不守恒;
D.动量守恒,角动量守恒
5、一质点作谐振动,周期为 T ,当它由平衡位置向 x 轴正方向运 动时,从二分之一最大位移处到最大位移处这段路程所需要的 时间为( ) A. T /6 B. T /12 C. T /4 D. T /8 6. 关于温度的意义,下列几种说法错误的是( )。
A.气体的温度是分子平均平动动能的量度;
B.气体的温度是大量气体分子热运动的集体表现,具有统计意义;
第 1 页(共
页)
2 装订线(答题不得超过此线)
20 年 月 日 考 试 用
C. 温度的高低可以反映物质内部分子运动剧烈程度的不同;
D. 从微观上看,气体的温度表示每个气体分子的冷热程度。
7、一定量的理想气体,经历某过程后,气温升高了,则一定发生的过程是:
A. 气体在此过程中吸收了热量;
B. 气体的内能增加了;
C. 在此过程中气体即从外界吸收了热量,又对外做功;
D. 在此过程中外界对气体做正功。
8、关于静电场中的电位移线,下列说法中,哪一种是正确的?( )
A .起自正电荷,止于负电荷,不形成闭合线,不中断
B .任何两条电位移线互相平行
C .起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空
间不相交
D .电位移线只出现在有电介质的空间 9、利用公式 vBL 计算动生电动势的条件,指出下列叙述中的错误者为( )
A. 直导线 L 不一定是闭合回路中的一段。
B. 切割速度 v 不一定必须(对时间)是常量。
C. B 、 L 和 v 三者必须互相垂直。
D. 导线 L 不一定在匀强磁场中。
10、一质点作简谐运动,运动方程 x A cos(t
),当时间 t =T/4 时,质点
的速度为:( ) A.
A sin
B. A sin
C.
A cos
D. A cos
2、填空题(每小题 3 分,共 30 分) 1. 一质点作半径为 R 的匀速圆周运动,在此过程中质点的切向加速度的方向 ,法向加速度的大小 。
(填“改变”或“不变”) 2.一小球沿斜面向上作直线运动,其运动方程为: s 5 4t t ,则小球运动到最 高点的时刻是 t =_________ s .
3.某人站在匀速旋转的圆台中央,两手各握一个哑铃,双臂向两侧平伸与平台一 起旋转。
当他把哑铃收到胸前时,人、哑铃和平台组成的系统转动角速度应变 ;转动惯量变 。
(填“大”或“小”)
2、系统与外界之间由于存在温度差而传递的能量叫做 。
系统从外界吸 收的热量一部分用于系统对外做功,另一部分用来增加系统的 。
3、一台工作于温度分别为127 C 和 27 C 的高温热源与低温源之间的卡诺热机,每 经历一个循环吸热 2000J ,则对外作功________ J ;热机的效率为________。
2 0 0
2 页(共
页)
6、一质量为 m 、电量为 q 的小球,在电场力作用下,从电势为 U 的 a 点,移动到电
第 3 页(共 页)
势为零的 b 点,若已知小球在 b 点的速率为 V ,则小球在 a 点的速率 V =
b a。
7、如图所示,在一长直导线 L 中通有恒定电流 I , ABCD 为一矩形线圈,它与 L 皆 在纸面内,且 AB 边与 L 平行。
(1) 矩形线圈在纸面内向右移动时,线圈中感应电 流方向为__________;(2) 矩形线圈绕 AD 边旋转,当 BC 边离开纸面向外运动时, 线圈中感应电流的方向为___________。
第 7 题图
第 8 题图
8、由金属制成的直角三角形框架,勾长为 a ,放在磁感应强度为 B 的均匀磁场中, B 与股平行,如图所示。
当这框架以股为轴,每秒旋转 n 圈时,勾里产生的电动势 为
a
= ,整个框里的电动势为 = 。
9. 一质点沿半径 R=0.4m 作圆周运动,其角位置
2
3t 2
,在 t=2s 时,它的法向
加速度 a n =
m / s ,切向加速度 a t =
m / s 。
10、一长为 1m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动。
抬起 另一端使棒向上与水平面呈 60°,然后无初转速地将棒释放,已知棒对轴的转动惯 量为 ml ,则(1)放手时棒的角加速度为__________ rad / s 2 ;(2) 棒转到水平位
置时的角加速度为__________ rad / s 。
3、计算题(每小题 10 分,共 40 分)
1、一物体从高度 h 处,以初速率 v 0 竖直向下或沿水平方向抛出,试用动能定理计 算在这两次抛掷过程(竖直下抛过程和平抛过程)中物体落地的速率。
v
v
2
2
2 1 3
2
2、一连续纵波+x方向传播,频率为25H z ,波线上相邻密集部分中心之距离为
24cm,某质点最大位移为3cm。
原点取在波源处,且t=0时,波源位移为0,并向+y 方向运动。
求:
(1)波源振动方程;
(2)波动方程;
(3)t=1s时波形方程;
(4)x=0.24m处质点振动方程;
(1)x1=0.12m与x2 =0.36m处质点振动的位相差。
3、一容器中原来盛有10.0 102
kg氧气,其压强为10.0atm,温度为320K。
由于容
5
器漏气,进过一段时间后,测得容器中气体压强减为原来的,同时温度降为300K。
8
求容器的容积及漏掉氧气的质量。
(共
页)
4、以氦放电来发出的光 E 入射某光栅,若测得
1
=6680A 时衍射角为 20°,如果
在同一衍射角下出现更高级次的氦谱线
2
=4470A ,问:光栅常数最小各多少?
《大学物理》模拟题答案
1、选择题 1.A 2.A 3.B 4.A 5.A 6. D 7.B 8.C 9.D 10.C
二、填空题
1. 改变 , 不变
2. 2
3. 大 , 小
4. 热量 , 内能
5. 500 , 25%
6. 2
m
57.6 , 2.4
10. 7.5 ,
15
7. 顺时针 , 逆时针 8. na B , 0 9.
三、计算题
4、1. P22
2. P60
3.P79
4.P154
2qU v b 2
装订线(答题不得超过此线)。