2018年考研数学二试题及答案解析
- 格式:doc
- 大小:467.50 KB
- 文档页数:3
2018年考研数学二真题及答案解析1.若()212lim 1→++=xx x e ax bx,则A.1,12==-a b B.1,12=-=-a b C.1,12==a b D.1,12=-=a b 【答案】B 【解析】()()()22022002ln lim21limlim22201lim x x x xx x x e ax be ax bxe ax b xeax bxx x x x x e ax bx e ee→→→++++++++→=++===02lim 02x x e ax b x →++⇒=()00lim 20112lim 022xx x x e ax b b e ax b a x →→⎧++==-⎧⎪⎪⇒⇒⎨⎨++=-⎪⎪=⎩⎩2.下列函数中,在0=x 处不可导的是A.()sin f x x x = B.()sin f x x =C.()cos f x x = D.()f x =【答案】D 【解析】A 可导:()()()()-000sin sin sin sin 0lim lim 0,0lim lim 0x x x x x x x x x x x xf f x x x x--+++→→→→⋅⋅''=====B 可导:()()-0000sin sin 0lim lim 0,0lim lim 0x x x x x x f f x x--+++→→→→-⋅⋅''=====C 可导:()()22000011cos 1cos 1220lim lim 0,0lim lim 0x x x x x x x x f f x x x x--++-+→→→→----''=====D 不可导:——印校园考研一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答.题.纸.指定位置上.()()()()()00011-11220lim lim ,0lim lim 2200x x x x x x f f x x f f --++-+→→→→+---''====-''≠3.设函数()()2,11,,,10,1,0,0ax x x f x g x x x x x b x -≤-⎧<⎧⎪==-<<⎨⎨≥⎩⎪-≥⎩-若()()f x g x +在R 上连续,则A.3,1==a bB.3,2==a bC.3,1=-=a bD.3,2=-=a b 【答案】D 【解析】()()()()()()()()()()()()()()()()0000111111lim lim lim 101lim lim lim 1112lim lim lim 121lim lim lim 11221x x x x x x x x x x x x f x g x f x g x f x g x f x g x b b b f x g x f x g x a a f x g x f x g x a ---+++---+++→→→→→→→-→-→-→-→-→-+=+=-+=-⎡⎤⎣⎦+=+=-⇒-=-⇒=⎡⎤⎣⎦+=+=-++=+⎡⎤⎣⎦+=+=--=-⇒-=+⇒⎡⎤⎣⎦3a =-4..设函数()f x 在[]0,1上二阶可导,且()100,f x dx =⎰则A.当()0'<f x 时,102⎛⎫<⎪⎝⎭f B.当()0''<f x 时,102⎛⎫<⎪⎝⎭f C.当()0'>f x 时,102⎛⎫< ⎪⎝⎭f D.当()0''>f x 时,102⎛⎫<⎪⎝⎭f 【答案】D 【解析】A 错误:()()()11000,10111,2,022f x f x dx dx f x x f x ⎛⎫'===-< ⎪⎛⎫=-+-+= ⎝⎝⎭⎪⎭⎰⎰B 错误:()()()100212111111,033243120,20,f x dx dx f x x ff x x ⎛⎫''==⎛⎫=-+-+=-+=-< ⎪⎝⎭=> ⎪⎝⎭⎰⎰C 错误:()()()1100111,0220,10,2f x d f x x x f x dx f x ⎛⎫=-⎛⎫'-===> ⎪⎝⎭= ⎪⎝⎭⎰⎰D 正确:方法1:由()0f x ''>可知函数是凸函数,故由凸函数图像性质即可得出102f ⎛⎫< ⎪⎝⎭方法2:21112200011111()()()()()(),22222111111()()()()()()()()()02222221()0,()0.2f x f f x f x x f x dx f f x f x dx f f x dx f x f ξξξξ'''=+-+-'''''=+-+-=+-=''><⎰⎰⎰介于和之间,又故5.设()(2222222211,,1,1ππππππ---++===++⎰⎰⎰x x xM dx N dx K dx x e 则A.>>M N KB.>>M K NC.>>K M ND.>>K N M【答案】C【解析】222222(1)11,11,22()1,(0)0,()10,()0;()0221,()01N<M,C22x xx x M dx dx x x K M f x x e f f x e x f x x f x x x f x e ππππππππππ--=+=+⎡⎤∈-+≥>⎢⎣⎦'=+-==-⎡⎤⎡⎤''∈<∈->⎢⎥⎢⎥⎣⎦⎣⎦+⎡⎤∈-≤≤⎢⎥⎣⎦⎰⎰时,所以令当时,当时,所以时,有,从可有,由比较定理得故选6.()()222121011x x xx dx xy dy dx xy dy -----+-=⎰⎰⎰⎰A.53 B.56C.73D.76【答案】C 【解析】如图,22212107(1)(1)(1)3x x D xxDDdxxy dy dxxy dy xy dxdy dxdy S -----+-=-===⎰⎰⎰⎰⎰⎰⎰⎰.7.下列矩阵中,与矩阵110011001⎛⎫⎪⎪⎪⎝⎭相似的为A.111011001-⎛⎫⎪⎪⎪⎝⎭B.101011001-⎛⎫⎪⎪⎪⎝⎭C.111010001-⎛⎫⎪⎪⎪⎝⎭D.101010001-⎛⎫⎪⎪⎪⎝⎭【答案】A【解析】方法一:排除法令110011001Q⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,特征值为1,1,1,()2r E Q-=选项A:令111011001A-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,A的特征值为1,1,1,()0110012000r E A r-⎡⎤⎢⎥-=-=⎢⎥⎢⎥⎣⎦选项B:令101011001B-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,B的特征值为1,1,1,()0010011000r E B r⎡⎤⎢⎥-=-=⎢⎥⎢⎥⎣⎦选项C:令111010001C-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,C的特征值为1,1,1,()0110001000r E C r-⎡⎤⎢⎥-==⎢⎥⎢⎥⎣⎦选项B:令101010001D-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,D的特征值为1,1,1,()0010001000r E D r⎡⎤⎢⎥-==⎢⎥⎢⎥⎣⎦若矩阵Q 与J 相似,则矩阵E Q -与E J -相似,从而()()r E Q r E J -=-,故选(A )方法二:构造法(利用初等矩阵的性质)令110010001P ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,1110010001P --⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦1110111011011001001P P --⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,所以110111011011001001-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦与相似故选(A )8.设,A B 为n 阶矩阵,记()r X 为矩阵X 的秩,(,)X Y 表示分块矩阵,则A.()().r A AB r A = B.()().r A BA r A =C.()max{()()}.r A B r A r B =, D.()().TTr A B r A B =【答案】(A )【解析】(,)(,)[(,)]()r E B n r A AB r A E B r A =⇒==故选(A )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.9.2lim [arctan(1)arctan ]x x x x →+∞+-=____________.【答案】1【解析】原式221lim 1,(,1)1x xx x εε→+∞=∈++拉格朗日中值定理.10.曲线22ln y x x =+在其拐点处的切线方程是__________________.【答案】43y x =-【解析】22ln y x x =+,定义域为{0}x x >,2'2y x x =+,22''2y x=-,令''0y =,则01x =±,由于0x >,故01x =,故拐点为(1,1),0'()4y x =,则过拐点(1,1)的切线方程为14(1)y x -=-即43y x =-.11.25143dx x x +∞=-+⎰________________________.【答案】1ln 22【解析】25143dx x x +∞=-+⎰51(3)(1)dx x x +∞--⎰5111()231dx x x +∞=---⎰513ln21x x +∞-=-1353lim ln ln 2151x x x →+∞--=---1ln 22=12.曲线33cos sin x t y t⎧=⎪⎨=⎪⎩,在4t π=对应点处的曲率为______________.【答案】23【解析】22sin cos 'tan 3cos (sin )t ty t t t -==--,4'1t y π==-,2244sec 1''3cos sin 3cos sin t t y t t t t π=-==-,4''323()2t y π===,3322242''233(1')(11)y k y ===++.13.设函数(,)z z x y =由方程1ln z z exy -+=确定,则1(2,)2zx ∂=∂____________.【答案】14【解析】根据题意,得1z(2,)12=,对方程两边同时对x 偏导数并讲点代入,得1(2,)2zx ∂=∂14.14.设A 为3阶矩阵,123,,ααα为线性无关的向量组.若11232A αααα=++,2232A ααα=+,323A ααα=-+,则A 的实特征值为_______________.【答案】2【解析】123123123200(,,)(,,)(,,)111121A A A A ααααααααα⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦123,,ααα 线性无关,()123,,P ααα∴=可逆,1200111121P AP B-⎡⎤⎢⎥∴=-=⎢⎥⎢⎥⎣⎦A B ∴与相似,特征值相等()()22230E B λλλλ-=--+=⇒实特征值2λ=三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.15.(本题满分10分)求不定积分2arctan ⎰xe.【答案】32211(tan (1)23x x e arc e C--+【解析】()2222223221arctan 211(arctan )2111(arctan )21=(arctan )211=(arctan 123x x x xx x x x x x x x e e e e e e e C ==⋅+-=----+⎰⎰原式x x ,22,1,ln(1)x t e t x t ==+=+3222322(1)211(1)1)2133xxx t t dt t dt t t C e C t t +=⋅=+=++=-++⎰⎰故原式32211((1)23x x e arc e C=--+16.(本题满分10分)已知连续函数()f x 满足20()()xxf t dt tf x t dt ax +-=⎰⎰.(I )求()f x ;(II )若()f x 在区间[0,1]上的平均值为1,求a 的值。
2018考研数学二真题及答案解析2018考研数学二真题及答案解析2018年考研数学二真题是考研数学科目中的重要一环。
对于考生来说,熟悉并掌握真题及答案解析是备考的关键。
本文将对2018年考研数学二真题进行解析,帮助考生更好地备考。
第一部分:选择题选择题是考研数学二真题中的重要组成部分。
2018年考研数学二选择题主要涉及到概率、统计、线性代数、高等数学等知识点。
下面我们就对其中一道选择题进行解析。
题目:设随机变量X的概率密度为f(x)={cx^2, 0<x<10, 其他}其中c为常数,则P(X<1/2)的值为()A. 1/6B. 1/8C. 1/10D. 1/12解析:根据题目中给出的概率密度函数,我们可以求出c的值。
由于概率密度函数的积分等于1,我们可以得到∫[0,1]cx^2dx=1。
解这个积分方程,得到c=6。
接下来,我们需要求解P(X<1/2)。
由于X的概率密度函数在0<x<1之间为cx^2,我们可以通过求解积分∫[0,1/2]cx^2dx来得到P(X<1/2)的值。
计算∫[0,1/2]cx^2dx,得到P(X<1/2)=∫[0,1/2]6x^2dx=6/8=3/4。
所以,P(X<1/2)的值为3/4,答案选项为D。
第二部分:填空题填空题是考研数学二真题中的另一个重要组成部分。
2018年考研数学二填空题主要涉及到微积分、概率、统计等知识点。
下面我们就对其中一道填空题进行解析。
题目:设X1,X2,...,Xn为来自总体X的一个样本,其概率密度为f(x)={c(1-x^2), -1<x<10, 其他}其中c为常数,若X1,X2,...,Xn相互独立,则c的值为________。
解析:根据题目中给出的概率密度函数,我们可以求出c的值。
由于概率密度函数的积分等于1,我们可以得到∫[-1,1]c(1-x^2)dx=1。
解这个积分方程,得到c=3/4。
(
全国统一服务热线:400—668—2155
1
Born to win
2018年全国硕士研究生入学统一考试数学二试题解析
一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若2
1
2
lim()
1x
x x e ax bx →++=,则( )
()A 1
,12
a b ==- ()B 1,12a b =-=-
()C 1,12a b == ()D 1
,12
a b =-=
【答案】B
(2)下列函数中,在0x =处不可导是( )
()()()()sin ()()()cos ()A f x x x B f x x x
C f x x
D f x x
==
==
【答案】D
(3)设函数10()10x f x x -<⎧=⎨≥⎩,21
()100ax x g x x
x x b x -≤-⎧⎪
=-<<⎨⎪-≥⎩
,若()()f x g x +在R 上连续,则( ) ()A 3,1a b == ()B 3,2a b == ()C 3,1a b =-= ()D 3,2a b =-=
【答案】D
(4)设函数()f x 在[0,1]上二阶可导,且
1
()0f x dx =⎰
,则
(A )当()0f x '<时, 1()02f < (B )当()0f x ''<时, 1()02f < (C )当()0f x '>时, 1()02f < (D )当()0f x '>时, 1
()02
f <
【答案】D
(5)设22
22(1)1x M dx x π
π-+=+⎰,22
2
21x x N dx e ππ-+=⎰,22
(1cos )K x dx π
π-
=+⎰,则,,M N K 的大小关系为 (A )M N K >> (B )M K N >> (C )K M N >> (D )K N M >>
【答案】C
2 2
全国统一服务热线:400—668—2155
Born to win!
精勤求学 自强不息
(6)
2
2
21
21
(1)(1)x x x
x
dx xy dy dx xy dy -----+-=⎰
⎰
⎰⎰
(A )
53
(B )
56
(C )
73
(D )
76
【答案】C
(7)下列矩阵中,与矩阵110011001⎛⎫ ⎪ ⎪ ⎪⎝⎭
相似的为 111()011001A -⎛⎫ ⎪ ⎪ ⎪⎝⎭101()011001B -⎛⎫ ⎪ ⎪ ⎪⎝⎭111()010001C -⎛⎫ ⎪ ⎪ ⎪⎝⎭101()010001D -⎛⎫
⎪ ⎪
⎪⎝⎭
【答案】A
(8)设,A B 为n 阶矩阵,记()r X 为矩阵X 的秩,()X Y 表示分块矩阵,则
(A )()()r A AB r A = (B )()()r A BA r A = (C )()max{(),()}r A B r A r B = (D )
()()T T r A B r A B =
【答案】A
二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 2lim [arctan(1)arctan ]x x x x →+∞
+-=_______
(10) 曲线2
2ln y x x =+在其拐点处的切线方程是______ (11)
25
1
43
dx x x +∞
=-+⎰
_______
(12) 曲线3
3
cos sin x t
y t
⎧=⎪⎨=⎪⎩在4t π=对应点的曲率为 (13)设函数(,)z z x y =由方程1
ln z z e
xy -+=确定,则
1(2,)2
______z
x
∂=∂
(14)设
A 为
3
阶矩阵,123,,ααα为线性无关的向量组,若
(
全国统一服务热线:400—668—2155
3
Born to win
11232233232,2,A A A αααααααααα=++=+=-+,则A 的实特征值为
【答案】2
三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.
(15)(本题满分10分)求不定积分21x x
e e dx -⎰
(16)(本题满分10分)已知连续函数()f x 满足
20
()()x
x
f t dt tf x t dt ax +-=⎰
⎰,
(1)求()f x ,(2) 若()f x 在区间[0,1]上的平均值为1,求a 的值
(17)(本题满分10分)设平面区域D 由曲线sin ,(02)1cos ,x t t t y t π=-⎧≤≤⎨=-⎩
与x 轴围成,计算二重积分
(2)D
x y dxdy +⎰⎰
(18)(本题满分10分)已知常数ln21k ≥-.证明2
(1)(ln 2ln 1)0x x x k x --+-≥
(19)(本题满分10分)将长为2m 的铁丝分成三段,依次围成圆、正方形与正三角形,三个图形的面积
之和是否存在最小值?若存在,求出最小值。
(20)(本题满分11分)已知曲线2
4:(0),9
L y x x =≥点(0,1).A 。
设P 是L 上的动点,S 是直线OA 与直线AP 及曲线L 所围图形的面积。
若P 运动到点(3,4)时沿x 轴正向的速度是4,求此时S 关于时间t
的变化率。
(21)(本题满分11分)设数列{}n x 满足1
10,1(1,2,)n n x x n x x e
e n +>=-=。
证明{}n x 收敛,并求lim n n x →∞
(22)(本题满分11分)设实二次型2
2
1231232313(,,)()()()f x x x x x x x x x ax =-+++++其中a 为参数(1)求123(,,)0f x x x =的解(2)求123(,,)f x x x 的规范形
(23)(本题满分11分)已知a 是常数,且矩阵1213027a A a ⎛⎫
⎪= ⎪
⎪
-⎝⎭
可经初等变换化为矩阵12011111a B ⎛⎫ ⎪= ⎪ ⎪-⎝⎭ (1)求a (2)求满足AP B =的可逆矩阵P。