中衡油气分离器【设计明细】计算
- 格式:doc
- 大小:939.00 KB
- 文档页数:15
油气分离器的设计喷油螺杆压缩机中,在压缩气体的同时,大量的油被喷入压缩机的齿间容积。
这些油和被压缩气体形成的油气混合物,在经历相同的压缩过程后,被排到机组的油气分离器中。
油气分离器是喷油螺杆压缩机机组系统中的主要设备之一。
为了降低机组排气中的含油量和循环使用机组中的润滑油,必须利用油气分离器把润滑油有效地从气体中分离出来。
一、油气分离原理与方法1.油气混合物特性在由被压缩气体和润滑油形成的油气混合物中,润滑油以气相和液相两种形式存在。
处于气相的润滑油是由液相的润滑油蒸发所产生的,其数量的多少除取决于油气混合物的温度和压力外,还与润滑油的饱和蒸气压有关。
油气混合物的温度和压力愈高,则气相的油愈多;饱和蒸气压愈低,则气相的油愈少。
气相油的特性与其他气体类似,无法用机械方法予以分离,只能用化学方法去清除。
在一般的运行工况下,油气混合物中处于气相的润滑油很少。
一是因为在通常的排气温度下,混合物中润滑油蒸气的分压力很低;二是由于润滑油在从喷入到分离的时间很短,没有足够的时间达到气相和液相间的平衡状态。
处于液相的润滑油占了所有被喷入油中的绝大部分,但这种液相油滴的尺寸范围分布很广。
大部分油滴直径通常处在1~50μm,少部分的油滴可小至与气体分子具有同样的数量级,仅有0.01μm。
显然,大油滴和小油滴的性质会有较大的差异。
在重力作用下,只要油气混合物的流速不是太快,大的油滴最终都会落到油气分离器的底部。
油滴直径越小,其下落的时间就越长。
对于直径很小的润滑油微粒,却可以长时间悬浮在空气中,无法在自身重力的作用下,从气体中被分离出来。
油气分离器的作用,就是尽可能地把这部分油滴分离出来。
2.油气分离方法按分离机理的不同,喷油螺杆压缩机机组中采用两种不同的油气分离方法。
一种称为机械法,即碰撞法或旋风分离法,它是依靠油滴自身重力以及离心力的作用,从气体中分离直径较大的油滴。
实际测试表明,对于直径大于1μm的油滴,都可采用机械法被有效地分离出来。
摘要为了满足油气井产品计量、矿场加工、储存和管道输送的需要,气、液混合物要进行气液分离.本文是某低温集气站中分离器的设计与计算,选用立式分离器与旋风式两种。
立式分离器是重力式分离器的一种,其作用原理是利用生产介质和被分离物质的密度差来实现基本分离.旋风式分离器的分离原理是由于气、液质量不同,两相在分离器筒内所产生的离心力不同,液滴被抛向筒壁聚集成较大液滴,在重力作用下沿筒壁向下流动,从而完成气液两相分离。
分离器的尺寸设计根据气液混合物的压力﹑温度以及混合物本身的性质计算确定。
最后确定分离器的直径、高度、进出口直径。
关键词:立式两相分离器旋风式分离器直径高度进出口直径广安1#低温集气站的基本资料:出站压力:6MPa 天然气露点:5C<-︒气体组成(%):C1=85.33C2=2.2C3=1。
7C4=1.56C5=1.23C6=0。
9H 2S=6.3 CO2=0。
78凝析油含量:320/g m0.78lS=1.压缩因子的计算①天然气的相对分子质量∑=iMiMϕ式中 M-—天然气的相对分子质量; i ϕ—-组分i 的体积分数; Mi-—组分i 的相对分子质量。
则计算得, M=20.1104② 天然气的相对密度天然气的相对密度用S 表示,则有:S=空天M M 式中 M 天、M 空分别为天然气的相对分子质量。
已知:M 空=28。
97 所以,天然气相对密度S=空天M M =20.1104/28。
97=0。
694 ③ 天然气的拟临界参数和拟对比参数 对于凝析气藏气:当 0.7S < 时,拟临界参数:4.7780.248106.1152.21pc pc P S T S =-=+ 计算得,4.6211.7pc pc P T ==天然气的拟对比参数:pr pcpr pcP P P T T T ==a .1、2号分离器:1110;287a P MP T K == 110 2.174.6pr P ==; 12871.36211.7pr T == b 。
电除尘器的设计计算姓名:武杰班级:B环设111学号:1111702119指导教师:刘本志1. ω值的确定对于电厂锅炉的除尘器,影响ω值的因素很多,煤的含硫量是影响ω值的主要因素。
当煤的含硫量大于%5.0,小于%2,粉尘中O Na 2含量大于%3.0,电晕线采用芒刺型电极,本设计极间距取为300mm 时,可按下式计算ω:ω625.04.7KS = (cm/s )式中,S ——煤的含硫量(%);本设计中含硫量为0.96%K ——平均粒度影响系数;其值按表1选定平均a 1002211nn a W a W a W +++=式中,1W , ,2W ——粒度为1a , ,2a 组成的百分比; 1a , ,2a ——粒度平均粒径;A 平均 =(40x10.9+30x18.4+20x20.2+12.5x28.8+7.5x15.9+2.5x5.8)/100 =18.8575 (um) 查表1,K 取为0.99则,ω=7.4x0.99x0.96^0.628=7.14145cm/s2.计算所需收尘极面积A电除尘器工作时的实际条件(如烟气的温度,性质,风量,风压等)与设计时设定的条件存在的差异,或者选取某些数值(如驱进速度,选定的振打周期以及气流分布等)与实际有出入,因此在电除尘器的设计当中,必须考虑一定的储备能力。
从Deutsch 效率公式可知,设计时改变A ,Q ,η,ω四个数中的任何一个,便可使除尘器的工作能力有所储备。
本设计取除尘效率为99.2%A K Q ⋅--=ωη)1ln( (m 2)式中,A ——所需收尘极面积; Q ——被处理烟气量; η——除尘器要求的除尘效率; ω——粉尘驱进速度(m/s ); K ——储备系数。
按一台除尘器计算: 则Q 为230000 m3/h 。
取除尘效率为99.2%,K 取为1;则,A=-230000ln(1-0.992)/3600x0.074145x1=4168.59 m23.初选电场断面F 'F '=)3600(νQ式中:Q ——被处理的烟气量 (m3/h )ν——电场风速(m/s )电厂风速的确定;积尘区风速变化较大,但除尘器内平均流速却是设计和运行的主要参数。
油气分离原理仪器流程计量方法计量操作步骤下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!油气分离原理仪器流程计量方法计量操作步骤引言在石油和天然气工业中,油气分离是一个至关重要的过程。
油气集输课程设计——分离器设计计算(两相及旋风式)重庆科技学院《油气集输工程》课程设计报告学院:石油与天然气工程学院专业班级:学生姓名:学号:设计地点(单位)重庆科技学院石油科技大楼设计题目:某低温集气站的工艺设计——分离器设计计算(两相及旋风式)完成日期: 年月日指导教师评语:成绩(五级记分制):指导教师(签字):摘要天然气是清洁、高效、方便的能源。
天然气按在地下存在的相态可分为游离态、溶解态、吸附态和固态水合物。
只有游离态的天然气经聚集形成天然气藏,才可开发利用。
它的使用在发展世界经济和提高环境质量中起着重要作用。
因此,天然气在国民经济中占据重要地位。
天然气也同原油一样埋藏在地下封闭的地质构造之中,有些和原油储藏在同一层位,有些单独存在。
对于和原油储藏在同一层位的天然气,会伴随原油一起开采出来。
天然气分别通过开采、处理、集输、配气等工艺输送到用户,每一环节都是不可或缺的一部分。
天然气是从气井采出时均含有液体(水和液烃)和固体物质。
这将对集输管线和设备产生了极大的磨蚀危害,且可能堵塞管道和仪表管线及设备等,因而影响集输系统的运行。
气田集输的目的就是收集天然气和用机械方法尽可能除去天然气中所罕有的液体和固体物质。
本文主要讲述天然气的集输工艺中的低温集输工艺中的分离器的工艺计算。
本次课程设计我们组的课程任务是——某低温集气站的工艺设计。
每一组中又分为了若干个小组,我所在小组的任务是——低温集气站分离器计算。
在设计之前要查低温两相分离器设计的相应规范,以及注意事项,通过给的数据资料,确定在设计过程中需要使用公式,查询图表。
然后计算出天然气、液烃的密度,天然气的温度、压缩因子、粘度、阻力系数、颗粒沉降速度,卧式、立式两相分离器的直径,进出管口直径,以及高度和长度。
把设计的结果与同组的其他设备连接起来,组成一个完整的工艺流程。
关键字:低温立式分离器压缩因子目录摘要 (1)1.设计说明书 (4)1.1 概述 (4)1.1.1 设计任务 (4)1.1.2 设计内容及要求 (4)1.1.3 设计依据以及遵循的主要规范和标准 (4)1.2 工艺设计说明 (4)1.2.1 工艺方法选择 (4)1.2.2 课题总工艺流程简介 (5)2.计算说明书 (5)2.1 设计的基本参数 (5)2.2 需要计算的参数 (5)3.立式两相分离器的工艺设计 (6)3.1 天然气的相对分子质量 (6)3.2 天然气的相对密度 (6)3.3 压缩因子的计算 (6)3.4 天然气流量的计算 (9)3.5液滴沉降速度 (10)3.5.1天然气密度的计算 (10)3.5.2临界温度、压力的计算 (11)3.5.3天然气粘度的计算 (11)3.5.4 天然气沉降速度的计算 (13)3.6 立式两相分离器的计算 (14)3.6.1 立式两相分离器直径的计算 (14)3.6.2 立式两相分离器高度的计算 (15)3.6.3 立式两相分离器进出口直径的计算 (15)3.7 管径确定 (16)3.8 壁厚的确定 (16)3.9 丝网捕雾器 (17)3.10 设备选型 (17)4.旋风分离器的工艺设计 (18)4.1.1根据进、出口速度检验K值及最后结果 (19)4.2 压力降的计算 (21)结论 (23)参考文献 (24)1 设计说明书遵循设计任务的要求,完成某低温集气站的工艺设计——分离器计算(两相及旋风)。
目录一、课程设计的基本任务 (2)(一)设计的目的、意义 (2)(二)设计要求 (2)(三)工艺计算步骤 (2)二、课程设计理论基础 (2)(一)分离器综述 (2)(二)油气分离器原理 (2)(三)从气泡中分离出油滴的计算 (3)(四)气体的允许速度 (5)(五)分离器结构尺寸计算 (6)三、实例计算 (7)(一)基础数据 (7)(二)计算分离器的结构尺寸 (8)四、结束语 (19)附录计算程序 (20)一、课程设计的基本任务(一)设计的目的、意义目的:在老师指导下,根据给定的原油组成、分离条件、停留时间等基础数据,按规范要求独立地完成分离器结构尺寸设计。
意义:为了满足计量、储存的需要,油井产品从井口出来后,首先要进行分离,分离的场所即油气分离器。
分离后所得油、气的数量和质量除了与油气的组成、分离压力、分离温度有关外,也与油气在分离器内停留的时间有关,当油气的组成、分离压力、分离温度及处理量一定时,分离效果由分离器的尺寸决定,合理的设计或选择分离器的尺寸对改善分离效果非常必要。
(二)设计要求1.初分离段应能将气液混合物中液体大部分分离出来2.储液段要有足够的容积,以缓冲来油管线的液量波动和油气自然分离3.有足够的长度和高度,是直径100um以上的油滴靠重力沉降4.在分离器的主体部分应有减少紊流的措施,保证液滴沉降5.要有捕集的器除雾,以捕捉二次分离后气体中更小的液滴6.要有压力和液面控制(三)工艺计算步骤1.根据油气平衡计算中所确定的气液处理量、物性、分离压力、分离温度等基础资料,并参照现场具体情况选择分离器类型。
2.按照从原油中分出气体的要求,由原油性质和操作经验确定原油在分离器内的停留时间,对缓冲分离器需考虑缓冲时间,据此初步确定分离器尺寸。
3.按照从气体中分出油滴的要求,计算100微米的油滴在气相中的匀速沉降速度Wo ,分离器允许的气体流速wg ,分离器直径D,长度l (或高度H)等尺寸。
摘要为了满足油气井产品计量、矿场加工、储存和管道输送的需要,气、液混合物要进行气液分离。
本文是某低温集气站中分离器的设计与计算,选用立式分离器与旋风式两种。
立式分离器是重力式分离器的一种,其作用原理是利用生产介质和被分离物质的密度差来实现基本分离。
旋风式分离器的分离原理是由于气、液质量不同,两相在分离器筒内所产生的离心力不同,液滴被抛向筒壁聚集成较大液滴,在重力作用下沿筒壁向下流动,从而完成气液两相分离。
分离器的尺寸设计根据气液混合物的压力﹑温度以及混合物本身的性质计算确定。
最后确定分离器的直径、高度、进出口直径。
关键词:立式两相分离器 旋风式分离器 直径 高度 进出口直径广安1#低温集气站的基本资料:出站压力:6MPa 天然气露点:5C <-︒气体组成(%):C 1=85.33 C 2=2.2 C 3=1.7 C 4=1.56 C 5 =1.23 C 6=0.9H 2S=6.3 CO 2=0.78凝析油含量:320/g m 0.78l S =1. 压缩因子的计算① 天然气的相对分子质量 ∑=iMi M ϕ式中 M ——天然气的相对分子质量; i ϕ——组分i 的体积分数; Mi ——组分i 的相对分子质量。
则计算得, M=20.1104② 天然气的相对密度天然气的相对密度用S 表示,则有:S=空天M M 式中 M 天、M 空分别为天然气的相对分子质量。
已知:M 空=28.97 所以,天然气相对密度S=空天M M =20.1104/28.97=0.694 ③ 天然气的拟临界参数和拟对比参数 对于凝析气藏气:当 0.7S < 时,拟临界参数:4.7780.248106.1152.21pc pc P S T S =-=+ 计算得,4.6211.7pc pc P T ==天然气的拟对比参数:pr pcpr pcP P P T T T ==a .1、2号分离器:1110;287a P MP T K == 110 2.174.6pr P ==; 12871.36211.7pr T == b. 3号分离器:3310;287P MPa T K == 33103042.17; 1.444.6211.7pr pr P T ====c. 4号分离器:4410;303P MPa T K == 44103032.17; 1.434.6211.7pr pr P T ==== d. 5号分离器:556;257P MPa T K == 5562571.3; 1.24.6211.7pr pr P T ====④ 计算压缩因子天然气的压缩因子和拟对比压力,拟对比温度有如下的函数关系: (,)pr pr Z P T ϕ=天然气压缩因子图版 根据算的的参数查上图得,123450.72;0.78;0.77;0.70Z Z Z Z Z =====2. 天然气密度在某压力,温度下,天然气的密度ρ=ZTpM314.8式中 ρ——天然气在任意压力、温度下的密度,kg/m 3P ——天然气的压力(绝),kPa; M ——天然气的相对分子质量; Z ——天然气的压缩因子; T ——天然气绝对温度,K 根据公式可计算, 3121000020.1104117.1()8.3140.72287g g kg m ρρ⨯===⨯⨯331000020.1104102.0()8.3140.78304g kg m ρ⨯==⨯⨯341000020.1104103.7()8.3140.77303g kg m ρ⨯==⨯⨯35600020.110480.7()8.3140.70257g kg m ρ⨯==⨯⨯3. 气体流量由已知日产量和流程设计课知各分离器的日处理量分别为:341323334352210()182********()14();19()1822201671419116()g g g g g mQ dm Q dmmQ Q ddm Q d=⨯=++++====++++++=根据公式000T Z Q P ZT PQ g=推得:Q=293101325.086400TZP Q g ⨯⨯即分离器的流量 计算得各分离器的流量分别为:33312333450.018;0.067;0.0130.018;0.139mmmQ Q Q sss mmQ Q ss=====4. 粘度的求解①.根据天然气的相对密度S=0.694,查天然气的假临界特性图得到天然气的临界温度和临界压力:218;4570pc c T P KPa ==天然气的假临界特性图②.查下图得出天然气在101.325KPa ,不同温度条件下的粘度。
多效蒸发器设计计算(一) 蒸发器的设计步骤多效蒸发的计算一般采用迭代计算法(1) 根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。
(2) 根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。
(3) 根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温差。
(4) 根据蒸发器的焓衡算,求各效的蒸发量和传热量。
(5) 根据传热速率方程计算各效的传热面积。
若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。
(二) 蒸发器的计算方法下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。
1.估值各效蒸发量和完成液组成总蒸发量 (1-1)在蒸发过程中,总蒸发量为各效蒸发量之和W = W 1 + W 2 + … + W n (1-2) 任何一效中料液的组成为(1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即(1-4) 对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。
例如,三效W1:W2:W3=1:1.1:1.2 (1-5)以上各式中 W — 总蒸发量,kg/h ;W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ;x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。
2.估值各效溶液沸点及有效总温度差欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。
即(1-6)式中— 各效加热蒸汽压强与二次蒸汽压强之差,Pa ;— 第一效加热蒸汽的压强,Pa ; )110x xF W -=(n W W i =ii W W W F Fx x ---=210n p p p k '-=∆1p ∆1p— 末效冷凝器中的二次蒸汽的压强,Pa 。
摘要为了满足油气井产品计量、矿场加工、储存和管道输送的需要,气、液混合物要进行气液分离。
本文是某低温集气站中分离器的设计与计算,选用立式分离器与旋风式两种。
立式分离器是重力式分离器的一种,其作用原理是利用生产介质和被分离物质的密度差来实现基本分离。
旋风式分离器的分离原理是由于气、液质量不同,两相在分离器筒内所产生的离心力不同,液滴被抛向筒壁聚集成较大液滴,在重力作用下沿筒壁向下流动,从而完成气液两相分离。
分离器的尺寸设计根据气液混合物的压力﹑温度以及混合物本身的性质计算确定。
最后确定分离器的直径、高度、进出口直径。
关键词:立式两相分离器 旋风式分离器 直径 高度 进出口直径广安1#低温集气站的基本资料:出站压力:6MPa 天然气露点:5C <-︒气体组成(%):C 1=85.33 C 2=2.2 C 3=1.7 C 4=1.56 C 5 =1.23 C 6=0.9H 2S=6.3 CO 2=0.78凝析油含量:320/g m 0.78l S =1. 压缩因子的计算① 天然气的相对分子质量 ∑=iMi M ϕ式中 M ——天然气的相对分子质量; i ϕ——组分i 的体积分数; Mi ——组分i 的相对分子质量。
则计算得, M=20.1104② 天然气的相对密度天然气的相对密度用S 表示,则有:S=空天M M 式中 M 天、M 空分别为天然气的相对分子质量。
已知:M 空=28.97 所以,天然气相对密度S=空天M M =20.1104/28.97=0.694 ③ 天然气的拟临界参数和拟对比参数 对于凝析气藏气:当 0.7S < 时,拟临界参数:4.7780.248106.1152.21pc pc P S T S =-=+ 计算得,4.6211.7pc pc P T ==天然气的拟对比参数:pr pcpr pcP P P T T T ==a .1、2号分离器:1110;287a P MP T K == 110 2.174.6pr P ==; 12871.36211.7pr T == b. 3号分离器:3310;287P MPa T K == 33103042.17; 1.444.6211.7pr pr P T ====c. 4号分离器:4410;303P MPa T K == 44103032.17; 1.434.6211.7pr pr P T ==== d. 5号分离器:556;257P MPa T K == 5562571.3; 1.24.6211.7pr pr P T ====④ 计算压缩因子天然气的压缩因子和拟对比压力,拟对比温度有如下的函数关系: (,)pr pr Z P T ϕ=天然气压缩因子图版 根据算的的参数查上图得,123450.72;0.78;0.77;0.70Z Z Z Z Z =====2. 天然气密度在某压力,温度下,天然气的密度ρ=ZTpM314.8式中 ρ——天然气在任意压力、温度下的密度,kg/m 3P ——天然气的压力(绝),kPa; M ——天然气的相对分子质量; Z ——天然气的压缩因子; T ——天然气绝对温度,K 根据公式可计算, 3121000020.1104117.1()8.3140.72287g g kg m ρρ⨯===⨯⨯331000020.1104102.0()8.3140.78304g kg m ρ⨯==⨯⨯341000020.1104103.7()8.3140.77303g kg m ρ⨯==⨯⨯35600020.110480.7()8.3140.70257g kg m ρ⨯==⨯⨯3. 气体流量由已知日产量和流程设计课知各分离器的日处理量分别为:341323334352210()182********()14();19()1822201671419116()g g g g g mQ dm Q dmmQ Q ddm Q d=⨯=++++====++++++=根据公式000T Z Q P ZT PQ g=推得:Q=293101325.086400TZP Q g ⨯⨯即分离器的流量 计算得各分离器的流量分别为:33312333450.018;0.067;0.0130.018;0.139mmmQ Q Q sss mmQ Q ss=====4. 粘度的求解①.根据天然气的相对密度S=0.694,查天然气的假临界特性图得到天然气的临界温度和临界压力:218;4570pc c T P KPa ==天然气的假临界特性图②.查下图得出天然气在101.325KPa ,不同温度条件下的粘度。
1234514313016T T CT C T C T C==︒=︒=︒=-︒ 12345,0.0098,0.0106,0.0105,0.0088mp smp s mp s mp sμμμμμ==⋅=⋅=⋅=⋅③.计算气体临界参数,从对比温度与临界温度关系图查出粘度比0μμ,算出气体的粘度。
a. 1,2号分离器: 1212287100001.32;2.192184570pr pr pr pr T T P P ====== 查得粘度比11.60μμ=气体粘度:512 1.600.0098 1.5710pa s μμ-==⨯=⨯⋅ b. 三号分离器: 33304100001.39;2.192184570pr pr T P ==== 查得粘度比31.45μμ= 气体粘度:53 1.450.0106 1.5410pa s μ-=⨯=⨯⋅ c. 四号分离器: 44303100001.39;2.192184570pr pr T P === 查得粘度比41.45μμ= 气体粘度:54 1.450.0105 1.5210pa s μ-=⨯=⨯⋅ d. 五号分离器: 5525760001.18; 1.312184570pr pr T P ==== 查得粘度比51.4μμ= 气体的粘度:55 1.40.0088 1.2310pa s μ-=⨯=⨯⋅5. 液滴沉降速度的计算① 计算水力阻力系数D C 根据经验公式:()()224Re3L L g gggd S f ρρμ-=式中 d L ——液滴的直径,m 。
(取100L d m μ=)L S ——凝析油的相对密度,kg/m 3g ρ——气体在操作下的密度,kg/ m 3 g μ——气体的粘度,pa ·s可得出, ()()()()1222212549.810780117.1117.1ReRe41153 1.5710f f --⨯⨯⨯-⨯===⨯⨯()()()12223549.810780102.0102.0Re38103 1.5410f --⨯⨯⨯-⨯==⨯⨯()()()12224549.810780103.7103.7Re39663 1.5210f --⨯⨯⨯-⨯==⨯⨯()()()12225549.81078080.780.7Re 48743 1.2310f --⨯⨯⨯-⨯==⨯⨯查液滴在气体中的阻力系数计算列线图,可知12345 1.51.61.551.4D D D D D C C C C C =====②.沉降速度液滴在分离器中的沉降速度按下式计算: ()43L L g g Dgd S C ρωρ-=计算出各分离器中液滴的沉降速度分别为:120.07ms ωω===30.074m s ω==40.074m s ω==50.09m s ω==6. 分离器尺寸计算①.立式两相分离器根据公式: D υηω==(η取0.8),可计算分离器的直径;一般立式重力分离器的高度取H=4D;取进口速度:115m sυ=,进口直径:1D = 取出口速度:210m sυ=,出口直径:2D =a. 一号分离器1111120.6440.64 2.560.040.05D mH m D mD ===⨯=====b. 二号分离器:3331320.540.5 2.00.030.04D mH mD mD ===⨯=====c. 三号分离器:30.5D m ==340.5 2.0H m =⨯=310.03D m ==320.04D ==d. 四号分离器:4441420.640.6 2.40.040.05D mH mD mD ===⨯=====e. 五号分离器:555152 1.64 1.6 6.40.120.13D mH mD mD ===⨯=====② 旋风式分离器尺寸计算根据公式:0.553.3910g TZQ D K P -⎛⎫=⨯⨯⨯ ⎪⎝⎭筒内流速:20.785g QD υ=进口流速:1214QD υπ=出口流速:2224QD υπ=旋风式分离器尺寸计算得步骤: Ⅰ. 令K=1,计算直径D.Ⅱ. 取进口管径10.47D D =,出口管径20.67D D =Ⅲ. 验算进口流速是否在15~25m s ,出口流速是否在5~15m sⅣ. 验算筒内流速是否在2.45~4.43m s若不符合上述条件,则需要另取K 值进行计算,知道全部符合条件。
a. 一号分离器0.54511112112122122870.7222103.391010.072100.470.0720.0340.670.0720.04840.01819.83.140.03440.01810.03.140.0480.0184.420.7850.072g D mD mD mm s m s m s υυυ-⎛⎫⨯⨯⨯=⨯⨯⨯= ⎪⎝⎭=⨯==⨯=⨯==⨯⨯==⨯==⨯均符合条件,故1110.072;40.288D m L D m === b. 二号分离器0.54522870.7283103.391010.1410D m -⎛⎫⨯⨯⨯=⨯⨯⨯= ⎪⎝⎭210.470.140.066D m =⨯=220.670.140.094D m =⨯=21240.06719.63.140.066m s υ⨯==⨯ 22240.0679.73.140.094m s υ⨯==⨯ 120.0674.40.7850.14g m s υ==⨯ 均符合条件,故2220.14;40.56D m L D m ===c. 三号分离器0.54533142412322323040.7814103.391010.06100.470.060.030.670.070.0540.01825.03.140.0340.01310.33.140.040.0134.420.7850.06g D mD m D mm s m s m s υυυ-⎛⎫⨯⨯⨯=⨯⨯⨯= ⎪⎝⎭=⨯==⨯=⨯==⨯⨯==⨯==⨯均符合条件,故3330.06;40.24D m L D m === d. 四号分离器0.54543040.7719103.391010.0710D m -⎛⎫⨯⨯⨯=⨯⨯⨯= ⎪⎝⎭410.470.070.03D m =⨯=420.670.070.05D m =⨯= 41240.01825.03.140.03m s υ⨯==⨯42240.0189.23.140.05m s υ⨯==⨯420.0184.40.7850.07m s υ==⨯ 均满足条件,故4440.07;40.28D m L D m === e. 五号分离器0.54552570.7116103.391010.1510D m -⎛⎫⨯⨯⨯=⨯⨯⨯= ⎪⎝⎭510.470.150.07D m =⨯= 520.670.150.1D m =⨯= 51240.13936.03.140.07m s υ⨯==⨯ 不符合条件,另取K 值再次进行计算。