人教版高中数学必修一《基本初等函数》章末复习提升及解答
- 格式:doc
- 大小:367.50 KB
- 文档页数:7
数学1(必修)第二章 基本初等函数(1)一、选择题1 函数]1,0[)1(log )(在++=x a x f a x 上的最大值和最小值之和为a ,则a 的值为( ) A41 B 21 C2 D 4 2 已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是( ) A (0,1) B (1,2) C (0,2)D ∞[2,+) 3 对于10<<a ,给出下列四个不等式①)11(log )1(log a a a a +<+ ②)11(log )1(log a a a a +>+ ③a a a a 111++< ④a a a a 111++>其中成立的是( )A ①与③B ①与④C ②与③D ②与④4 设函数1()()lg 1f x f x x =+,则(10)f 的值为( )A 1B 1-C 10D 101 5 定义在R 上的任意函数()f x 都可以表示成一个奇函数()g x 与一个 偶函数()h x 之和,如果()lg(101),x f x x R =+∈,那么( )A ()g x x =,()lg(10101)x x h x -=++B lg(101)()2x x g x ++=,x lg(101)()2x h x +-= C ()2x g x =,()lg(101)2x x h x =+- D ()2x g x =-, lg(101)()2x x h x ++= 6 若ln 2ln 3ln 5,,235a b c ===,则( ) A a b c << B c b a <<C c a b <<D b a c <<二、填空题1 若函数()12log 22++=x ax y 的定义域为R ,则a 的范围为__________2 若函数()12log 22++=x ax y 的值域为R ,则a 的范围为__________3 函数y =______;值域是______4 若函数()11x m f x a =+-是奇函数,则m 为__________5 求值:22log 3321272log 8-⨯+=__________ 三、解答题1 解方程:(1)40.2540.25log (3)log (3)log (1)log (21)x x x x -++=-++(2)2(lg )lg 1020x x x +=2 求函数11()()142x x y =-+在[]3,2x ∈-上的值域 3 已知()1log 3x f x =+,()2log 2x g x =,试比较()f x 与()g x 的大小 4 已知()()110212x f x x x ⎛⎫=+≠ ⎪-⎝⎭, ⑴判断()f x 的奇偶性; ⑵证明()0f x >(数学1必修)第二章 基本初等函数(1)参考答案一、选择题1 B 当1a >时1log 21,log 21,,2a a a a a ++==-=与1a >矛盾; 当01a <<时11log 2,log 21,2a a a a a ++==-=; 2 B 令[]2,0,0,1u ax a =->是的递减区间,∴1a >而0u >须恒成立,∴min 20u a =->,即2a <,∴12a <<;3 D 由10<<a 得111,11,a a a a<<+<+②和④都是对的; 4 A 11(10)()1,()(10)1,(10)(10)111010f f f f f f =+=-+=-++ 5 C ()()(),()()()()(),f x g x h x f x g x h x g x h x =+-=-+-=-+6 C a b c =====二、填空题1 (1,)+∞ 2210ax x ++>恒成立,则0440a a >⎧⎨∆=-<⎩,得1a > 2 []0,1 221ax x ++须取遍所有的正实数,当0a =时,21x +符合条件;当0a ≠时,则0440a a >⎧⎨∆=-≥⎩,得01a <≤,即01a ≤≤3 [)[)0,,0,1+∞ 111()0,()1,022x x x -≥≤≥;11()0,01()1,22x x >≤-<4 2 ()()11011x x m m f x f x a a --+=+++=--5 19 293(3)18lg1019-⨯-+=+=三、解答题1 解:(1)40.2540.25log (3)log (3)log (1)log (21)x x x x -++=-++ 33121x x x x -+=-+,得7x =或0x =,经检验0x =为所求 (2)2(lg )lg lg lg lg 1020,(10)20x x x x x x x +=+= 10,x =1或10,经检验10,x =1或10为所求 2 解:21111()()1[()]()14222x x x x y =-+=-+ 而[]3,2x ∈-,则11()842x ≤≤ 当11()22x =时,min 34y =;当1()82x =时,max 57y = ∴值域为3[,57]43 解:3()()1log 32log 21log 4x x x f x g x -=+-=+, 当31log 04x +>,即01x <<或43x >时,()()f x g x >; 当31log 04x +=,即43x =时,()()f x g x =; 当31log 04x +<,即413x <<时,()()f x g x < 4 解:(1)1121()()212221x x x x f x x +=+=⋅-- 2121()()221221x x x x x x f x f x --++-=-⋅=⋅=--,为偶函数 (2)21()221x x x f x +=⋅-,当0x >,则210x ->,即()0f x >; 当0x <,则210x -<,即()0f x >,∴()0f x >。
基本初等函数章末复习知识框架:学习内容:1.指数与指数幂的运算1)整数指数幂的概念.(1)正整数指数幂的意义:(2)零指数幂:a0=1(a≠0).(3)负整数指数幂:a-n=1a n(a≠0,n∈N*).2)整数指数幂的运算性质:①a m·a n=a m+n;②(a m)n=a mn;③(ab)n=a n b n.3)如果x n=a,那么x叫做a的n次方根,其中n>0,且n∈N*.(1)当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.此时a的n次方根用符号na表示.(2)方根的性质:①当n是奇数时,na n=a;②当n是偶数时,na n=|a|=⎩⎪⎨⎪⎧a(a≥0),-a(a<0).4)分数指数幂.(1)正数的分数指数幂的意义:设a>0,m,n∈N*,n>1,规定(2)0的正分数指数幂等于0,0的负分数指数幂没有意义.5)有理指数幂的运算性质:①a r·a s=a r+s(a>0,r,s∈Q);②(a r)s=a rs(a>0,r,s∈Q);③(ab)r=a r b r(a>0,b>0,r∈Q).2.指数函数及其性质1)函数y=a x(a>0,且a≠1)叫做指数函数,其中x是自变量.2)指数函数y=a x(a>0,且a≠1)的图象和性质(见下表):R R3.对数与对数运算1)如果a x=N(a>0,a≠1),那么数x叫做以a为底N的对数.记作x=log a N,其中a叫做对数的底数,N叫做真数.对数式的书写格式:(1)以10为底的对数叫做常用对数,并把常用对数log10N简记为lg N;(2)以无理数e=2.718 28……为底的对数,叫自然对数,并把自然对数log e N简记为ln N.2)指数与对数的关系:设a>0,且a≠1,则a x=N⇔log a N=x.3)对数的性质.(1)在指数式中N>0,故0和负数没有对数,即式子log a N中N必须大于0;(2)设a>0,a≠1,则有a0=1,所以log a1=0,即1的对数为0;(3)设a>0,a≠1,则有a1=a,所以log a a=1,即底数的对数为1.4)对数恒等式.(1)如果把a b=N中的b写成log a N形式,则有(2)如果把x=log a N中的N写成a x形式,则有log a a x=x.5)对数的运算性质.设a>0,a≠1,M>0,N>0,则有:(1)log a(MN)=log a M+log a N,简记为:积的对数=对数的和;(2)log a MN=log a M-log a N,简记为:商的对数=对数的差;(3)log a M n=n log a M(n∈R).4.对数函数及其性质1)函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).2)对数函数的图象、性质(见下表):R+R+(1)当a>1时,若x>1,则log a x>0,若0<x<1,则log a x<0;(2)当0<a<1时,若0<x<1,则log a x>0,若x>1,则log a x<0.3)函数y=a x与y=log a x(a>0,且a≠1)互为反函数,互为反函数的两个函数的图象关于直线y=x对称.5.幂函数1)形如y =x α(α∈R)的函数叫做幂函数,其中α为常数.只研究α为有理数的情形.2)函数y x =2y x =3y x =12y x =1y x -=的图像如下图3)幂函数的性质.(1)幂函数在(0,+∞)都有定义,并且图象都过点(1,1).(2)当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸.(3)当α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于+∞时,图象在x 轴上方无限地逼近x 轴正半轴.4)图象形状:当α>0(α≠1)时,图象为抛物线型;当α<0时,图象为双曲线型;当α=0,1时,图象为直线型.题型一 指数、对数的运算1.指数、对数的运算应遵循的原则:指数式的运算首先注意化简顺序,一般负指数先转化成正指数,根式化为分数指数幂运算,其次若出现分式则要注意分子、分母因式分解以达到约分的目的.对数运算首先注意公式应用过程中范围的变化,前后要等价,熟练地运用对数的三个运算性质并结合对数恒等式,换底公式是对数计算、化简、证明常用的技巧.2.对于底数相同的对数式的化简,常用的方法:(1)“收”,将同底的两对数的和(差)收成积(商)的对数. (2)“拆”,将积(商)的对数拆成对数的和(差).例1 (1)化简413322333842a a b b ab a-++÷(1-23b a)×3ab ;(2)计算:2log 32-log 3329+log 38-5log 325.解析:(1)原式=111111113333333311111122333333(8)(8)8(2)2()2a a b aa ab a b a a b a bb a b a a b--⨯⨯=⨯⨯=-++-(2)原式=log 34-log 3329+log 38-52log 35=log 3⎝⎛⎭⎫4×932×8-5log 95=log 39-9=2-9=-7.巩固 计算80.25×42+(32×3)6+log 32×log 2(log 327)的值为________.解析 ∵log 32×log 2(log 327)=log 32×log 23=lg 2lg 3×lg 3lg 2=1,∴原式=342×142+22×33+1=21+4×27+1=111.题型二 数的大小比较数的大小比较常用方法:(1)比较两数(式)或几个数(式)大小问题是本章的一个重要题型,主要考查幂函数、指数函数、对数函数图象与性质的应用及差值比较法与商值比较法的应用.常用的方法有单调性法、图象法、中间搭桥法、作差法、作商法.(2)当需要比较大小的两个实数均是指数幂或对数式时,可将其看成某个指数函数、对数函数或幂函数的函数值,然后利用该函数的单调性比较.(3)比较多个数的大小时,先利用“0”和“1”作为分界点,即把它们分为“小于0”,“大于等于0小于等于1”,“大于1”三部分,然后再在各部分内利用函数的性质比较大小.例2 比较下列各组数的大小:(1)40.9,80.48,⎝⎛⎭⎫12-1.5;(2)log 20.4,log 30.4,log 40.4.解 (1)40.9=21.8,80.48=21.44,⎝⎛⎭⎫12-1.5=21.5, ∵y =2x 在(-∞,+∞)上是增函数,∴40.9>⎝⎛⎭⎫12-1.5>80.48.(2)∵对数函数y =log 0.4x 在(0,+∞)上是减函数, ∴log 0.44<log 0.43<log 0.42<log 0.41=0.又幂函数y =x -1在(-∞,0)上是减函数,所以1log 0.42<1log 0.43<1log 0.44,即log 20.4<log 30.4<log 40.4.巩固 比较下列各组数的大小:(1)27,82;(2)log 0.22,log 0.049;(3)a 1.2,a 1.3;(4)0.213,0.233.解 (1)∵82=(23)2=26,由指数函数y =2x 在R 上单调递增知26<27即82<27.(2)∵log 0.049=lg 9lg 0.04=lg 32lg 0.22=2lg 32lg 0.2=lg 3lg 0.2=log 0.23. 又∵y =log 0.2x 在(0,+∞)上单调递减, ∴log 0.22>log 0.23, 即log 0.22>log 0.049.(3)因为函数y =a x (a >0且a ≠1),当底数a 大于1时在R 上是增函数; 当底数a 小于1时在R 上是减函数, 而1.2<1.3,故当a >1时,有a 1.2<a 1.3; 当0<a <1时,有a 1.2>a 1.3.(4)∵y =x 3在R 上是增函数,且0.21<0.23, ∴0.213<0.233.题型三 复合函数的单调性1.一般地,对于复合函数y =f (g (x )),如果t =g (x )在(a ,b )上是单调函数,并且y =f (t )在(g (a ),g (b ))或者(g (b ),g (a ))上是单调函数,那么y =f (g (x ))在(a ,b )上也是单调函数.2.对于函数y =f (t ),t =g (x ).若两个函数都是增函数或都是减函数,则其复合函数是增函数;如果两个函数中一增一减,则其复合函数是减函数,即“同增异减”,但一定要注意考虑复合函数的定义域.例3 已知a >0,且a ≠1,试讨论函数f (x )=x x a2617++的单调性.解 设u =x 2+6x +17=(x +3)2+8, 则当x ≤-3时,其为减函数, 当x >-3时,其为增函数, 又当a >1时,y =a u 是增函数, 当0<a <1时,y =a u 是减函数,所以当a >1时,原函数f (x )在(-∞,-3]上是减函数,在(-3,+∞)上是增函数. 当0<a <1时,原函数f (x )在(-∞,-3]上是增函数,在(-3,+∞)上是减函数.巩 固 求下列函数的单调区间:(1)y =log 0.2(9x -2×3x +2); (2)y =log a (a -a x ).解 (1)令t =3x , u =9x -2×3x +2=t 2-2t +2=(t -1)2+1≥1>0. 又y =log 0.2u 在定义域内递减,∴当3x ≥1(t ≥1),即x ≥0时,u =9x -2×3x +2递增, ∴y =log 0.2(9x -2×3x +2)递减. 同理,当x ≤0时,y =log 0.2(9x -2×3x +2)递增. 故函数y =log 0.2(9x -2×3x +2)的递增区间为(-∞,0],递减区间为[0,+∞).(2)①若a >1,则y =log a t 递增,且t =a -a x 递减, 而a -a x >0,即a x <a ,∴x <1,∴y =log a (a -a x )在(-∞,1)上递减.②若0<a <1,则y =log a t 递减,且t =a -a x 递增,而a -a x >0,即a x <a , ∴x >1,∴y =log a (a -a x )在(1,+∞)上递减.综上所述,函数y =log a (a -a x )在其定义域上递减.题型四 幂、指数、对数函数的综合应用指数函数与对数函数性质的对比:指数函数、对数函数是一对“姊妹”函数,它们的定义、图象、性质、运算既有区别又有联系.(1)指数函数y =a x (a >0,a ≠1),对数函数y =log a x (a >0,a ≠1,x >0)的图象和性质都与a 的取值有密切的联系.a 变化时,函数的图象和性质也随之变化.(2)指数函数y =a x (a >0,a ≠1)的图象恒过定点(0,1),对数函数y =log a x (a >0,a ≠1,x >0)的图象恒过定点(1,0). (3)指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1,x >0)具有相同的单调性.(4)指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1,x >0)互为反函数,两函数图象关于直线y =x 对称.例4 已知函数f (x )=lg 1+2x +a ·4x3在x ∈(-∞,1]上有意义,求实数a 的取值范围.解 因为f (x )=lg 1+2x +a ·4x3在(-∞,1]上有意义,所以1+2x +a ·4x >0在(-∞,1]上恒成立.因为4x >0,所以a >-⎣⎡⎦⎤⎝⎛⎭⎫14x +⎝⎛⎭⎫12x 在(-∞,1]上恒成立. 令g (x )=-⎣⎡⎦⎤⎝⎛⎭⎫14x +⎝⎛⎭⎫12x ,x ∈(-∞,1]. 由y =-⎝⎛⎭⎫14x 与y =-⎝⎛⎭⎫12x 在(-∞,1]上均为增函数, 可知g (x )在(-∞,1]上也是增函数,所以g (x )max =g (1)=-⎝⎛⎭⎫14+12=-34. 因为a >-⎣⎡⎦⎤⎝⎛⎭⎫14x +⎝⎛⎭⎫12x 在(-∞,1]上恒成立, 所以a 应大于g (x )的最大值,即a >-34.故所求a 的取值范围为⎝⎛⎭⎫-34,+∞.巩 固 已知函数f (x )=lg(1+x )+lg(1-x ).(1)判断函数的奇偶性;(2)若f (x )=lg g (x ),判断函数g (x )在(0,1)上的单调性并用定义证明.解 (1)由⎩⎪⎨⎪⎧1+x >01-x >0,得-1<x <1,∴x ∈(-1,1),又f (-x )=lg(1-x )+lg(1+x )=f (x ), ∴f (x )为偶函数.(2)g (x )在(0,1)上单调递减. 证明如下:∵f (x )=lg(1-x 2)=lg g (x ), ∴g (x )=1-x 2, 任取0<x 1<x 2<1,则g (x 1)-g (x 2)=1-x 21-(1-x 22)=(x 1+x 2)(x 2-x 1), ∵0<x 1<x 2<1,∴x 1+x 2>0,x 2-x 1>0, ∴g (x 1)-g (x 2)>0,∴g (x )在(0,1)上单调递减.章末测试卷(测试时间:120分钟 评价分值:150分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a ∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x a 的定义域为R 且为奇函数的所有a 值为( )A .1,3B .-1,1C .-1,3D .-1,1,3答案:A2.(2013·江西卷)函数y =x ln(1-x )的定义域为( ) A .(0,1) B .[0,1) C .(0,1] D .[0,1]答案:B3.若函数f (x )=log a x (0<a <1)在区间[a,2a ]上的最大值是最小值的3倍,则a 等于( ) A.14 B.22 C.24 D.12答案:C4.函数f (x )=2-|x |的值域是( )A .(0,1]B .(0,1)C .(0,+∞)D .R解析:f (x )=⎩⎪⎨⎪⎧2-x ,x ≥0,2x ,x <0,作图象如下:故所求值域为(0,1].答案:A5.设0.213121log 3,,23a b c ⎛⎫=== ⎪⎝⎭,则( )A .a <b <c B .c <b <a C .c <a <b D .b <a <c答案:A6.函数f (x )=|log 12x |的单调递增区间是( )A.⎝⎛⎭⎫0,12 B .( 0,1) C .(0,+∞) D .[1,+∞)解析:画y =|log 12x |的图象如下:由图象知单调增区间为[1,+∞). 答案:D7.函数y =2x -x 2的图象大致是( )解析:因为当x =2或4时,2x -x 2=0,所以排除B 、C ;当x =-2时,2x -x 2=14-4<0,故排除D ,所以选A.答案:A8.log 2716log 34的值为 ( ) A .2 B.32 C .1 D.23答案:D9.(2013·浙江卷)已知x ,y 为正实数,则( )A .2lg x +lg y=2lg x +2lg y B .2lg(x +y )=2lg x ·2lg yC .2lg x ·lg y=2lg x +2lg y D .2lg(xy )=2lg x ·2lg y答案:D10.当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22B.⎝⎛⎭⎫22,1 C.()1,2 D.()2,2答案:B二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 11.图中一组函数图象,它们分别与其后所列的一个现实情境相匹配:情境A :一份30分钟前从冰箱里取出来,然后被放到微波炉里加热,最后放到餐桌上的食物的温度(将0时刻确定为食物从冰箱里被取出来的那一刻);情境B :一个1970年生产的留声机从它刚开始的售价到现在的价值(它被一个爱好者收藏,并且被保存得很好); 情境C :从你刚开始放水洗澡,到你洗完后把它排掉这段时间浴缸里水的高度; 情境D :根据乘客人数,每辆公交车一趟营运的利润;其中情境A 、B 、C 、D 分别对应的图象是__________(填序号).答案:①③④②12.设f (x )是定义在区间(-1,1)上的奇函数,它在区间[0,1)上单调递减,且f (1-a )+f (1-a 2)<0,则实数a 的取值范围是________.解析:∵f (x )是(-1,1)的奇函数,∴f (-x )=-f (x ),且在[0,1)上递减. ∴f (1-a )+f (1-a 2)<0即等价于 f (1-a )<f (a 2-1),即⎩⎪⎨⎪⎧1-a >a 2-1,-1<1-a <1,-1<1-a 2<1⇒0<a <1.答案:(0,1)13.已知a >0且a ≠1,则函数f (x )=a x -2-3的图象必过定点________.答案:(2,-2)14.函数y =f (x )的图象与g (x )=log 2x (x >0)的图象关于直线y =x 对称,则f (-2)的值为________.解析:∵y =f (x )与y =log 2x (x >0)的图象关于y =x 对称, ∴f (x )=2x ,∴f (-2)=2-2=14.答案:14三、解答题(本大题共6小题,共80分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)计算:(1)2lg 2+lg 31+12lg 0.36+13lg 8;(2)23×612×332.解析:(1)原式=lg (4×3)1+lg 0.6+lg 2=lg 121+lg 1.2=lg 12lg 10+lg 1.2=1. (2)原式=2627×612×694=2627×12×94=2627×27=2636=2×3=6. 或原式=2×312×1216×⎝⎛⎭⎫3213=2×312×316×(22)16×313×2-13 =21+2×16-13×312+16+13=2×3=6.16.(本小题满分12分)已知函数f (x )=2x -12x +1. (1)判断f (x )的奇偶性;(2)判断并用定义证明f (x )在(-∞,+∞)上的单调性.解析:(1)f (x )的定义域为R ,故f (x )在(-∞,+∞)上是单调递减的.17.(本小题满分14分)若f (x )=x 2-x +b 且f (log 2a )=b ,log 2f (a )=2(a ≠1).(1)求f (log 2x )的最小值及对应的x 值.(2)x 取何值时,f (log 2x )>f (1)且log 2f (x )<f (1).解析:(1)∵f (x )=x 2-x +b∴f (log 2a )=(log 2a )2-log 2a +b∴(log 2a )2-log 2a +b =b∴log 2a (log2a -1)=0∵a ≠1,∴log 2a -1=0,∴a =2.又log 2f (a )=2,∴f (a )=4,∴a 2-a +b =4,∴b =4-a 2+a =2,故f (x )=x 2-x +2从而f (log 2x )=(log 2x )2-log 2x +2=⎝⎛⎭⎫log 2x -122+74 ∴当log 2x =12即x =2时,f (log 2x )有最小值74. (2)由题意⎩⎪⎨⎪⎧(log 2x )2-log 2x +2>2,log 2(x 2-x +2)<2, ∴⎩⎪⎨⎪⎧x >2或0<x <1,-1<x <2,∴0<x <1.18.(本小题满分14分)已知n ∈N *,f (n )=n ·0.9n ,比较f (n )与f (n +1)大小,并求f (n )的最大值.解析:f (n +1)-f (n )=(n +1)·0.9n +1-n ·0.9n =0.9n (0.9n +0.9-n )=9-n 10·0.9n , ∵0.9n >0,∴当0<n <9时,f (n +1)>f (n );当n =9时,f (n +1)=f (n ),即f (10)=f (9);当n >9时,f (n +1)<f (n ).综上所述,f (1)<f (2)<…<f (9)=f (10)>f (11)>…∴当n =9或n =10时,f (n )最大,最大值为f (9)=9×0.99.19.(本小题满分14分)一片森林面积为a ,计划每年砍伐一批木材,每年砍伐面积的百分比相等,且砍伐到原面积的一半时,所用时间是T 年.为保护生态环境,森林面积至少要保留原面积的25%.已知到今年止,森林剩余面积为原来的22. (1)问:到今年止,该森林已砍伐了多少年?(2)问:今后最多还能砍伐多少年?解析:设每年砍伐面积的百分比为b (0<b <1),则a (1-b )T =12a , ∴(1-b )T =12,lg(1-b )=lg 12T. (1)设到今年为止,该森林已砍伐了x 年,∴a (1-b )x =22a ⇒x lg(1-b )=lg 22. 于是x ·lg 12T =lg 22⇒x =T 2. 这表明到今年止,该森林已砍伐了T 2年. (2)设从开始砍伐到至少保留原面积的25%,需y 年.∴a (1-b )y ≥14a ⇒y lg(1-b )≥lg 14, ∴y ·lg 12T ≥lg 14⇒y ≤2T . 因此今后最多还能砍伐的年数为 2T -T 2=3T 2.20.(本小题满分14分)已知函数f (x )=lg(a x -b x )(其中a >1>b >0).(1)求函数y =f (x )的定义域;(2)在函数f (x )的图象上是否存在不同的两点,使过这两点的直线行于x 轴.解析:(1)a x -b x >0⇒a x >b x ⇒⎝⎛⎭⎫a b x >1,∵a >1>b >0,∴a b>1. ∴⎝⎛⎭⎫a b x >⎝⎛⎭⎫a b 0.∴x >0.即函数定义域为(0,+∞).(2)一方面,x >0,a >1,y =a x 在(0,+∞)上为增函数,另一方面,x >0,0<b <1,y =-b x 在(0,+∞)上也是增函数.∴函数y =a x -b x 在(0,+∞)上为增函数.∴f (x )=lg(a x -b x )在(0,+∞)上为增函数.故不存在这样的点,使过这两点的直线平行于x 轴.。
数学·必修1(人教版)章末过关检测卷第二章 基本初等函数(测试时间:120分钟 评价分值:150分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a ∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x a 的定义域为R 且为奇函数的所有a 值为( ) A .1,3 B .-1,1 C .-1,3 D .-1,1,3答案:A2.(2013·江西卷)函数y =x ln(1-x )的定义域为( )A .(0,1)B .[0,1)C .(0,1]D .[0,1]答案:B3.若函数f (x )=log a x (0<a <1)在区间[a,2a ]上的最大值是最小值的3倍,则a 等于() A.14 B.22 C.24 D.12答案:C4.函数f (x )=2-|x |的值域是( )A .(0,1]B .(0,1)C .(0,+∞)D .R解析:f (x )=⎩⎪⎨⎪⎧ 2-x ,x ≥0,2x ,x <0,作图象如下:故所求值域为(0,1]. 答案:AA .a <b <cB .c <b <aC .c <a <bD .b <a <c答案:A6.函数f (x )=|log 12x |的单调递增区间是( )A.⎝⎛⎭⎫0,12 B .( 0,1) C .(0,+∞) D .[1,+∞)解析:画y =|log 12x |的图象如下:由图象知单调增区间为[1,+∞).答案:D7.函数y =2x -x 2的图象大致是( )解析:因为当x =2或4时,2x -x 2=0,所以排除B 、C ;当x =-2时,2x -x 2=14-4<0,故排除D ,所以选A.答案:A8.log 2716log 34的值为 ( ) A .2 B.32 C .1 D.23答案:D9.(2013·浙江卷)已知x ,y 为正实数,则( )A .2lg x +lg y =2lg x +2lg yB .2lg(x +y )=2lg x ·2lg yC .2lg x ·lg y =2lg x +2lg yD .2lg(xy )=2lg x ·2lg y答案:D10.当0<x ≤12时,4x <log a x ,则a 的取值范围是( ) A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1 C.()1,2 D.()2,2 答案:B二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)11.图中一组函数图象,它们分别与其后所列的一个现实情境相匹配:情境A :一份30分钟前从冰箱里取出来,然后被放到微波炉里加热,最后放到餐桌上的食物的温度(将0时刻确定为食物从冰箱里被取出来的那一刻);情境B :一个1970年生产的留声机从它刚开始的售价到现在的价值(它被一个爱好者收藏,并且被保存得很好);情境C :从你刚开始放水洗澡,到你洗完后把它排掉这段时间浴缸里水的高度; 情境D :根据乘客人数,每辆公交车一趟营运的利润;其中情境A 、B 、C 、D 分别对应的图象是__________(填序号).答案:①③④②12.设f (x )是定义在区间(-1,1)上的奇函数,它在区间[0,1)上单调递减,且f (1-a )+f (1-a 2)<0,则实数a 的取值范围是________.解析:∵f (x )是(-1,1)的奇函数,∴f (-x )=-f (x ),且在[0,1)上递减.∴f (1-a )+f (1-a 2)<0即等价于f (1-a )<f (a 2-1),即⎩⎪⎨⎪⎧ 1-a >a 2-1,-1<1-a <1,-1<1-a 2<1⇒0<a <1.答案:(0,1)13.已知a >0且a ≠1,则函数f (x )=a x -2-3的图象必过定点________.答案:(2,-2)14.函数y =f (x )的图象与g (x )=log 2x (x >0)的图象关于直线y =x 对称,则f (-2)的值为________.解析:∵y =f (x )与y =log 2x (x >0)的图象关于y =x 对称,∴f (x )=2x ,∴f (-2)=2-2=14. 答案:14三、解答题(本大题共6小题,共80分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)计算:(1)2lg 2+lg 31+12lg 0.36+13lg 8; (2)23×612×332. 解析:(1)原式=lg (4×3)1+lg 0.6+lg 2=lg 121+lg 1.2=lg 12lg 10+lg 1.2=1. (2)原式=2627×612×694=2627×12×94=2627×27=2636=2×3=6. 或原式=2×312×1216×⎝⎛⎭⎫3213=2×312×316×(22)16×313×2-13 =21+2×16-13×312+16+13=2×3=6. 16.(本小题满分12分)已知函数f (x )=2x -12x +1. (1)判断f (x )的奇偶性;(2)判断并用定义证明f (x )在(-∞,+∞)上的单调性.解析:17.(本小题满分14分)若f (x )=x 2-x +b 且f (log 2a )=b ,log 2f (a )=2(a ≠1).(1)求f (log 2x )的最小值及对应的x 值.(2)x 取何值时,f (log 2x )>f (1)且log 2f (x )<f (1).解析:(1)∵f (x )=x 2-x +b∴f (log 2a )=(log 2a )2-log 2a +b∴(log 2a )2-log 2a +b =b∴log 2a (log2a -1)=0∵a ≠1,∴log 2a -1=0,∴a =2.又log 2f (a )=2,∴f (a )=4,∴a 2-a +b =4,∴b =4-a 2+a =2,故f (x )=x 2-x +2从而f (log 2x )=(log 2x )2-log 2x +2=⎝⎛⎭⎫log 2x -122+74 ∴当log 2x =12即x =2时,f (log 2x )有最小值74. (2)由题意⎩⎪⎨⎪⎧(log 2x )2-log 2x +2>2,log 2(x 2-x +2)<2, ∴⎩⎪⎨⎪⎧x >2或0<x <1,-1<x <2,∴0<x <1. 18.(本小题满分14分)已知n ∈N *,f (n )=n ·0.9n ,比较f (n )与f (n +1)大小,并求f (n )的最大值.解析:f (n +1)-f (n )=(n +1)·0.9n +1-n ·0.9n =0.9n (0.9n +0.9-n )=9-n 10·0.9n , ∵0.9n >0,∴当0<n <9时,f (n +1)>f (n );当n =9时,f (n +1)=f (n ),即f (10)=f (9);当n >9时,f (n +1)<f (n ).综上所述,f (1)<f (2)<…<f (9)=f (10)>f (11)>…∴当n =9或n =10时,f (n )最大,最大值为f (9)=9×0.99.19.(本小题满分14分)一片森林面积为a ,计划每年砍伐一批木材,每年砍伐面积的百分比相等,且砍伐到原面积的一半时,所用时间是T 年.为保护生态环境,森林面积至少要保留原面积的25%.已知到今年止,森林剩余面积为原来的22. (1)问:到今年止,该森林已砍伐了多少年?(2)问:今后最多还能砍伐多少年?解析:设每年砍伐面积的百分比为b (0<b <1),则a (1-b )T =12a , ∴(1-b )T =12,lg(1-b )=lg 12T. (1)设到今年为止,该森林已砍伐了x 年,∴a (1-b )x =22a ⇒x lg(1-b )=lg 22. 于是x ·lg 12T =lg 22⇒x =T 2. 这表明到今年止,该森林已砍伐了T 2年. (2)设从开始砍伐到至少保留原面积的25%,需y 年.∴a (1-b )y ≥14a ⇒y lg(1-b )≥lg 14, ∴y ·lg 12T ≥lg 14⇒y ≤2T . 因此今后最多还能砍伐的年数为 2T -T 2=3T 2. 20.(本小题满分14分)已知函数f (x )=lg(a x -b x )(其中a >1>b >0).(1)求函数y =f (x )的定义域;(2)在函数f (x )的图象上是否存在不同的两点,使过这两点的直线行于x 轴.解析:(1)a x -b x >0⇒a x >b x ⇒⎝⎛⎭⎫a b x >1,∵a >1>b >0,∴a b>1. ∴⎝⎛⎭⎫a b x >⎝⎛⎭⎫a b 0.∴x >0.即函数定义域为(0,+∞).(2)一方面,x >0,a >1,y =a x 在(0,+∞)上为增函数,另一方面,x >0,0<b <1,y =-b x 在(0,+∞)上也是增函数.∴函数y =a x -b x 在(0,+∞)上为增函数.∴f (x )=lg(a x -b x )在(0,+∞)上为增函数.故不存在这样的点,使过这两点的直线平行于x 轴.。
知识点一指数函数y=a x(a>0且a≠1)的图象与性质一般地,指数函数y=a x(a>0且a≠1)的图象与性质如下表所示:注意(1)对于a>1与0<a<1,函数值的变化是不同的,因而利用性质时,一定要注意底数的范围,通常要用到分类讨论思想.(2)a >1时,a 值越大,图象向上越靠近y 轴,递增速度越快;0<a <1时,a 值越小,图象向上越靠近y 轴,递减速度越快.(3)在同一坐标系中有多个指数函数图象时,图象的相对位置与底数大小有如下关系:在y 轴右侧,图象从上到下相应的底数由大变小;在y 轴左侧,图象从下到上相应的底数由大变小.即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.这一性质可通过令x =1时,y =a 去理解,如图.知识点二 对数函数y =log a x (a >0且a ≠1)的图象与性质知识点三 对数函数与指数函数的关系对数函数y =log a x (a >0且a ≠1)与指数函数y =a x (a >0且a ≠1)互为反函数,其图象关于直线y =x 对称.(如图)知识点四 幂函数y =x α的性质(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1); (2)如果α>0,则幂函数的图象过原点,并且在区间[0,+∞)上为增函数;(3)如果α<0,则幂函数的图象在区间(0,+∞)上是减函数,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限地逼近y 轴,当x 从原点趋向于+∞时,图象在x 轴上方无限地逼近x 轴;(4)当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数.题型一 有关指数、对数的运算问题指数与指数运算、对数与对数运算是两个重要的知识点,不仅是本章考查的重要题型,也是高考的必考内容.指数式的运算首先要注意化简顺序,一般负指数先转化成正指数,根式化为指数式;其次若出现分式,则要注意把分子、分母因式分解以达到约分的目的.对数运算首先要注意公式应用过程中范围的变化,前后要等价;其次要熟练地运用对数的三个运算性质,并根据具体问题合理利用对数恒等式和换底公式等.换底公式是对数计算、化简、证明常用的公式,一定要掌握并灵活运用.例1 (1)化简:4133223384-+a a b b a÷⎝ ⎛⎭⎪⎫1-23b a ×3ab ; (2)计算:2log 32-log 3329+log 38-5log 325. 解 (1)原式=1111333311111122333333(8)(2)2()2-⨯⨯++-a a b aa b b a b a ab=11113333(8)8-⨯⨯=-a a b a a b a b(2)原式=log 34-log 3329+log 38-52log 35=log 3(4×932×8)-52log 35=log 39-9=2-9=-7.跟踪训练1 (1681)34-+log 354+log 345=________.答案278解析 (1681)34-+log 354+log 345=(23)-3+log 31=278+0=278.题型二 函数的图象函数图象是高考考查的重点内容,在历年高考中都有涉及.考查形式有知式选图、知图造式、图象变换以及用图象解题.函数图象形象地显示了函数的性质,利用数形结合有时起到事半功倍的效果.例2 函数y =⎝⎛⎭⎫12x+1的图象关于直线y =x 对称的图象大致是( )答案 A解析 函数y =⎝⎛⎭⎫12x +1的图象如图所示,关于y =x 对称的图象大致为A 选项对应图象.跟踪训练2 函数y =xax|x |(0<a <1)的图象的大致形状是( )答案 D解析 当x >0时,y =xa x |x |=a x .又0<a <1,可排除A 、C ;当x <0时,y =xa x|x |=-a x .又0<a <1,可排除B. 题型三 比较大小比较几个数的大小问题是指数函数、对数函数和幂函数的重要应用,其基本方法是:将需要比较大小的几个数视为某类函数的函数值,其主要方法可分以下三种:(1)根据函数的单调性(如根据一次函数、二次函数、指数函数、对数函数、幂函数的单调性),利用单调性的定义求解;(2)采用中间量的方法(实际上也要用到函数的单调性),常用的中间量如0,1,-1等; (3)采用数形结合的方法,通过函数的图象解决. 例3 设a =log 213,b =⎝⎛⎭⎫130.2,c =231,则( )A.a <b <cB.c <b <aC.c <a <bD.b <a <c答案 A解析 a =log 213<0,0<b =⎝⎛⎭⎫130.2<1,c =231>1,故有a <b <c . 跟踪训练3 设a =log 2π,b =log 21π,c =π-2,则( )A.a >b >cB.b >a >cC.a >c >bD.c >b >a 答案 C解析 因为π>2,所以a =log 2π>1,所以b =log 21π<0.因为π>1,所以0<π-2<1,即0<c <1.所以a >c >b .题型四 换元法的应用换元法的作用是利用整体代换,将问题转化为常见问题.本章中,常设u =log a x 或u =a x ,转化为一元二次方程、二次函数等问题.要注意换元后u 的取值范围. 例4 求函数y =f (x )=-(12)2x -4(12)x +5的值域.解 函数的定义域是R .设u =(12)x ,由于x ∈R ,则u ∈(0,+∞).则有y =-u 2-4u +5=-(u +2)2+9. ∵u ∈(0,+∞),∴y ∈(-∞,5), 故函数y =f (x )的值域是(-∞,5).跟踪训练4 已知实数x 满足-3≤log 21x ≤-12,求函数y =(log 2x 2)·(log 2x4)的值域.解 y =(log 2x 2)·(log 2x4)=(log 2x -1)(log 2x -2)=(log 2x )2-3log 2x +2.∵-3≤log 21x ≤-12,∴12≤log 2x ≤3.令t =log 2x ,则t ∈[12,3],y =t 2-3t +2=(t -32)2-14,∴t =32时,y min =-14;t =3时,y max =2.故函数的值域为[-14,2].分类讨论思想应用指数函数y =a x 和对数函数y =log a x 的图象和性质时,若底数含有字母,要特别注意对底数a >1和0<a <1两种情况的讨论.例5 函数y =a 2x +2a x -1(a >0,且a ≠1)在区间[-1,1]上有最大值14,求a 的值. 解 y =(a x )2+2a x -1=(a x +1)2-2.令a x =t ,则y =(t +1)2-2,对称轴方程为t =-1. ①当a >1时,因为-1≤x ≤1,所以1a ≤a x ≤a ,即1a ≤t ≤a ,函数图象在对称轴右侧,是单调递增的, 所以当t =a 时有最大值,所以(a +1)2-2=14, 所以a =3.②当0<a <1时,因为-1≤x ≤1,所以a ≤a x ≤1a ,即a ≤t ≤1a ,函数图象在对称轴右侧,是单调递增的,所以当t =1a 时有最大值,所以(1a +1)2-2=14,所以a =13.所以a 的值为3或13.跟踪训练5 已知偶函数f (x )在x ∈[0,+∞)上是增函数,f ⎝⎛⎭⎫12=0,求不等式f (log a x )>0(a >0,且a ≠1)的解集.解 ∵f (x )是偶函数,且f (x )在[0,+∞)上是增函数, 又f ⎝⎛⎭⎫12=0,∴f (x )在(-∞,0)上是减函数,f ⎝⎛⎭⎫-12=0. 故若f (log a x )>0,则有log a x >12或log a x <-12.①当a >1时,由log a x >12或log a x <-12,得x >a 或0<x <a a. ②当0<a <1时,由log a x >12或log a x <-12,得0<x <a 或x >a a. 综上可知,当a >1时,f (log a x )>0的解集为⎝⎛⎭⎫0,a a ∪(a ,+∞);当0<a <1时,f (log a x )>0的解集为(0,a )∪⎝⎛⎭⎫a a ,+∞.。
1.(2019·沈阳期末)设函数f (x )=⎩⎪⎨⎪⎧1+log 3(3-x ),x <23x -2,x ≥2,则f (log 39)=( )A .1B .3C .6D .9解析:选A.f (log 39)=f (2)=32-2=1.故选A.2.(2019·沈阳高一检测)设a =(2)1.2,b =log 335,c =ln 32,则a ,b ,c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b解析:选D.因为a =(2)1.2=20.6>20=1,b =log 335<log 31=0,0<c =ln 32<ln e =1,所以a >c >b .故选D.3.(2019·辽阳期末)已知函数f (x )=log a ⎝⎛⎭⎫12x 2-ax (a >0且a ≠1)在[1,2]上为减函数,则a 的取值范围为( )A.⎝⎛⎭⎫0,12 B.⎝⎛⎦⎤0,12 C.⎝⎛⎭⎫12,1D.⎣⎡⎭⎫12,1解析:选A.当a =12时,f (x )=log 12⎣⎡⎦⎤12(x 2-x ) ,在x =1时无意义,故不可能在[1,2]上递减,据此排除B ,D ;当a =14时,f (x )=log 14⎝⎛⎭⎫12x 2-14x 在[1,2]上递减,符合题意,据此排除C ,故选A.4.(2019·南充模拟)已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]的最大值为2,则nm=____________.解析:因为f (x )=|log 3x |,正实数m ,n 满足m <n , 且f (m )=f (n ),所以-log 3m =log 3n ,所以mn =1.因为f (x )在区间[m 2,n ]上的最大值为2,函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数,所以-log 3m 2=2或log 3n =2.若-log 3m 2=2是最大值,得m =13,则n =3,此时log 3n =1,满足题意.那么n m =3÷13=9.同理,若log 3n =2是最大值,得n =9,则m =19,此时-log 3m 2=4,不满足题意条件.综合可得,m =13,n =3,故nm =9,答案:95.已知函数f (x )=log a (x +2)-1(a >0且a ≠1),g (x )=⎝⎛⎭⎫12x -1.(1)若函数y =f (x )的图象恒过定点A (m ,n ),求A 点坐标及g (m )的值; (2)若函数F (x )=f (x )-g (x )的图象过点⎝⎛⎭⎫2,12,且x ∈[1,2],求F (x )的值域. 解:(1)函数f (x )=log a (x +2)-1(a >0且a ≠1), 令x +2=1,得x =-1, 所以y =f (-1)=log a 1-1=-1,所以函数f (x )的图象恒过定点A (-1,-1), 所以m =-1, 又g (x )=⎝⎛⎭⎫12x -1,所以g (-1)=⎝⎛⎭⎫12-2=4.(2)函数F (x )=f (x )-g (x )=log a (x +2)-1-⎝⎛⎭⎫12x -1的图象过点⎝⎛⎭⎫2,12, 所以log a 4-1-12=12,解得a =2,所以F (x )=log 2(x +2)-1-⎝⎛⎭⎫12x -1,且F (x )在定义域上是单调增函数,又x ∈[1,2], F (1)=log 23-1-1=log 23-2, F (2)=log 24-1-12=12,所以当x ∈[1,2]时,F (x )的值域为⎣⎡⎦⎤-2+log 23,12. 6.已知函数f (x )=log 2x .(1)解关于x 的不等式f (x +1)-f (x )>1;(2)设函数g (x )=f (2x +1)+kx ,若g (x )的图象关于y 轴对称,求实数k 的值. 解:(1)因为f (x +1)-f (x )>1, 所以log 2(x +1)-log 2x >1, 即log 2x +1x >1,所以x +1x >2,由题意得,x >0, 解得0<x <1,所以解集为{x |0<x <1}.(2)g (x )=f (2x +1)+kx =log 2(2x +1)+kx , 由题意,得g (x )是偶函数, 所以∀x ∈R ,有f (-x )=f (x ),即log 2(2-x +1)-kx =log 2(2x +1)+kx 成立, 所以log 2(2-x +1)-log 2(2x +1)=2kx , 即log 22-x +12x +1=2kx ,所以log 22-x =2kx ,所以-x =2kx ,(2k +1)x =0, 所以k =-12.。
高中数学必修一章末复习+单元测试第二章《 基本初等函数(Ⅰ)》1.正确理解指数式与对数式的运算(1)正确理解根式n a 的意义,极易因对根式n a 的理解不透而得出错误结果.(2)注意a m n =n a m 和a -m n =1a m n=1n a m 的正确转化. (3)对数式的运算要按照对数运算法则和换底公式根式进行,避免对对数运算法则的错误应用.2.正确认识基本初等函数(1)指数函数y =a x (a >0且a ≠1)和幂函数y =x α极易混淆,要区分自变量x 所处的位置;对数函数y =log a x (a >0且a ≠1)与指数函数y =a x 互为反函数,要明确它们的定义域与值域是互换的.(2)坚持定义域优先原则,在研究基本初等函数的性质时,要首先考虑定义域,否则极易出错.3.重视基本初等函数单调性的应用(1)指数函数y =a x 与对数函数y =log a x (a >0且a ≠1)的单调性与底数a 有直接关系,在解有关不等式或求最大(小)值时,极易因忽视对底数的讨论而出错.(2)与指数函数和对数函数有关的复合函数的单调性问题要按照复合函数的单调性规则进行判断,同时要注意在定义域之内进行.(3)幂函数y =x α的单调性与指数α有关,牢记α=1,2,3,12,-1五种函数的图象和性质.专题一 指数式、对数式的运算指数与对数的运算应遵循的原则.(1)指数的运算:注意化简顺序,一般负指数先转化成正指数,根式化为分数指数幂运算.另外,若出现分式,则要注意对分子、分母进行因式分解,以达到约分的目的.(2)对数的运算:注意公式应用过程中范围的变化,前后要等价,一般遵循真数化简的原则进行.[例1] (1)计算:log 222=______,2log 23+log 43=______.(2)化简⎝ ⎛⎭⎪⎪⎫8a -56·ab -14·3a 2b 34-13=________. 解析:(1)log 222=log 22-12=-12,2log 23+log 43=2log 23×2log 43=3×3=3 3.(2)原式=⎝ ⎛⎭⎪⎫8a -56a 53-13=(8a -56a 56)-13=8-13= (23)-13=12.答案:(1)-12 33 (2)12归纳升华1.对于根式的运算结果,不强求形式的统一,但结果绝不能同时含有根号和分数指数,也不能既有分母又含有负指数.2.指、对数式的运算、求值、化简、证明等问题主要依据幂、对数的运算法则及性质加以解决,在运用法则时要注意法则的逆用.在进行指数、对数的运算时还要注意相互间的转化,因此要熟练把握这些运算性质的基本特征:(1)同底;(2)“和积”互化.[变式训练] (1)lg 52+2lg2-⎝ ⎛⎭⎪⎫12-1=________. (2)化简(a 23b -1)-12a -12b 136ab 5=________.解析:(1)原式=lg 52+lg 4-2=-1.(2)原式=a -13b 12a -12b 13a 16b 56=a -56b 56a 16b 56=a -1=1a .答案:(1)-1 (2)1a专题二 基本初等函数的图象指数函数、对数函数、幂函数图象的应用有两个方面:一是已知函数解析式求作函数图象,即“知式求图”,此类题目往往是选择题,常借助指数函数、对数函数、幂函数的图象特征来解决;二是判断方程的根的个数,通常不具体解方程,而是转化为判断指数函数、对数函数、幂函数等图象的交点个数.[例2] (1)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数正确的是()(2)方程log 2(x +2)=-x 的实数解有( )A .0个B .1个C .2个D .3个解析:(1)由函数y =log a x (a >0,且a ≠1)的图象可知,a =3,所以,y =a -x ,y =(-x )3=-x 3及y =log 3(-x ),这三个函数均为减函数,只有y =x 3是增函数.(2)令y 1=log 2(x +2),y 2=-x ,分别画出两个函数图象,如图所示.函数y 1=log 2(x +2)的图象是由函数y 1=log 2x 的图象向左平移2个单位长度得到.函数y 2=-x 的图象是由幂函数y =x 12的图象关于y 轴对称得到.由图象可知,显然y 1与y 2有一个交点.答案:(1)B (2)B归纳升华识别函数的图象从以下几个方面入手:(1)单调性,函数图象的变化趋势;(2)奇偶性,函数图象的对称性;(3)特殊点对应的函数值.[变式训练] (1)已知f (x )=a x ,g (x )=log a x (a >0,且a ≠1),若f (3)·g (3)<0,那么f (x )与g (x )在同一坐标系内的图象可能是图中的( )(2)如图所示,方程log x (y +1)-log x 2=1对应的图形是( )解析:(1)因为f (x )=a x 与g (x )=log a x (a >0,且a ≠1)互为反函数,于是排除A ,D ,对于B ,C 中,两图象均关于y =x 对称,又f (3)·g (3)<0,排除选项B.(2)由log x (y +1)-log x 2=1得y =2x -1(x >0且x ≠1,y >-1),所以图象是直线方程的一部分,结合图形知选项C 正确.答案:(1)C (2)C专题三 比较函数值大小比较几个数的大小是幂函数、指数函数、对数函数性质应用的常见题型,在具体比较时,可以首先将它们与零比较,分出正数、负数;再将正数与1比,分出大于1还是小于1;然后在各类中两两相比较.[例3] (1)(2016·全国Ⅰ卷)若a >b >0,0<c <1,则( )A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b(2)⎝ ⎛⎭⎪⎫1312与⎝ ⎛⎭⎪⎫1213的大小关系是______________. 解析:(1)对于选项A :log a c =lg c lg a ,log b c =lg c lg b ,因为0<c <1,所以lg c <0.而a >b >0,所以lg a >lg b ,但不能确定lg a ,lg b 的正负,所以log a c 与log b c的大小不能确定.对于选项B :log c a =lg a lg c ,log c b =lg b lg c ,而lg a >lg b ,两边同乘一个负数1lg c 不等号方向改变,所以log c a <log c b ,所以选项B 正确.对于选项C :利用y =x c (0<c <1)在第一象限内是增函数,可得a c >b c ,所以选项C 错误.对于选项D :利用y =c x (0<c <1)在R 上为减函数,可得c a <c b ,所以选项D 错误.故选B.(2)因为函数y 1=⎝ ⎛⎭⎪⎫13x 为减函数,又12>13,所以⎝ ⎛⎭⎪⎫1313>⎝ ⎛⎭⎪⎫1312.又因为幂函数y 2=x 13在(0,+∞)上是增函数,且12>13,所以⎝ ⎛⎭⎪⎫1213>⎝ ⎛⎭⎪⎫1313.所以⎝ ⎛⎭⎪⎫1213>⎝ ⎛⎭⎪⎫1312. 答案:(1)B (2)⎝ ⎛⎭⎪⎫1213>⎝ ⎛⎭⎪⎫1312 比较函数值的大小的一般步骤:(1)根据函数值的特征选择适当的函数.(2)根据所选函数的单调性,确定两个函数值的大小.(3)当两个函数值不能直接比较时,常选择两个对应函数,再进行比较.(4)必要时,可先将函数值与特殊数0和1进行比较,最后确定它们的大小关系.[变式训练] (1)设a =log 37,b =21.1,c =0.83.1,则( )A .b <a <cB .c <a <bC .c <b <aD .a <c <b (2)2-3,312,log 25三个数中最大的数是________.解析:(1)因为a =log 37∈(1,2),b =21.1>2,c =0.83.1<1,所以c <a <b .(2)2-3=18<1,312=3>1,log 25>log 24=2>3, 所以log 25最大.答案:(1)B (2)log 25专题四 基本初等函数的奇偶性与单调性问题(1)指数函数y =a x (a >0,a ≠1),对数函数y =log a x (a >0,a ≠1,x >0)的图象和性质都与a 的取值有密切的关系.a 变化时,函数的图象和性质也随之改变.(2)指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1,x >0)具有相同的单调性.[例4] (1)设函数f (x )=ln (1+x )-ln (1-x ),则f (x )是( )A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且(0,1)在上是减函数(2)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )<2成立的x 的取值范围是________. 解析:(1)由题意得f (x )定义域为(-1,1),关于原点对称,又f (-x )=ln (1-x )=-ln (1+x )=-f (x ),所以f (x )为奇函数,又显然f (x )在(0,1)上单调递增.(2)由于题中所给是一个分段函数,则当x <1时,由e x -1≤2,可解得:x ≤1+ln 2,则此时:x <1;当x ≥1时,由x 13≤2,可解得:x ≤23=8,则此时:1≤x ≤8.综合上述两种情况可得:x ∈(-∞,8].答案:(1)A (2)(-∞,8](1)基本初等函数单调性的判断与应用:①对于指数函数和对数函数,注意底数a 对函数单调性的影响,对于幂函数y =x α,注意指数α对函数单调性的影响;②根据函数的单调性可以比较函数值的大小和求不等式的解集.(2)基本初等函数的奇偶性问题,在利用奇偶性定义进行推导判断时,要注意指数、对数运算法则的正确使用.[变式训练] (1)(2015·广东卷)下列函数中,既不是奇函数,也不是偶函数的是( )A .y = 1+x 2B .y =x +1xC .y =2x +12xD .y =x +e x (2)已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.解析:(1)令f (x )=x +e x ,则f (1)=1+e ,f (-1)=-1+e -1,即f (-1)≠f (1),f (-1)≠-f (1),所以y =x +e x 既不是奇函数也不是偶函数,而选项A 、B 、C 中的函数依次是偶函数、奇函数、偶函数.(2)当a >1时,函数f (x )=a x +b 在[-1,0]上为增函数,由题意得⎩⎨⎧a -1+b =-1,a 0+b =0,无解.当0<a <1时,函数f (x )=a x +b 在[-1,0]上为减函数,由题意得⎩⎨⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b =-32. 答案:(1)D (2) -32专题五 分类讨论思想分类讨论思想贯穿于中学数学的始终,是数学中的重要思想方法之一,也是学习中的难点所在.因此解题过程中需要我们辩证地对待分类讨论这一思想方法,做到尽可能地简化或回避分类讨论.[例5] 已知偶函数f (x )在x ∈[0,+∞)上是增函数,f ⎝ ⎛⎭⎪⎫12=0.求不等式f (log a x )>0(a >0且a ≠1)的解集.解:因为f (x )是偶函数,且f (x )在[0,+∞)上是增函数,又f ⎝ ⎛⎭⎪⎫12=0,所以f (x )在(-∞,0)上是减函数,f ⎝ ⎛⎭⎪⎫-12=0.故若f (log a x )>0,则有log a x >12或log a x <-12.①当a >1时,由log a x >12或log a x <-12,得x >a 或0<x <a a .②当0<a <1时,由log a x >12或log a x <-12,得0<x <a 或x >a a .综上可知,当a >1时,不等式f (log a x )>0的解集为⎝⎛⎭⎪⎫0,a a ∪(a ,+∞); 当0<a <1时,不等式f (log a x )>0的解集为(0,a )∪(a a ,+∞).分类讨论思想在指数函数和对数函数中的应用(1)理论依据:底数大于1时,指数函数与对数函数均是增函数;底数大于0小于1时,指数函数与对数函数均是减函数.(2)方法步骤:值18,求a 的值.解:令t =x 2-3x +3=⎝ ⎛⎭⎪⎫x -322+34, 当x ∈[1,3]时,t ∈⎣⎢⎡⎦⎥⎤34,3. ①当a >1时,y min =a 34=18,解得a =116,与a >1矛盾.②当0<a <1时,y min =a 3=18,解得a =12.综合①、②知a =12.第二章《 基本初等函数(Ⅰ)》单元检测试题(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.设a ∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x a 的定义域为R 且为奇函数的所有a 值为( )A .1,3B .-1,1C .-1,3D .-1,1,32.函数y =1log 0.5(4x -3)的定义域为( ) A.⎝ ⎛⎭⎪⎫34,1 B.⎝ ⎛⎭⎪⎫34,+∞ C .(1,+∞) D.⎝ ⎛⎭⎪⎫34,1∪(1,+∞) 3.已知幂函数y =f (x )的图象过点(9,3),则log 4f (2)的值为( )A.14 B .-14 C .2 D .-24.函数y =2|x |的大致图象是( )5.函数f (x )=|log 12x |的单调递增区间是( )A.⎝ ⎛⎭⎪⎫0,12 B .(0,1) C .(0,+∞) D .[1,+∞)6.计算⎝ ⎛⎭⎪⎫51160.5+(-1)-1÷0.75-2+⎝ ⎛⎭⎪⎫21027-23=( )A .-49B .-94 C.49 D.947.已知函数f (x )=e -x -e x x ,则其图象( )A .关于x 轴对称B .关于y =x 轴对称C .关于原点对称D .关于y 轴对称8.设函数f (x )=⎩⎨⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( ) A .3 B .6 C .9 D .129.已知方程log 2x +log 2(x -1)=1的解集为M ,方程2·2x +1-9·2x +4=0的解集为N ,则M 与N 的关系是( )A .M =NB .M NC .M ND .M ∩N =∅10.已知0<a <1,x =log a 2+log a 3,y =12log a 5,z =log a 21-log a 3,则( )A .x >y >zB .z >y >xC .y >x >zD .z >x >y11.已知函数f (x )=⎩⎨⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( ) A .-74B .-54C .-34D .-1412.若偶函数f (x )在(-∞,0)上单调递减,则不等式f (-1)<f (lg x )的解集是( )A .(0,10)B.⎝ ⎛⎭⎪⎫110,10C.⎝ ⎛⎭⎪⎫110,+∞D.⎝ ⎛⎭⎪⎫0,110∪(10,+∞) 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知幂函数y =f (x )的图象经过点(2,2),则f (9)=________.14.设f (x )=⎩⎨⎧2e x -1,x <2,log 3(2x-1),x ≥2,则f (f (2))=______. 15.函数f (x )=a x -2 017+2 017的图象一定过点P ,则P 点的坐标是________. 16.若函数f (x )=log a x (a >0且a ≠1)在区间[2,4]上的最大值与最小值之差为2,则a =________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)计算:(1)⎝ ⎛⎭⎪⎫-338-23+0.002-12-10(5-2)-1+(2-3)0;(2)lg 5(lg 8+lg 1 000)+3lg 22+lg 16+lg 0.06.18.(本小题满分12分)已知函数f (x )=2-xx -1的定义域为A ,关于x 的不等式22ax <2a +x 的解集为B ,求使A ∩B =A 的实数a 的取值范围.19.(本小题满分12分)已知函数f (x )=a x -1(a >0且a ≠1),(1)若函数y =f (x )的图象经过点P (3,4),求a 的值;(2)当a 变化时,比较f ⎝ ⎛⎭⎪⎫lg 1100与f (-2.1)的大小,并写出比较过程.20.(本小题满分12分)若f (x )=x 2-x +b 且f (log 2a )=b ,log 2f (a )=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值; (2)x 取何值时,f (log 2x )>f (1)且log 2f (x )<f (1).21.(本小题满分12分)已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=⎝ ⎛⎭⎪⎫12x.(1)求函数f (x )的解析式;(2)画出函数f (x )的图象,根据图象写出该函数的单调区间.22.(本小题满分12分)已知函数f (x )=2x -12|x |. (1)若f (x )=2,求x 的值;(2)若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.设a ∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x a 的定义域为R 且为奇函数的所有a 值为( )A .1,3B .-1,1C .-1,3D .-1,1,3 解析:易知y =x 和y =x 3满足题设条件. 答案:A 2.函数y =1log 0.5(4x -3)的定义域为( )A.⎝ ⎛⎭⎪⎫34,1B.⎝ ⎛⎭⎪⎫34,+∞ C .(1,+∞)D.⎝ ⎛⎭⎪⎫34,1∪(1,+∞) 解析:要使函数有意义,应满足 ⎩⎨⎧log 0.5(4x -3)>0,4x -3>0,即⎩⎨⎧0<4x -3<1,4x -3>0, 解得34<x <1. 答案:A3.已知幂函数y =f (x )的图象过点(9,3),则log 4f (2)的值为( ) A.14 B .-14 C .2 D .-2解析:设幂函数为f (x )=x α,则有3=9α,得α=12,所以f (x )=x 12,f (2)=2,所以log 4f (2)=log 42=log 4414=14.答案:A4.函数y =2|x |的大致图象是( )解析:易知函数y =2|x |是偶函数,其图象关于y 轴对称,在区间(0,+∞)上是增函数,观察图象知B 选项正确.答案:B5.函数f (x )=|log 12x |的单调递增区间是( )A.⎝ ⎛⎭⎪⎫0,12 B .(0,1) C .(0,+∞)D .[1,+∞)解析:画f (x )=|log 12x |的图象如图所示:由图象知单调增区间为[1,+∞).答案:D6.计算⎝ ⎛⎭⎪⎫51160.5+(-1)-1÷0.75-2+⎝ ⎛⎭⎪⎫21027-23=( )A .-49 B .-94 C.49D.94解析:原式=94+(-1)×⎝ ⎛⎭⎪⎫342+⎝ ⎛⎭⎪⎫43-2=94-916+916=94.答案:D7.已知函数f (x )=e -x -e xx ,则其图象( ) A .关于x 轴对称 B .关于y =x 轴对称 C .关于原点对称D .关于y 轴对称解析:函数的定义域为{x |x ≠0},f (-x )=e x -e -x -x =e -x -e xx =f (x ),所以函数f (x )的偶函数,其图象关于y 轴对称.答案:D8.设函数f (x )=⎩⎨⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12解析:依据给出的分段函数,分别求出f (-2)与f (log 212)的值,然后相加即可.∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3. ∵log 212>1,∴f (log 212)=2log 212-1=122=6. ∴f (-2)+f (log 212)=3+6=9.故选C. 答案:C9.已知方程log 2x +log 2(x -1)=1的解集为M ,方程2·2x +1-9·2x +4=0的解集为N ,则M 与N 的关系是( )A .M =NB .MNC .MND .M ∩N =∅解析:由题意知,M ={x |x =2}, N ={x |x =2或x =-1},所以M N .答案:B10.已知0<a <1,x =log a 2+log a 3,y =12log a 5,z =log a 21-log a 3,则( )A .x >y >zB .z >y >xC .y >x >zD .z >x >y解析:x =log a 2+log a 3=log a 6=12log a 6, z =log a 21-log a 3=log a 7=12log a 7.因为0<a <1, 所以12log a 5>12log a 6>12log a 7.即y >x >z . 答案:C11.已知函数f (x )=⎩⎨⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( )A .-74 B .-54 C .-34D .-14解析:当a ≤1时,f (a )=2a -1-2=-3, 即2a -1=-1,不成立,舍去; 当a >1时,f (a )=-log 2(a +1)=-3, 即log 2(a +1)=3,得a +1=23=8,所以a =7,此时f (6-a )=f (-1)=2-2-2=-74.故选A. 答案:A12.若偶函数f (x )在(-∞,0)上单调递减,则不等式f (-1)<f (lg x )的解集是( )A .(0,10) B.⎝ ⎛⎭⎪⎫110,10 C.⎝ ⎛⎭⎪⎫110,+∞ D.⎝ ⎛⎭⎪⎫0,110∪(10,+∞) 解析:因为f (x )为偶函数,所以f (x )=f (|x |),因为f (x )在(-∞,0)内单调递减,所以f (x )在(0,+∞)内单调递增,故|lg x |>1,即lg x >1或lg x <-1,解得x >10或0<x <110.答案:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知幂函数y =f (x )的图象经过点(2,2),则f (9)=________. 解析:设幂函数y =f (x )=x a ,因为幂函数y =f (x )的图象经过点(2,2), 所以2=2a ,解得a =12, 则y =f (x )=x 12,所以f (9)=3.答案:314.设f (x )=⎩⎨⎧2e x -1,x <2,log 3(2x-1),x ≥2,则f (f (2))=______. 解析:因为f (2)=log 3(22-1)=1, 所以f (f (2))=f (1)=2e 1-1=2. 答案:215.函数f (x )=a x -2 017+2 017的图象一定过点P ,则P 点的坐标是________. 解析:当x -2 017=0,即x =2 017时,f (x )=a 0+2 017=2 018,所以定点P 的坐标为(2 017,2 018).答案:(2 017,2 018)16.若函数f (x )=log a x (a >0且a ≠1)在区间[2,4]上的最大值与最小值之差为2,则a =________.解析:当0<a <1时log a 2-log a 4=2,解得a =22; 当a >1时,log a 4-log a 2=2,解得a = 2. 故a 的值为2或22. 答案:2或22三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)计算:(1)⎝ ⎛⎭⎪⎫-338-23+0.002-12-10(5-2)-1+(2-3)0;(2)lg 5(lg 8+lg 1 000)+3lg 22+lg 16+lg 0.06. 解:(1)原式=⎝ ⎛⎭⎪⎫338-23+⎝ ⎛⎭⎪⎫1500-12-105-2+1=⎝ ⎛⎭⎪⎫278-23+50012-10(5+2)+1=49+105-105-20+1=-1679.(2)原式=lg 5(3lg 2+3)+3lg 22+lg 1-lg 6+lg 6-2= 3lg 2×lg 5+3lg 5+3lg 22-2=3lg 2(lg 5+lg 2)+3lg 5-2=3lg 2+3lg 5-2= 3(lg 2+lg 5)-2=3-2=1.18.(本小题满分12分)已知函数f (x )=2-xx -1的定义域为A ,关于x 的不等式22ax <2a +x 的解集为B ,求使A ∩B =A 的实数a 的取值范围.解:由⎩⎨⎧(2-x )(x -1)≥0,x ≠1,⇒1<x ≤2,即A =(1,2].由2ax <a +x 得(2a -1)x <a .(*) 又A ∩B =A 得A ⊆B ,故 ①当a <12时,(*)式即x >a 2a -1,有a2a -1≤1得a ≥2a -1,所以a ≤1,此时a <12;②当a =12时,(*)式x ∈R 满足A ⊆B ; ③当a >12时,(*)式即x <a 2a -1,有a 2a -1>2得a >4a -2,所以a <23,此时12<a <23. 综合①②③可知:a <23.19.(本小题满分12分)已知函数f (x )=a x -1(a >0且a ≠1), (1)若函数y =f (x )的图象经过点P (3,4),求a 的值;(2)当a 变化时,比较f ⎝ ⎛⎭⎪⎫lg 1100与f (-2.1)的大小,并写出比较过程.解:(1)函数y =f (x )的图象经过点P (3,4), 所以a 3-1=4,即a 2=4,又a >0,所以a =2. (2)当a >1时,f ⎝ ⎛⎭⎪⎫lg 1100>f (-2.1);当0<a <1时,f ⎝ ⎛⎭⎪⎫lg 1100<f (-2.1),比较过程如下:因为f ⎝ ⎛⎭⎪⎫lg 1100=f (-2)=a -3,f (-2.1)=a -3.1,当a >1时,y =a x -1在(-∞,+∞)上为增函数, 因为-3>-3.1,所以a -3>a -3.1. 即f ⎝ ⎛⎭⎪⎫lg 1100>f (-2.1);当0<a <1时,y =a x -1在(-∞,+∞)上为减函数, 因为-3>-3.1,所以a -3<a -3.1, 即f ⎝ ⎛⎭⎪⎫lg 1100<f (-2.1).20.(本小题满分12分)若f (x )=x 2-x +b 且f (log 2a )=b ,log 2f (a )=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值; (2)x 取何值时,f (log 2x )>f (1)且log 2f (x )<f (1). 解:(1)因为f (x )=x 2-x +b , 所以(log 2a )2-log 2a +b =b , 所以log 2a (log 2a -1)=0,因为a ≠1,所以log 2a -1=0,所以a =2. 又log 2f (a )=2,所以f (a )=4,所以a 2-a +b =4, 所以b =4-a 2+a =2,故f (x )=x 2-x +2. 从而f (log 2x )=(log 2x )2-log 2x +2= ⎝ ⎛⎭⎪⎫log 2x -122+74. 所以当log 2x =12即x =2时,f (log 2x )有最小值74.(2)由题意⎩⎨⎧(log 2x )2-log 2x +2>2,log 2(x 2-x +2)<2,解得⎩⎨⎧x >2或0<x <1,-1<x <2,所以0<x <1.21.(本小题满分12分)已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=⎝ ⎛⎭⎪⎫12x .(1)求函数f (x )的解析式;(2)画出函数f (x )的图象,根据图象写出该函数的单调区间. 解:(1)因为f (x )是R 上的奇函数, 所以f (0)=0. 当x <0时,-x >0,f (x )=-f (-x )=-⎝ ⎛⎭⎪⎫12-x=-2x ,所以f (x )=⎩⎪⎨⎪⎧-2x ,x <0,0,x =0,⎝ ⎛⎭⎪⎫12x ,x >0.(2)函数图象如图所示,通过函数的图象可以知道,f (x )的单调递减区间是(-∞,0),(0,+∞). 22.(本小题满分12分)已知函数f (x )=2x -12|x |. (1)若f (x )=2,求x 的值;(2)若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围. 解:(1)当x <0时,f (x )=0; 当x ≥0时,f (x )=2x -12x .由条件可知2x-12x =2,即22x -2·2x -1=0,解得2x =1±2.因为2x >0,所以x =log 2(1+2).(2)当t ∈[1,2]时,2t ⎝ ⎛⎭⎪⎫22t -122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0,即m (22t -1)≥-(24t -1).因为22t -1>0,所以m ≥-(22t +1).因为t∈[1,2],所以-(1+22t)∈[-17,-5],故m的取值范围是[-5,+∞).21。
(本栏目内容,在学生用书中以独立形式分册装订)一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).函数=(+)+(-)-的定义域是( ).(-).(-).(].()解析:由题意得(\\(+>,->,))解之,得-<<.答案:.函数=(+)+的图象过定点( ).().().(-).(-)解析:令+=,得=-,得=,∴函数的图象过定点(-).答案:.已知幂函数()满足=,则()的图象所分布的象限是( ).第一、三象限.第一、二象限.只在第一象限.第一、四象限解析:设()=,则=,=-.∴()=-,因此()的图象在第一、二象限.答案:.已知=,=,则等于( )..解析:∵=,=,∴=,=,∴==.答案:.已知()=-(≤≤,为常数)的图象经过点(),则()的值域为( ).[].[].[,+∞).[] 解析:由()过定点()可知=,因()=-在[]上是增函数,()=()=,()=()=,可知正确.答案:.设=,=,=,则( ).<<.<<.<<.<<解析:∵=<=,<=<=,=>=,∴>>.答案:.已知()=(+)(>,且≠),若∈(-)时,()<,则()是( ).减函数.增函数.不单调的函数.常数函数解析:∵∈(-)时,+∈(),此时,()<.∴>.∴()在定义域(-,+∞)上是增函数.答案:.设()=,∈,那么()是( ).奇函数且在(,+∞)上是增函数.偶函数且在(,+∞)上是增函数.奇函数且在(,+∞)上是减函数.偶函数且在(,+∞)上是减函数解析:∵(-)=-==(),∴()是偶函数.∵>,∴()=在(,+∞)上是减函数,故选.答案:.函数=+的图象关于直线=对称的图象大致是( )解析:∵=+的图象过点()且单调递减,故它关于直线=对称的图象过点()且单调递减,故选.答案:.已知函数()是奇函数,当>时, ()=(>且≠),且=-,则的值为( )..解析:∵==(-)=-()=-=-,∴=,解得=±,又>,∴=.。
第一部分基本初等函数知识点整理第二章 基本初等函数一、指数函数 (一)指数1、 指数与指数幂的运算:复习初中整数指数幂的运算性质: a m *a n =a m+n(a m )n=a mn(a*b)n =a n b n2、根式的概念:一般地,若a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数。
此时,a 的n 次方根用符号 表示。
当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数。
此时正数a 的正的n 次方根用符号 表示,负的n 的次方根用符号 表示。
正的n 次方根与负的n 次方根可以合并成 (a>0)。
注意:负数没有偶次方根;0的任何次方根都是0,记作00=n。
当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn 式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数。
3、 分数指数幂正数的分数指数幂的)1,,,0(*>∈>=n N n m a a an m nm ,)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义4、 有理数指数米的运算性质(1)r a ·s r ra a+=),,0(R s r a ∈>; (2)rss r a a =)( ),,0(R s r a ∈>;(3)s r r a a ab =)(),,0(R s r a ∈>.5、无理数指数幂一般的,无理数指数幂a a(a>0,a 是无理数)是一个确定的实数。
有理数指数幂的运算性质同样使用于无理数指数幂。
(二)、指数函数的性质及其特点1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.为什么?(1)在[a ,b]上,值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; (4)当a>1时,若X 1<X 2 ,则有f(X 1)<f(X 2)。
知识点一指数函数y=a x(a>0且a≠1)的图象与性质一般地,指数函数y=a x(a>0且a≠1)的图象与性质如下表所示:a>10<a<1图象定义域R值域(0,+∞)性质过点(0,1),即x=0时,y=1当x>0时,y>1;当x<0时,0<y<1当x>0时,0<y<1;当x<0时,y>1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数注意(1)对于a>1与0<a<1,函数值的变化是不同的,因而利用性质时,一定要注意底数的范围,通常要用到分类讨论思想.(2)a>1时,a值越大,图象向上越靠近y轴,递增速度越快;0<a<1时,a值越小,图象向上越靠近y轴,递减速度越快.(3)在同一坐标系中有多个指数函数图象时,图象的相对位置与底数大小有如下关系:在y 轴右侧,图象从上到下相应的底数由大变小;在y轴左侧,图象从下到上相应的底数由大变小.即无论在y轴的左侧还是右侧,底数按逆时针方向变大.这一性质可通过令x=1时,y=a 去理解,如图.知识点二对数函数y=log a x(a>0且a≠1)的图象与性质a>10<a<1 图象性质定义域是(0,+∞)值域是R当x=1时,y=0,即图象过定点(1,0)当x>1时,y>0;当0<x<1时,y<0当x>1时,y<0;当0<x<1时,y>0在(0,+∞)上是增函数在(0,+∞)上是减函数知识点三对数函数与指数函数的关系对数函数y=log a x(a>0且a≠1)与指数函数y=a x(a>0且a≠1)互为反函数,其图象关于直线y=x对称.(如图)知识点四幂函数y=xα的性质(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1);(2)如果α>0,则幂函数的图象过原点,并且在区间[0,+∞)上为增函数;(3)如果α<0,则幂函数的图象在区间(0,+∞)上是减函数,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限地逼近y 轴,当x 从原点趋向于+∞时,图象在x 轴上方无限地逼近x 轴;(4)当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数.题型一 有关指数、对数的运算问题指数与指数运算、对数与对数运算是两个重要的知识点,不仅是本章考查的重要题型,也是高考的必考内容.指数式的运算首先要注意化简顺序,一般负指数先转化成正指数,根式化为指数式;其次若出现分式,则要注意把分子、分母因式分解以达到约分的目的.对数运算首先要注意公式应用过程中范围的变化,前后要等价;其次要熟练地运用对数的三个运算性质,并根据具体问题合理利用对数恒等式和换底公式等.换底公式是对数计算、化简、证明常用的公式,一定要掌握并灵活运用.例1 (1)化简:413322333842-+a a b b ab a÷⎝ ⎛⎭⎪⎫1-23b a ×3ab ; (2)计算:2log 32-log 3329+log 38-5log 325. 解 (1)原式=1111333311111122333333(8)(2)2()2-⨯⨯++-a a b aa b b a b a a b=111133333(8)8-⨯⨯=-a a b a a b a b a b(2)原式=log 34-log 3329+log 38-52log 35=log 3(4×932×8)-52log 35=log 39-9=2-9=-7.跟踪训练1 (1681)34-+log 354+log 345=________.答案278解析 (1681)34-+log 354+log 345=(23)-3+log 31=278+0=278.题型二 函数的图象函数图象是高考考查的重点内容,在历年高考中都有涉及.考查形式有知式选图、知图造式、图象变换以及用图象解题.函数图象形象地显示了函数的性质,利用数形结合有时起到事半功倍的效果.例2 函数y =⎝⎛⎭⎫12x+1的图象关于直线y =x 对称的图象大致是( )答案 A解析 函数y =⎝⎛⎭⎫12x +1的图象如图所示,关于y =x 对称的图象大致为A 选项对应图象.跟踪训练2 函数y =xa x|x |(0<a <1)的图象的大致形状是( )答案 D解析 当x >0时,y =xa x |x |=a x .又0<a <1,可排除A 、C ;当x <0时,y =xa x|x |=-a x .又0<a <1,可排除B. 题型三 比较大小比较几个数的大小问题是指数函数、对数函数和幂函数的重要应用,其基本方法是:将需要比较大小的几个数视为某类函数的函数值,其主要方法可分以下三种:(1)根据函数的单调性(如根据一次函数、二次函数、指数函数、对数函数、幂函数的单调性),利用单调性的定义求解;(2)采用中间量的方法(实际上也要用到函数的单调性),常用的中间量如0,1,-1等; (3)采用数形结合的方法,通过函数的图象解决. 例3 设a =log 213,b =⎝⎛⎭⎫130.2,c =231,则( )A.a <b <cB.c <b <aC.c <a <bD.b <a <c答案 A解析 a =log 213<0,0<b =⎝⎛⎭⎫130.2<1,c =231>1,故有a <b <c . 跟踪训练3 设a =log 2π,b =log 21π,c =π-2,则( )A.a >b >cB.b >a >cC.a >c >bD.c >b >a 答案 C解析 因为π>2,所以a =log 2π>1,所以b =log 21π<0.因为π>1,所以0<π-2<1,即0<c <1.所以a >c >b .题型四 换元法的应用换元法的作用是利用整体代换,将问题转化为常见问题.本章中,常设u =log a x 或u =a x ,转化为一元二次方程、二次函数等问题.要注意换元后u 的取值范围. 例4 求函数y =f (x )=-(12)2x -4(12)x +5的值域.解 函数的定义域是R .设u =(12)x ,由于x ∈R ,则u ∈(0,+∞).则有y =-u 2-4u +5=-(u +2)2+9. ∵u ∈(0,+∞),∴y ∈(-∞,5), 故函数y =f (x )的值域是(-∞,5).跟踪训练4 已知实数x 满足-3≤log 21x ≤-12,求函数y =(log 2x 2)·(log 2x4)的值域.解 y =(log 2x 2)·(log 2x4)=(log 2x -1)(log 2x -2)=(log 2x )2-3log 2x +2.∵-3≤log 21x ≤-12,∴12≤log 2x ≤3.令t =log 2x ,则t ∈[12,3],y =t 2-3t +2=(t -32)2-14,∴t =32时,y min =-14;t =3时,y max =2.故函数的值域为[-14,2].分类讨论思想应用指数函数y =a x 和对数函数y =log a x 的图象和性质时,若底数含有字母,要特别注意对底数a >1和0<a <1两种情况的讨论.例5 函数y =a 2x +2a x -1(a >0,且a ≠1)在区间[-1,1]上有最大值14,求a 的值. 解 y =(a x )2+2a x -1=(a x +1)2-2.令a x =t ,则y =(t +1)2-2,对称轴方程为t =-1. ①当a >1时,因为-1≤x ≤1,所以1a ≤a x ≤a ,即1a ≤t ≤a ,函数图象在对称轴右侧,是单调递增的, 所以当t =a 时有最大值,所以(a +1)2-2=14, 所以a =3.②当0<a <1时,因为-1≤x ≤1,所以a ≤a x ≤1a ,即a ≤t ≤1a ,函数图象在对称轴右侧,是单调递增的,所以当t =1a 时有最大值,所以(1a +1)2-2=14,所以a =13.所以a 的值为3或13.跟踪训练5 已知偶函数f (x )在x ∈[0,+∞)上是增函数,f ⎝⎛⎭⎫12=0,求不等式f (log a x )>0(a >0,且a ≠1)的解集.解 ∵f (x )是偶函数,且f (x )在[0,+∞)上是增函数, 又f ⎝⎛⎭⎫12=0,∴f (x )在(-∞,0)上是减函数,f ⎝⎛⎭⎫-12=0. 故若f (log a x )>0,则有log a x >12或log a x <-12.①当a >1时,由log a x >12或log a x <-12,得x >a 或0<x <a a. ②当0<a <1时,由log a x >12或log a x <-12,得0<x <a 或x >a a. 综上可知,当a >1时,f (log a x )>0的解集为⎝⎛⎭⎫0,a a ∪(a ,+∞);当0<a <1时,f (log a x )>0的解集为(0,a )∪⎝⎛⎭⎫a a ,+∞.。