工业机械手概述
- 格式:docx
- 大小:33.08 KB
- 文档页数:7
第一章绪论1.1前言用于再现人手的的功能的技术装置称为机械手。
机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。
机械手一般分为三类:第一类:是不需要人工操作的通用机械手。
它是一种独立的不附属于某一主机的装置。
它可以根据任务的需要编制程序,以完成各项规定的操作。
它的特点是具备普通机械的性能之外,还具备通用机械、记忆智能的三元机械。
第二类:是需要人工才做的,称为操作机。
它起源于原子、军事工业,先是通过操作机来完成特定的作业,后来发展到用无线电讯号操作机来进行探测月球等。
工业中采用的锻造操作机也属于这一范畴。
第三类:是用专用机械手,主要附属于自动机床或自动线上,用以解决机床上下料和工件送。
1.2 工业机械手的简史机械手首先是从美国开始研制的。
1958年美国联合控制公司研制出第一台机械手。
(1)1954年USA工程师德尔沃最早提出机械人的概念;(2)1959年USA德尔沃与英格伯制造了世界上的第一台机械人;(3)1962年USA正式将机械人的使用性提出来,且制造出类似人的手臂;(4)1967年JAN成立了人工手研究会,并召开了首届机械手学术会;(5)1970年在USA召开了第一届工业机械人学术会,并的到迅速普及;(6)1973年辛辛那提公司制造出第一台小型计算机控制的的工业机械人,当时是液压驱动,能载重大成就45KG ;(7)到1980年在JAN 得到普及,并定为“机械人元年”此后在日本机械人得到了前所未有的发展与提升,在就是后来到台湾再到大陆。
第二代机械手正在加紧研制。
它设有微型电子计算机控制系统,具有视觉、触觉能力,甚至听、想的能力。
研究安装各种传感器,把感觉到的信息反馈,使机械手具有感觉机能。
目前国外已经出现了触觉和视觉机械手。
第三代机械手(机械人)则能独立地完成工作过程中的任务。
它与电子计算机和电视设备保持联系。
并逐步发展成为柔性制造系统FMS(Flexible Manufacturing system)和柔性制造单元(Flexible Manufacturing Cell)中重要一环。
自动化机械手随着科技的不断发展和进步,人们生活中越来越多的工作被自动化机器人接手完成。
自动化机械手可以分为工业机械手和服务机器人两大类。
工业机械手可以完成重复性、危险、高精度的工作,而服务机器人则可以帮助人们解决日常生活中的各种问题。
本文将分别从这两个角度,深入探讨自动化机械手。
一、工业机械手1. 工业机械手的定义和基本构成工业机械手是一种自动化的执行装置,一般由机身、传动系统、执行器、控制系统和传感器等几部分组成。
机械手的运动方式通常是基于关节式机械手,柔性机械手和平面机械手等类型。
2. 工业机械手的应用领域工业机械手广泛应用于制造业和加工业中,如汽车制造、电子产品制造、半导体制造、化工生产和食品加工等领域。
在这些领域中,工业机械手可以完成各种不同类型的工作,如焊接、喷涂、装配、搬运、测试等。
3. 工业机械手的优点和挑战与传统的手工装配方式相比,工业机械手具有以下优点:(1)高效率:工业机械手可以一次性完成大量的重复性工作,从而提高生产效率。
(2)高精度:工业机械手可以精确地执行任务,从而降低缺陷率。
(3)高安全性:工业机械手可以替代大量的重复性和危险的工作,从而降低了员工工作上的风险。
与此同时,工业机械手还面临以下挑战:(1)高成本:工业机械手的制造成本较高。
(2)缺乏灵活性:工业机械手的程序只能完成固定的任务,难以适应快速变化的生产需求。
(3)控制系统稳定性:在大量机械手同时协作的生产线上,如何确保机械手的控制系统稳定性,仍然是一个亟待解决的问题。
二、服务机器人1. 服务机器人的定义和基本构成服务机器人是一种专门用于处理服务业的机器人,一般由机身、控制系统、传感器、执行器、电源、数据接口等几部分组成。
2. 服务机器人的应用领域服务机器人广泛应用于医疗、教育、餐饮、酒店、物流等领域。
在这些领域中,服务机器人可以完成各种不同类型的服务,如接待、清洁、安全监控、护理、配送等。
3. 服务机器人的优点和挑战与传统的人类服务方式相比,服务机器人具有以下优点:(1)高效率:服务机器人可以一次性完成多个任务,从而提高服务效率。
机械手臂概述机械手臂是一种使用电机和各种机械驱动方式,具有多自由度运动的机械臂,其主要应用于工业、医疗、仓储和服务等领域。
在现代科技中,机械手臂的应用越来越广泛,它的出现不仅提高了生产效率,还可以承担人类难以完成的高难度工作。
多自由度构架机械手臂是一种具有多自由度的装置,通常具有至少6个自由度。
这个6个自由度分别代表不同的方向和角度,如:旋转、伸缩、抓取、推拉等。
这是机械手臂可以完成特定任务的基础。
同时,机械手臂的构架也因此变得复杂,联合控制和机械特制成为必不可少的组成部分。
机械手臂的分类机械手臂通常被分为以下几种类型:工业机械手臂、服务性机械手臂、医疗机械手臂以及教育机械手臂。
1. 工业机械手臂工业机械手臂是应用最广泛和效率最高的机械手臂种类。
它一般应用于制造业中,用于从生产线上取出产品。
工业机械手臂能够快速、准确地执行任务,因此它已经成为不少工业公司的标配。
2. 服务性机械手臂服务性机械手臂的主要功能是辅助人类从事日常生产和生活工作。
这种机械手臂可以在商场、医院、酒店等公共场所中使用,它们能够帮助人们搬运重物、清理卫生等。
随着智能技术的不断更新和升级,服务性机械手臂的应用范围也越来越广泛。
3. 医疗机械手臂医疗机械手臂可以在医院手术室中使用,它们可以进行高精度的手术切割,大大缩短了手术时间和风险。
同样,也有机械手臂被应用于理疗中。
4. 教育机械手臂教育机械手臂是一种让孩子们学习科学的好帮手,旨在吸引孩子们对工程学科的兴趣。
这种机械手臂通常具有简单的构造,可以通过简单的程序让孩子们实现动力装置实验和机械结构的制作。
机械手臂的优点机械手臂的优点不仅包括提高生产效率和质量,还能够从危险和恶劣的环境中解放出来。
同时,机械手臂可以根据生产流程进行调整,达到最优化效果。
机械手臂的耐久程度也更高,更容易进行维护和升级。
结论机械手臂是一种应用广泛、卓越的机械装置,它通过电机和其他机械驱动方式进行多方位的自由度运动。
工业机械手工作原理
工业机械手是一种能够模拟人的手臂动作的机器。
它由多个关节组成,可以自由地进行转动和伸缩。
工业机械手主要通过以下几个部分实现工作:
1. 关节:工业机械手包含多个关节,通过关节的转动和伸缩,实现机械手的各种动作。
每个关节通常都有一个电机驱动,可以通过电信号和编码器控制关节的运动角度和速度。
2. 传感器:工业机械手上配备了多个传感器,用于感知周围环境和物体的位置、形状等信息。
常用的传感器包括视觉传感器、力传感器、控制器等。
这些传感器将收集到的数据传输到控制系统中,以帮助机械手正确地执行任务。
3. 控制系统:工业机械手的控制系统通常由计算机和控制算法组成。
计算机接收传感器数据,并根据预设的指令和算法来计算和控制机械手的动作。
控制系统可以实现复杂的轨迹规划、力控制、运动协调等功能。
4. 工具和末端执行器:工业机械手通常会配备各种不同的工具和末端执行器,以完成不同的任务。
例如,吸盘、夹具、焊枪等。
这些工具和末端执行器可以根据需要进行更换和调整,使机械手具备不同的功能和应用场景。
工业机械手的工作原理即通过控制系统控制电机驱动关节的转动和伸缩,使机械手完成预设的任务。
控制系统根据传感器提供的数据,计算出机械手的运动轨迹、速度和姿态,并对关节
进行精确的控制。
根据需要,机械手可以进行高速运动、精确定位、力控制等操作。
工业机械手工作原理
工业机械手是一种特殊的机械设备,它的工作原理基于先进的控制系统和执行器的协同作用。
工业机械手的控制系统通常由电脑、传感器和程序控制器组成。
电脑负责接收和处理外部输入信号,传感器可以感知到机械手和周围环境的状态,程序控制器则根据输入信号和预设的程序指令,控制机械手的运动和动作。
机械手的执行器是实现运动和动作的关键部件。
通常,电动伺服电机被用作机械手的驱动装置。
伺服电机通过控制系统接收的指令信号,可以精确控制机械手的运动和位置。
工业机械手的基本运动包括平移和旋转。
平移运动是指机械手在三维空间内沿着直线轨迹移动,而旋转运动是指机械手绕某个轴线进行旋转。
机械手的运动和动作实际上是由多个关节的协同作用来实现的。
每个关节通常由驱动装置、传动装置和支撑装置组成。
驱动装置通过转动关节的轴线使机械手产生运动,传动装置则将动力传递给关节,支撑装置则使机械手能够稳定地支撑物体。
工业机械手的工作原理可以总结为以下几个步骤:首先,通过控制系统接收和处理输入信号,确定机械手需要进行的具体操作。
然后,控制系统发送指令信号给执行器,激活机械手的驱动装置。
接着,驱动装置将动力传递给关节,使机械手产生相应的运动和动作。
最后,机械手完成预设的任务,并将结果反
馈给控制系统。
总的来说,工业机械手的工作原理基于先进的控制系统和执行器的协同作用,通过精确的运动控制和动作实现,完成各种特定的工业任务。
机械手设计概述机械手是一种通过电子控制的机器人手臂,其特点是具有多关节,并且可以完成各种复杂的工作。
机械手广泛应用于工业生产中,能够帮助人类完成重复性高、难度大的精细工作,大大提高了工作效率和生产质量。
机械手的设计是机械工程领域中的一项重要技术,本文将对机械手的设计概述进行介绍。
一、机械手的组成机械手通常由机械结构、控制系统、传感器和执行器四部分组成。
机械结构是机械手的物理载体,其设计包括机械臂的材料、形状、长度、关节数量等等。
控制系统是机械手的智能引擎,它可以管理和控制机械手的动作、位置、速度等参数。
传感器可以检测机械手周围的环境,控制机械手避免与其他物体进行碰撞。
执行器是机械手真正完成任务的部分,比如通过手夹进行零件抓取、松开等。
二、机械手的设计原理机械手的设计原理基于三个关键点:1)力学;2)电气学;3)控制理论。
力学主要应用于机械手的材料强度、承重能力、动态特性等方面。
电气学主要应用于控制系统的设计,包括电路、电机、传感器等。
控制理论涉及系统控制理论和数学建模技术,它能够帮助设计师对机械手的运动进行更清晰地规划和优化。
三、机械手的设计步骤1)任务分析:分析所需执行的任务,明确设计的目的和要求。
2)机械结构设计:根据任务分析的结果,确定机械手的材料、形状、长度、关节数量等参数,设计机械臂的机构、运动形式、驱动方式、末端执行器等。
3)控制系统设计:根据机械手的结构和要求,选型控制器、编码器和传感器等,完成控制系统的设计与开发。
4)机械手测试:对机械手进行测试和评估,确保其能够完成预定任务并且性能优良稳定。
5)机械手上线:在实际工作中对机械手进行应用。
四、机械手的应用领域机械手在目前的工业生产中广泛应用,特别是在汽车制造、电子设备、医疗器械、食品加工等领域。
机械手不仅可以取代人力完成精细的任务,而且由于机械手反应快、准确性高,生产效率比人类工作效率更高。
五、机械手的不足与未来发展机械手在应用中也存在一些不足之处,最突出的是柔性差,难以适应不同形状或材料的物体。
第1章绪论前言机械手。
机械手是模仿着人手的部用于再现人手的的功能的技术装置称为[]1分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。
在工业生产中应工业机械手。
用的机械手被称为[]2工业机械手是近代自动控制领域中出现的一项新技术,并已成为现代机械制造生产系统中的一个重要组成部分,这种新技术发展很快,逐渐成为一门新兴的学科——机械手工程。
机械手涉及到力学、机械学、电器液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。
工业机械手是近几十年发展起来的一种高科技自动生产设备。
工业机械手也是工业机器人的一个重要分支。
他的特点是可以通过编程来完成各种预期的作业,在构造和性能上兼有人和机器各自的优点,尤其体现在人的智能和适应性。
机械手作业的准确性和环境中完成作业的能力,在国民经济领域有着广泛的发展空间。
机械手的发展是由于它的积极作用正日益为人们所认识:其一、它能部分的代替人工操作;其二、它能按照生产工艺的要求,遵循一定的程序、时间和位置来完成工件的传送和装卸;其三、它能操作必要的机具进行焊接和装配,从而大大的改善了工人的劳动条件,显著的提高了劳动生产率,加快实现工业生产机械化和自动化的步伐。
因而,受到很多国家的重视,投入大量的人力物力来研究和应用。
尤其是在高温、高压、粉尘、噪音以及带有放射性和污染的场合,应用的更为广泛。
在我国近几年也有较快的发展,并且取得一定的效果,重视。
受到机械工业的[]3机械手是一种能自动控制并可从新编程以变动的多功能机器,他有多个自由度,可以搬运物体以完成在不同环境中的工作。
机械手的结构形式开始比较简单,专用性较强。
随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。
由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用。
工业机械手的简史现代工业机械手起源于20世纪50年代初,是基于示教再现和主从控制方产品。
式、能适应产品种类变更,具有多自由度动作功能的柔性自动化[]4机械手首先是从美国开始研制的。
1958年美国联合控制公司研制出第一台机械手。
他的结构是:机体上安装一回转长臂,端部装有电磁铁的工件抓放机构,控制系统是示教型的。
1962年,美国机械铸造公司在上述方案的基础之上又试制成一台数控示教再现型机械手。
商名为Unimate(即万能自动)。
运动系统仿造坦克炮塔,臂回转、俯仰,用液压驱动;控制系统用磁鼓最存储装置。
不少球坐标式通用机械手就是在这个基础上发展起来的。
同年该公司和普鲁曼公司合并成立万能自动公司(Unimaton),专门生产工业机械手。
1962年美国机械铸造公司也试验成功一种叫Versatran机械手,原意是灵活搬运。
该机械手的中央立柱可以回转,臂可以回转、升降、伸缩、采用液压驱动,控制系统也是示教再现型。
虽然这两种机械手出现在六十年代初,但都是国外工业机械手发展的基础。
1978年美国Unimate公司和斯坦福大学、麻省理工学院联合研制一种Unimate-Vic-arm型工业机械手,装有小型电子计算机进行控制,用于装配作业,定位误差可小于±1毫米。
美国还十分注意提高机械手的可靠性,改进结构,降低成本。
如Unimate 公司建立了8年机械手试验台,进行各种性能的试验。
准备把故障前平均时间(注:故障前平均时间是指一台设备可靠性的一种量度。
它给出在第一次故障前的平均运行时间),由400小时提高到1500小时,精度可提高到±0.1毫米。
德国机器制造业是从1970年开始应用机械手,主要用于起重运输、焊接和设备的上下料等作业。
德国KuKa公司还生产一种点焊机械手,采用关节式结构和程序控制。
瑞士RETAB公司生产一种涂漆机械手,采用示教方法编制程序。
瑞典安莎公司采用机械手清理铸铝齿轮箱毛刺等。
日本是工业机械手发展最快、应用最多的国家。
自1969年从美国引进二种典型机械手后,大力研究机械手的研究。
据报道,1979年从事机械手的研究工作的大专院校、研究单位多达50多个。
1976年个大学和国家研究部门用在机械手的研究费用42%。
1979年日本机械手的产值达443亿日元,产量为14535台。
其中固定程序和可变程序约占一半,达222亿日元,是1978年的二倍。
具有记忆功能的机械手产值约为67亿日元,比1978年增长50%。
智能机械手约为17亿日元,为1978年的6倍。
截止1979年,机械手累计产量达56900台。
在数量上已占世界首位,约占70%,并以每年50%~60%的速度增长。
使用机械手最多的是汽车工业,其次是电机、电器。
预计到1990年将有55万机器人在工作。
第二代机械手正在加紧研制。
它设有微型电子计算机控制系统,具有视觉、触觉能力,甚至听、想的能力。
研究安装各种传感器,把感觉到的信息反馈,使机械手具有感觉机能。
目前国外已经出现了触觉和视觉机械手。
第三代机械手(机械人)则能独立地完成工作过程中的任务。
它与电子计算机和电视设备保持联系。
并逐步发展成为柔性制造系统FMS(Flexible Manufacturing system)和柔性制造单元(Flexible Manufacturing Cell)中重要一环。
随着工业机器手(机械人)研究制造和应用的扩大,国际性学术交流活动十分活跃,欧美各国和其他国家学术交流活动开展很多。
工业机械手在生产中的应用机械手是工业自动控制领域中经常遇到的一种控制对象。
机械手可以完成许广泛。
多工作,如搬物、装配、切割、喷染等等,应用非常广泛[]5在现代工业中,生产过程中的自动化已成为突出的主题。
各行各业的自动化水平越来越高,现代化加工车间,常配有机械手,以提高生产效率,完成工人难以完成的或者危险的工作。
可在机械工业中,加工、装配等生产很大程度上不是连续的。
据资料介绍,美国生产的全部工业零件中,有75%是小批量生产;金属加工生产批量中有四分之三在50件以下,零件真正在机床上加工的时间仅占零件生产时间的5%。
从这里可以看出,装卸、搬运等工序机械化的迫切性,工业机械手就是为实现这些工序的自动化而产生的。
目前在我国机械手常用于完成的工作有:注塑工业中从模具中快速抓取制品并将制品传诵到下一个生产工序;机械手加工行业中用于取料、送料;浇铸行业中用于提取高温熔液等等。
本文以能够实现这类工作的搬运机械手为研究对象。
下面具体说明机械手在工业方面的应用。
1.3.1 建造旋转零件(转轴、盘类、环类)自动线一般都采用机械手在机床之间传递零件。
国内这类生产线很多,如沈阳永泵厂的深井泵轴承体加工自动线(环类),大连电机厂的4号和5号电动机加工自动线(轴类),上海拖拉机厂的齿坯自动线(盘类)等。
加工箱体类零件的组合机床自动线,一般采用随行夹具传送工件,也有采用机械手的,如上海动力机厂的气盖加工自动线转位机械手。
1.3.2 实现单机自动化方面各类半自动车床,有自动加紧、进刀、切削、退刀和松开的功能,单仍需人工上下料;装上机械手,可实现全自动化生产,一人看管多台机床。
目前,机械手在这方面应用很多,如上海柴油机厂的曲拐自动车床和座圈自动车床机械手,大连第二车床厂的自动循环液压仿行车床机械手,沈阳第三机床厂的Y38滚齿机械手,青海第二机床厂的滚铣花键机床机械手等。
由于这方面的使用已有成功的经验,国内一些机床厂已在这类产品出厂是就附上机械手,或为用户安装机械手提供条件。
如上海第二汽车配件厂的灯壳冲压生产线机械手(生产线中有两台多工位机床)和天津二注塑机有加料、合模、成型、分模等自动工作循环,装上机械手的自动装卸工件,可实现全自动化生产。
目前机械手在冲床上应用有两个方面:一是160t以上的冲床用机械手的较多。
如沈阳低压开关厂200t环类冲床磁力起重器壳体下料机械手和天京拖拉机厂400t冲床的下料机械手等;其一是用于多工位冲床,用作冲压件工位间步进轻局技术研究所制作的120t和40t多工位冲床机械手等。
1.3.3 铸、锻、焊热处理等热加工方面模锻方面,国内大批量生产的3t、5t、10t模锻锤,其所配的转底炉,用两只机械手成一定角度布置早炉前,实现进出料自动化。
上海柴油机厂、北京内燃机厂、洛阳拖拉机厂等已有较成熟的经验。
机械手的组成组成。
工业的机械手由执行机构、驱动机构和控制机构三部分组成[]61.4.1 执行机构(1)手部既直接与工件接触的部分,一般是回转型或平动型(多为回转型,因其结构简单)。
手部多为两指(也有多指);根据需要分为外抓式和内抓式两种;也可以用负压式或真空式的空气吸盘(主要用于吸冷的,光滑表面的零件或薄板零件)和电磁吸盘。
传力机构形式教多,常用的有:滑槽杠杆式、连杆杠杆式、楔块杠杆式、齿轮齿条平行连杆式、内撑连杆式、右丝杠螺母式、弹簧式和重力式。
(2)腕部是连接手部和臂部的部件,并可用来调节被抓物体的方位,以扩大机械手的动作范围,并使机械手变的更灵巧,适应性更强。
手腕有独立的自由度。
有回转运动、上下摆动、左右摆动。
一般腕部设有回转运动再增加一个上下摆动即可满足工作要求,有些动作较为简单的专用机械手,为了简化结构,可以不设腕部,而直接用臂部运动驱动手部搬运工件。
目前,应用最为广泛的手腕回转运动机构为回转液压(气)缸,它的结构紧凑,灵巧但回转角度小(一般小于 2700),并且要求严格密封,否则就难保证稳定的输出扭距。
因此在要求较大回转角的情况下,采用齿条传动或链轮以及轮系结构。
(3)臂部手臂部件是机械手的重要握持部件。
它的作用是支撑腕部和手部(包括工作或夹具),并带动他们做空间运动。
臂部运动的目的:把手部送到空间运动范围内任意一点。
如果改变手部的姿态(方位),则用腕部的自由度加以实现。
因此,一般来说臂部具有三个自由度才能满足基本要求,即手臂的伸缩、左右旋转、升降(或俯仰)运动。
手臂的各种运动通常用驱动机构(如液压缸或者气缸)和各种传动机构来实现,从臂部的受力情况分析,它在工作中既受腕部、手部和工件的静、动载荷,而且自身运动较为多,受力复杂。
因此,它的结构、工作范围、灵活性以及抓重大小和定位精度直接影响机械手的工作性能。
(4)行走机构有的工业机械手带有行走机构,我国的正处于仿真阶段。
1.4.2 驱动机构驱动机构是工业机械手的重要组成部分。
根据动力源的不同, 工业机械手的驱动机构大致可分为液压、气动、电动和机械驱动等四类。
采用液压机构驱动机械手,结构简单、尺寸紧凑、重量轻、控制方便、可获得较大的输出功率、液体不可压缩,压力、流量易于控制,反应灵敏、控位精确等优秀特点。
1.4.3 控制系统分类在机械手的控制上,有点动控制和连续控制两种方式。
大多数用插销板进行点位控制,也有采用可编程序控制器控制、微型计算机控制,采用凸轮、磁盘磁带、穿孔卡等记录程序。