midas civil 实例6 悬索桥的成桥阶段和施工阶段分析
- 格式:pdf
- 大小:14.03 MB
- 文档页数:83
分析报告书课题悬臂法连续梁桥施工阶段分析院系生态环境与建筑工程学院班级2013级土木路桥班组别第2组组员指导教师提交日期 2016.12.28组员信息组员信息表目录第1章设计原始资料 01.1设计概况 01.2截面参数 01.3主要材料及材料性能 (1)1.4任务要求 (2)1.5技术标准 (2)1.6主要规范 (2)第2章模型建立与分析 (3)2.1模型建立 (3)2.1.2 施工阶段划分 (3)2.1.3 施工阶段在Midas Civil中的定义 (5)2.2模型分析 (7)第3章总结 (11)第1章设计原始资料1.1 设计概况桥梁形式:三跨变截面连续箱梁桥,梁宽12m桥梁长度:L = 30+50+30 = 110m,中跨为挂孔结构,挂梁长16m,为钢筋混凝土结构。
施工方法:悬臂施工T构部分,满堂支架施工边跨现浇段,边跨合龙时,中跨体系转换为简支单悬臂结构,拆除施工支架,然后施工中跨挂梁,挂梁与中跨主梁铰接,施工桥面铺装,并考虑3650天收缩徐变。
预应力布置形式:T构部分配置顶板预应力,边跨配置底板预应力1.2截面参数图2-1 跨中箱梁截面图2-2墩顶箱梁截面1.3 主要材料及材料性能1)混凝土表2-1 混凝土表格2)普通钢筋表2-2 普通钢筋表格3)预应力材料表2-1 预应力材料表格4)其他材料钢板:锚头下垫钢板、灯具连接板等采用低碳钢;预应力管道:采用波纹管成型;支座:采用GPXZ系列盆式橡胶支座;伸缩缝:采用D60型伸缩装置;1.4任务要求(1)3人/组,开展分析、讨论,递交分析报告;(2)以熟悉Midas Civil操作为目的,作为算例,可暂不涉及预应力;(3)重点在于施工过程分析,此外,可以成桥模型开展其他分析,例如特征值分析、振型分解反应谱法分析(抗震)、移动荷载分析等;1.5技术标准公路等级:一级公路,双向2车道;设计荷载:公路-I级;桥面宽度:5.25×2+0.75×2;安全等级:二级;1.6 主要规范1)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004);2)《公路桥涵设计通用规范》(JTG D60-2004);3)《公路工程技术标准》(JTG B01-2003);4)《公路桥梁抗震设计细则》(JTG/T B02-01-2008);5)《公路桥涵地基与基础设计规范》(JTG D63-2007);6)《城市桥梁设计规范》(CJJ11-2011);第2章模型建立与分析2.1模型建立2.1.1 概述Midas建模一般步骤:定义材料和截面》建立结构模型》输入非预应力钢筋》输入荷载(恒荷载、钢束特性和形状、钢束预应力荷载)》定义施工阶段》输入移动荷载数据(选择移动荷载规范、定义车道、定义车辆、移动荷载工况)》运行结构分析》查看分析结果。
使用一般功能做悬臂法桥梁施工阶段分析目 录悬臂法的施工顺序和施工阶段分析 1设定建模环境 3定义截面及材料 4结构建模 9建立预应力箱型梁模型 / 10建立桥墩模型 / 15建立结构群 / 16定义边界群以及输入边界条件 / 20建立荷载群 / 23定义并建立施工阶段 25定义施工阶段 / 25建立施工阶段 / 30输入荷载 / 33使用一般功能做悬臂法桥梁施工阶段分析悬臂法的施工顺序和施工阶段分析本用户指南将使用“使用建模助手做悬臂法桥梁施工阶段分析”中的例题,学习掌握使用一般建模功能做施工阶段分析的步骤。
悬臂法(FCM)的施工顺序一般如下:本悬臂法桥梁例题为三跨连续梁使用了4台挂篮(F/T),因此不必移动挂篮。
高级应用例题悬臂法施工阶段分析应该正确反应上面的施工顺序。
施工阶段分析中各施工阶段的定义,在MIDAS/CIVIL里是通过激活和钝化结构群、边界群以及荷载群来实现的。
下面将MIDAS/CIVIL中悬臂法桥梁施工阶段分析的步骤整理如下。
1.定义材料和截面2.建立结构模型3.定义并构建结构群4.定义并构建边界群5.定义荷载群6.输入荷载7.布置预应力钢束8.张拉预应力钢束9.定义时间依存性材料特性值并连接10.运行11.确认分析结果在“使用建模助手做悬臂法桥梁施工阶段分析”里使用悬臂法桥梁建模助手完成了上述2~8步骤。
在本使用指南中,我们将使用一般功能完成上述施工阶段分析的1~8步骤。
步骤9~11的方法与“使用建模助手做悬臂法桥梁施工阶段分析”相同,在本使用指南章节中将不赘述。
使用一般功能做悬臂法桥梁施工阶段分析设定建模环境为了做悬臂法桥梁的施工阶段分析首先打开新项目( 新项目)以‘FCM.mcb’名字保存(保存)文件。
然后将单位体系设置为‘tonf ’和‘m ’。
该单位体系可以根据输入的数据类型随时随意地更换。
文件 / 新项目文件 /保存 ( FCM )工具 / 单位体系长度 > m ; 力 > tonf图1 设定单位体系单位体系也可以在程序窗口下端的状态条中的单位选择按钮()中选择修改。
自锚式悬索桥成桥阶段分析大桥是跨海大桥,目前除铁路部分还没有运行外,其他公路部分已经在使用。
把握桥梁的成桥阶段特性可对事故做出迅速反应,制定相应的应对措施,对桥梁的维护管理也是相当重要的。
本文将对大桥的成桥阶段模型建模方法和分析结果进行简要说明。
一.分析简要为了了解桥梁的特性以及维护管理的需要,首先要建立桥梁结构分析模型。
建立成桥阶段模型较为重要的是如何模拟成桥阶段的结构刚度、边界条件以及质量分布。
悬索桥在施工阶段表现出非常明显的非线性特征,但在主缆和吊杆产生了较大张力的成桥阶段,对追加荷载(车辆荷载、风荷载等)的反应则表现出线性特征。
因此可以将成桥状态的坐标和构件内力作为初始平衡状态,对追加荷载的反应假定为线性反应,利用初始平衡状态的内力计算几何刚度,并与结构刚度进行叠加生成成桥状态的刚度。
因为大桥是自锚式悬索桥,在初始平衡状态主缆和加劲梁作用有初始轴力,且轴力对弯曲刚度的影响是不能被忽略的。
本文利用MIDAS软件中的几何刚度初始荷载命令反应轴力对刚度的影响。
本工程成桥阶段分析将参考设计图纸建立几何形状,然后赋予截面特性值和边界条件。
模型建成后利用几何刚度初始荷载命令赋予主缆和加劲梁以初始轴力,用于计算结构的几何刚度。
在运行特征值分析后,通过对主要振型与激振实验结果值的比较,判定建立的分析模型正确与否,然后加载静力和动力荷载,分析结构的各种特性。
本文进行的分析内容如下:成桥阶段特征值分析对比主要振型的频率的分析结果和实验结果。
激振实验通过激振实验结果判断特征值分析的准确性。
静力分析在分析模型中加载静力荷载。
动力分析在分析模型中加载动力荷载,做时程分析。
二.MIDAS中用于成桥阶段分析的功能MIDAS中用于大桥成桥阶段分析所需的单元和功能参见表一。
表一 MIDAS中用于悬索桥分析的功能类 别 内 容 适 用使用单元 索单元梁单元变截面梁单元主缆、吊杆加劲梁索塔荷载功能 几何刚度初始荷载时程分析数据初始轴力(计算几何刚度)将激振力换算为动力荷载边界条件 点弹性支承弹性连接刚性连接梁端刚域(偏心)弹性支座(桥梁端部外侧)弹性支座(索塔外侧)主缆与鞍座的刚臂连接下弦、腹杆、竖向构件偏心距离分析功能 静力分析特征值分析时程分析静力荷载作用下的反应检查刚性质量模型的正确性预测动力加载时的反应查看结果 (后处理) 特征值分析图形和文本时程图形和文本与实测值的比较动力分析三.分析模型几何形状如<图1>所示大桥为主缆锚固在加劲梁上的自锚式悬索桥,其加劲梁在初始平衡状态有初始轴力作用。
北京迈达斯技术有限公司2007年8月目录1.概要 (1)2. 设置操作环境 (4)3. 定义材料和截面 (5)4. 建立结构模型 (14)5. 非预应力钢筋输入 (30)6. 输入荷载 (30)7. 定义施工阶段 (42)8. 输入移动荷载数据 (48)9. 运行结构分析 (52)10. 查看分析结果 (52)11. PSC设计 (62)12. RC设计 (70)附录:关于温度荷载和支座沉降的模拟 (79)1. 概要本桥为30+50+30三跨混凝土悬臂梁桥,其中中跨为挂孔结构,挂孔梁为普通钢筋混凝土梁,梁长16m。
墩为钢筋混凝土双柱桥墩,墩高15m。
(注:本例题并非实际工程,仅作为软件功能介绍的参考例题。
)在简化过程中省略了边跨合龙段模拟、成桥温度荷载模拟。
通过本例题重点介绍MIDAS/Civil软件的施工阶段分析功能、普通钢筋的输入方法、钢束预应力荷载的输入方法、移动荷载的输入方法和查看分析结果的方法、PSC设计及RC设计数据的输入方法和查看设计结果的方法等。
图1. 分析模型桥梁概况及一般截面桥梁形式:三跨混凝土悬臂梁桥梁长度:L = 30+50+30 = 110.0 m,其中中跨为挂孔结构,挂梁长16m,为钢筋混凝土结构施工方法:悬臂施工T构部分,满堂支架施工边跨现浇段,边跨合龙时,中跨体系转换为简支单悬臂结构,拆除施工支架,然后施工中跨挂梁,挂梁与中跨主梁铰接,施工桥面铺装,并考虑3650天收缩徐变。
预应力布置形式:T构部分配置顶板预应力,边跨配置底板预应力截面形式如下图2. 跨中箱梁截面图3. 墩顶箱梁截面梁桥分析与设计的一般步骤1. 定义材料和截面2. 建立结构模型3. 输入非预应力钢筋4. 输入荷载①.恒荷载②.钢束特性和形状③.钢束预应力荷载5. 定义施工阶段6. 输入移动荷载数据①.选择移动荷载规范②.定义车道③.定义车辆④.移动荷载工况7. 运行结构分析8. 查看分析结果9. PSC设计(预应力混凝土梁)10. RC设计(普混梁和柱)PSC设计参数确定RC设计参数的确定运行设计运行RC梁设计/运行RC柱设计查看设计结果表格和图形查看设计结果表格和图形输出PSC设计计算书输出RC设计计算书使用的材料❑混凝土主梁采用JTG04(RC)规范的C50混凝土,桥墩采用JTG04(RC)规范的C40混凝土❑钢材采用JTG04(S)规范,在数据库中选Strand1860荷载❑恒荷载自重,在程序中按自重输入,由程序自动计算❑预应力钢束(φ15.2 mm×31)截面面积: Au = 4340 mm2孔道直径: 130 mm钢筋松弛系数(开),选择JTG04和0.3(低松弛)超张拉(开)预应力钢筋抗拉强度标准值(fpk):1860N/mm^2预应力钢筋与管道壁的摩擦系数:0.25管道每米局部偏差对摩擦的影响系数:1.5e-006(1/mm)锚具变形、钢筋回缩和接缝压缩值:开始点:6mm结束点:6mm张拉力:抗拉强度标准值的75%,张拉控制应力1395MPa❑徐变和收缩条件水泥种类系数(Bsc): 5 (5代表普通硅酸盐水泥)28天龄期混凝土立方体抗压强度标准值,即标号强度(fcu,f):50N/mm^2t5天长期荷载作用时混凝土的材龄:=ot3天混凝土与大气接触时的材龄:=s相对湿度: %RH70=构件理论厚度:程序计算适用规范:中国规范(JTG D62-2004)徐变系数: 程序计算混凝土收缩变形率: 程序计算❑移动荷载适用规范:公路工程技术标准(JTG B01-2003)荷载种类:公路I级,车道荷载,即CH-CD2. 设置操作环境打开新文件(新项目),以 ‘混凝土悬臂梁’ 为名保存(保存)。
中南大学2010年1月1。
概要 (1)2. 设置操作环境 (2)3. 定义材料和截面 (3)4. 建立结构模型 (7)5。
非预应力钢筋输入 (10)6。
输入荷载 (30)7. 定义施工阶段 (42)8。
输入移动荷载数据 (48)9. 运行结构分析 (52)10. 查看分析结果 (52)1. 概要本桥为80+2*112+2*81+41六跨混凝土预应力连续梁桥。
图1。
分析模型桥梁概况及一般截面桥梁形式:六跨混凝土悬臂梁桥梁长度:L = 80+112+112+80+80+41m施工方法:悬臂施工T构部分,满堂支架施工边跨现浇段,边跨合龙时,中跨体系转换为简支单悬臂结构,拆除施工支架,然后施工中跨挂梁,挂梁与中跨主梁铰接,施工桥面铺装,并考虑1000天收缩徐变.预应力布置形式:T构部分配置顶板预应力,边跨配置底板预应力梁桥分析与设计的一般步骤1. 定义材料和截面2. 建立结构模型3. 输入非预应力钢筋4. 输入荷载①.恒荷载②.钢束特性和形状③.钢束预应力荷载5. 定义施工阶段6. 输入移动荷载数据①.选择移动荷载规范②.定义车道③.定义车辆④.移动荷载工况7. 运行结构分析8. 查看分析结果使用的材料❑混凝土主梁采用JTG04(RC)规范的C50混凝土,桥墩采用JTG04(RC)规范的C40混凝土❑钢材采用JTG04(S)规范,在数据库中选Strand1860荷载❑恒荷载自重,在程序中按自重输入,由程序自动计算❑预应力钢束(φ15.2 mm×31)截面面积: Au = 4340 mm2孔道直径: 130 mm钢筋松弛系数(开),选择JTG04和0.3(低松弛)超张拉(开)预应力钢筋抗拉强度标准值(fpk):1860N/mm^2预应力钢筋与管道壁的摩擦系数:0.25管道每米局部偏差对摩擦的影响系数:1。
5e—006(1/mm)锚具变形、钢筋回缩和接缝压缩值:开始点:6mm结束点:6mm张拉力:抗拉强度标准值的75%,张拉控制应力1395MPa❑徐变和收缩条件水泥种类系数(Bsc): 5 (5代表普通硅酸盐水泥)28天龄期混凝土立方体抗压强度标准值,即标号强度(fcu,f):50N/mm^2t5天长期荷载作用时混凝土的材龄:=ot3天混凝土与大气接触时的材龄:=s相对湿度: %RH=70构件理论厚度:程序计算适用规范:中国规范(JTG D62-2004)徐变系数:程序计算混凝土收缩变形率: 程序计算2。
140中外公路第40卷第6期2 0 2 0年1 2月\?190283.211 |~中跨中心线IPA吊杆单元编号34#33#32*3T 3#2#1*r i #r31#32#33*34*主梁单元编号端节段合龙段S32#S31#S3#S2#s r N r N2#N3#N31#|N32#合龙段端节段图1太洪长江大桥桥型布置图(单位:m )DOIrlO . 14048/j . issn . 1671-2579. 2020.06.029基于Midas /C iv il 的钢箱主梁地锚式悬索桥施工阶段正装分析叶龙样\柯红军2,陈卓1(1.武汉二航路桥特种工程有限责任公司,湖北武汉430071; 2.长沙理工大学土木工程学院)摘要:目前国内外关于使用有限元软件正装分析地锚式悬索桥施工过程的文献很少且大 多介绍不够全面。
该文以太洪长江大桥为工程实例,基于有限元软件Midas /Civil ,提出一种 对钢箱主梁地锚式悬索桥施工全过程正装分析的方法,并改良了主梁吊装时梁段间临时连接 的模拟方法,分析过程中自动考虑主塔混凝土的收缩徐变。
对比正装分析法与倒拆分析法的 计算结果,主缆位移绝对差值最大不超过9 m m ,吊索力绝对差值最大为15.9 kN ,证明其正 确性与优越性;对比主梁吊装时,有、无梁段间临时连接的吊索力,得出考虑临时连接计算的 吊索力分布更加均匀,证明在对主梁吊装仿真分析时,梁段间临时连接不可忽略。
并针对主 梁吊装过程中,梁段间下缘开口宽度变化规律进行探究,得出相应结论:在主梁吊装初期,梁 段间开口较大,沿纵桥向交错变化,随着主梁吊装,开口宽度趋近于0。
关键词:悬索桥;有限元软件Midas /Civil ;施工阶段分析;正装分析法;下缘开口宽度目前国内外对于地锚式悬索桥施工阶段的有限元 分析,大多采用倒拆分析法。
然而,若需要考虑施工阶 段混凝土的收缩、徐变或其他与时间有关的特性,正装 分析法就显得尤为重要。