四大谱图综合解析
- 格式:doc
- 大小:357.50 KB
- 文档页数:6
四大谱图基本原理及图谱解析一质谱1. 基本原理:用来测量质谱的仪器称为质谱仪,可以分成三个部分:离子化器、质量分析器与侦测器。
其基本原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。
在质量分析器中,再利用电场或磁场使不同质荷比的离子在空间上或时间上分离,或是透过过滤的方式,将它们分别聚焦到侦测器而得到质谱图,从而获得质量与浓度(或分压)相关的图谱。
在质谱计的离子源中有机化合物的分子被离子化。
丢失一个电子形成带一个正电荷的奇电子离子(M+J叫分子离子。
它还会发生一些化学键的断裂生成各种r =£碎片离子。
带正电荷离子的运动轨迹:经整理可写成:m _ rjH2电"2比2式中:口/e为质荷比是离子质量与所带电荷数之比;近年来常用m/z 表示质荷比;z表示带一个至多个电荷。
由于大多数离子只带一个电荷,故m/z就可以看作离子的质量数。
质谱的基本公式表明:(1)当磁场强度(H)和加速电压(V)一定时,离子的质荷比与其在磁场中运动半径的平方成正比(m/z x r2m),质荷比(m/z)越大的离子在磁场中运动的轨道半径(rm)也越大。
这就是磁场的重要作用,即对不同质荷比离子的色散作用。
(2)当加速电压(V) 一定以及离子运动的轨道半径(即收集器的位置)一定时,离子的质荷比(m/z)与磁场强度的平方成正比(m/z x H2)改变H即所谓的磁场扫描,磁场由小到大改变,则由小质荷比到大质荷比的离子依次通过收集狭缝,分别被收集、检出和记录下来。
(3)若磁场强度(H)和离子的轨道半径(rm)一定时,离子的质荷比(m/z)与加速电压(V)成反比(m/z x 1/V),表明加速电压越高,仪器所能测量的质量范围越小。
就测量的质量范围而言,希望质量范围大一些,这就必须降低加速电压。
从提高灵敏度和分辨率来讲,需要提高加速电压。
这是一对矛盾,解决的办法是在质量范围够用的情况下尽量提高加速电压,高分辨质谱计加速电压为8kV,中分辨为4〜3kV。
四大谱图基本原理及图谱解析一.质谱1.基本原理:用来测量质谱的仪器称为质谱仪,可以分成三个部分:离子化器、质量分析器与侦测器。
其基本原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。
在质量分析器中,再利用电场或磁场使不同质荷比的离子在空间上或时间上分离,或是透过过滤的方式,将它们分别聚焦到侦测器而得到质谱图,从而获得质量与浓度(或分压)相关的图谱。
在质谱计的离子源中有机化合物的分子被离子化。
丢失一个电子形成带一个正电荷的奇电子离子(M+·)叫分子离子。
它还会发生一些化学键的断裂生成各种碎片离子。
带正电荷离子的运动轨迹:经整理可写成:式中:m/e为质荷比是离子质量与所带电荷数之比;近年来常用m/z表示质荷比;z表示带一个至多个电荷。
由于大多数离子只带一个电荷,故m/z就可以看作离子的质量数。
质谱的基本公式表明:(1)当磁场强度(H)和加速电压(V)一定时,离子的质荷比与其在磁场中运动半径的平方成正比(m/z ∝r2m),质荷比(m/z)越大的离子在磁场中运动的轨道半径(rm)也越大。
这就是磁场的重要作用,即对不同质荷比离子的色散作用。
(2)当加速电压(V)一定以及离子运动的轨道半径(即收集器的位置)一定时,离子的质荷比(m/z)与磁场强度的平方成正比(m/z∝H2)改变H即所谓的磁场扫描,磁场由小到大改变,则由小质荷比到大质荷比的离子依次通过收集狭缝,分别被收集、检出和记录下来。
(3)若磁场强度(H)和离子的轨道半径(rm)一定时,离子的质荷比(m/z)与加速电压(V)成反比(m/z∝1/V),表明加速电压越高,仪器所能测量的质量范围越小。
就测量的质量范围而言,希望质量范围大一些,这就必须降低加速电压。
从提高灵敏度和分辨率来讲,需要提高加速电压。
这是一对矛盾,解决的办法是在质量范围够用的情况下尽量提高加速电压,高分辨质谱计加速电压为8kV,中分辨为4~3kV。
四大谱的原理与应用1. 什么是四大谱四大谱是指波形谱、频谱、时间域谱和功率谱,它们是信号处理中常用的四种分析方法。
这些谱图能够将信号的特征以图像的方式展示出来,从而方便对信号进行分析和处理。
2. 波形谱波形谱是将信号的波形图形与时间轴相对应的一种谱图。
它可以直观地展示信号的振幅、频率和相位等特征。
波形谱主要通过经典的示波器进行实时观测,适用于对信号的时域特性进行分析。
在应用中,波形谱常用于音频、视频信号的分析,能够帮助我们观察信号是否存在失真、噪声等问题,并进行相关的调整和处理。
3. 频谱频谱是将信号的频域特性以图形化的方式展示出来的谱图。
它可以分析信号中各个频率分量的强度、相位和分布情况。
频谱分析常用的方法有傅里叶变换、快速傅里叶变换等。
频谱分析在通信领域、音频处理等方面有着广泛的应用。
例如,通过频谱分析可以判断信号的带宽、频率偏移等问题,在无线电通信中可以有效地进行频谱分配和干扰分析。
4. 时间域谱时间域谱是将信号在时间轴方向上的波形图与信号强度相对应的一种谱图。
它主要用于分析信号中的时序关系、时域波形的延时、相位等特性。
时间域谱分析一般通过采用数字存储示波器等仪器进行处理。
在很多领域中,时间域谱常用于对信号的时域特性进行分析。
例如,在音频领域中,时间域谱能够直观地反映音频信号的声音强度、响度等特征,从而进行声音的增强、降噪等处理。
5. 功率谱功率谱是频谱的一种,它主要用于表示信号在各个频率范围上的功率。
功率谱分析在信号处理和通信领域中广泛应用。
通过功率谱分析,我们可以了解信号的频谱特性,判断信号的平均功率以及频率分布情况。
在实际应用中,功率谱分析可以用于调制解调、噪声分析等场景。
例如,在通信领域中,功率谱分析可以帮助我们了解信道的利用率,设计合理的载波分配方案等。
6. 总结四大谱是信号处理中常用的四种分析方法,它们分别是波形谱、频谱、时间域谱和功率谱。
这些谱图能够将信号的特征直观地展示出来,方便我们进行分析和处理。
1 某未知物分子式为C5H12O,它的质谱、红外光谱以及核磁共振谱如图,它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。
1 :2 : 9[解] 从分子式C5H12O,求得不饱和度为零,故未知物应为饱和脂肪族化合物。
未知物的红外光谱是在CCl4溶液中测定的,样品的CCl4稀溶液的红外光谱在3640cm-1处有1尖峰,这是游离O H基的特征吸收峰。
样品的CCl4浓溶液在3360cm-1处有1宽峰,但当溶液稀释后复又消失,说明存在着分子间氢键。
未知物核磁共振谱中δ4. 1处的宽峰,经重水交换后消失。
上述事实确定,未知物分子中存在着羟基。
未知物核磁共振谱中δ0.9处的单峰,积分值相当3个质子,可看成是连在同一碳原子上的3个甲基。
δ3.2处的单峰,积分值相当2个质子,对应1个亚甲基,看来该次甲基在分子中位于特丁基和羟基之间。
质谱中从分子离子峰失去质量31(-CH 2OH )部分而形成基峰m/e57的事实为上述看法提供了证据,因此,未知物的结构是CCH 3H 3CCH 3CH 2OH根据这一结构式,未知物质谱中的主要碎片离子得到了如下解释。
CCH 3H 3CCH 3CH 2OH+.C +CH 3CH 3H 3CCH 2OH +m/e31m/e88m/e57-2H -CH 3-CH 3-HCH 3C CH 2+m/e29m/e73m/e412 某未知物,它的质谱、红外光谱以及核磁共振谱如图,它的紫外吸收光谱在210nm 以上没有吸收,确定此未知物。
2263[解] 在未知物的质谱图中最高质荷比131处有1个丰度很小的峰,应为分子离子峰,即未知物的分子量为131。
由于分子量为奇数,所以未知物分子含奇数个氮原子。
根据未知物的光谱数据亚无伯或仲胺、腈、酞胺、硝基化合物或杂芳环化合物的特征,可假定氮原子以叔胺形式存在。
红外光谱中在1748 cm -1处有一强羰基吸收带,在1235 cm -1附近有1典型的宽强C -O -C 伸缩振动吸收带,可见未知物分子中含有酯基。
3 待鉴定的化合物(I)和(II)它们的分子式均为C8H12O4。
它们的质谱、红外光谱和核磁共振谱见图。
也测定了它们的紫外吸收光谱数据:(I)λmax223nm,δ4100;(II)λmax219nm,δ2300,试确定这两个化合物。
未之物(I)的质谱
未之物(II)质谱
化合物(I)的红外光谱
化合物(II)的红外光谱
化合物(I)的核磁共振谱
化合物(II)的核磁共振谱
[解] 由于未知物(I)和(II)的分子式均为C8H12O4,所以它们的不饱和度也都是3,因此它们均不含有苯环。
(I)和(II)的红外光谱呈现烯烃特征吸收,未知物(I):3080cm-1,(υ=C-H),1650cm-1(υ=C-C)
未知物(II)::3060cm-1 (υ=C-H),1645cm-1(υ=C-C)
与此同时两者的红外光谱在1730cm-1以及1150~1300 cm-1之间均具有很强的吸收带,说明(I)和(II)的分子中均具有酯基;
(I)的核磁共振谱在δ6.8处有1单峰,(II)在δ6.2处也有1单峰,它们的积分值均相当2个质子。
显然,它们都是受到去屏蔽作用影响的等同的烯烃质子。
另外,(I)和(II )在δ4. 2处的四重峰以及在δ1.25处的三重峰,此两峰的总积分值均相当10个质子,可解释为是2个连到酯基上的乙基。
因此(I)和(II)分子中均存在2个酯基。
这一点,与它们分子式中都含有4个氧原子的事实一致。
几何异构体顺丁烯二酸二乙酯(马来酸二乙酯)和反丁烯二酸二乙酯(富马酸二乙酯)与上述分析结果一致。
现在需要确定化合物([)和(II)分别相当于其中的哪一个。
COOEt COOEt
COOEt EtOOC
顺丁烯二酸二乙酯反丁烯二酸二乙酯
利用紫外吸收光谱所提供的信息,上述问题可以得到完满解决。
由于富马酸二乙酯分子的共平面性很好,在立体化学上它属于反式结构。
而在顺丁烯二酸二乙酯中,由于2个乙酯基在空间的相互作用,因而降低了分子的共平面性,使共轭作用受到影响,从而使紫外吸收波长变短。
有关化合物的紫外吸收光谱数据如下:
化合物λmaxε
顺丁烯二酸二乙酯219 2300
反丁烯二酸二乙酯223 4100
未知物(I)223 4100
未知物(II)219 2300
可见,未知物(I)是富马酸二乙酯,未知物(II)是顺丁烯二酸二乙酯。
4某未知物C11H16的UV、IR、1H NMR、MS谱图及13C NMR数据如下,推导未知物结构。
未知物碳谱数据
[解] 1. 从分子式 C 11H 16,计算不饱和度Ω=4;
2. 结构式推导
UV :240~275 nm 吸收带具有精细结构,表明化合物为芳烃;
IR ::695、740 cm -1 表明分子中含有单取代苯环;
MS :m/z 148为分子离子峰,其合理丢失一个碎片,得到m/z 91的苄基离子; 13C NMR :在(40~10)ppm 的高场区有5个sp 3 杂化碳原子;
1H NMR :积分高度比表明分子中有1个CH 3和4个-CH 2-,其中(1.4~1.2)ppm 为2个CH 2的重叠峰;
因此,此化合物应含有一个苯环和一个C 5H 11的烷基。
1H NMR 谱中各峰裂分情况分析,取代基为正戊基,即化合物的结构为: CH 2CH 2CH 2CH 2CH 323
4αβγδ
3. 指认(各谱数据的归属)
UV :λmax 208nm (苯环E2带),265nm (苯环B 带)。
IR (cm -1):3080,3030(苯环的υCH )
,
2970,2865(烷基的υCH )
,1600,
1500(苯环骨架),740,690(苯环δCH,单取代),1375(CH3的δCH),1450(CH2的CH3δCH)。
1H NMR和13C NMR:
MS:主要的离子峰可由以下反应得到:
各谱数据与结构均相符,可以确定未知物是正戊基苯。