人教版-数学-七年级上册-《近似数》知识点解读
- 格式:doc
- 大小:24.50 KB
- 文档页数:5
《近似数》知识全解
课标要求
理解近似数的定义,会求一个数的近似数,理解有效数字的含义,会求一个数的有效数字的个数,会结合科学计数法表示一个较大的数字。
知识结构
①近似数的定义:只是接近实际数值,但与实际数值还有差别的数叫实际数值的近似值.
②有效数字的定义:一个近似数,从左边第一个不是零的数字起,到末位数字止,所有的数字都叫这个数的有效数字.
内容解析
一个近似数与实际数值的接近程度(精确度)有两种形式:精确数位;有效数字.他们
都是通过四舍五入得到的.在对一个位数较多的数值取近似值时,首先将其进行科学记数,
a ,a中的有效数字就是这个近似数的有然后再取近似值.对于用科学记数法表示的数10n
效数字.
重点难点
本节内容的重点是了解有效数字的意义.能掌握对一个数取近似值的方法.难点是对于用科学记数法表示的数,如何求出它的精确度.
教法导引
通过数学与现实世界中的数据引入,让学生体会到近似数的意义,然后尝试利用小学的知识对一些数取近似值.再介绍有效数字的意义,规定科学记数法的精确度,通过巩固练习,掌握所学内容.
学法建议
情境激趣——复习铺垫——接受新知——练习提升.。
人教版七年级数学上册:1.5.3《近似数》说课稿一. 教材分析《近似数》是人教版七年级数学上册第一章第五节的一部分,主要介绍了近似数的概念、求法以及应用。
这一节的内容是在学生掌握了实数、小数和分数的基础上进行的,为后续学习百分数、概率等知识打下了基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于实数、小数和分数的概念有了初步的了解。
但学生在求近似数方面可能还存在一些困难,例如不理解四舍五入的原理,对于近似数的应用也还不够清晰。
因此,在教学过程中,需要注重引导学生理解四舍五入的原理,并通过实际例子让学生感受近似数在生活中的应用。
三. 说教学目标1.知识与技能:让学生理解近似数的概念,掌握求近似数的方法,能运用近似数解决实际问题。
2.过程与方法:通过观察、实践、探究等活动,培养学生的动手操作能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探究、积极思考的科学精神。
四. 说教学重难点1.重点:近似数的概念、求法及应用。
2.难点:理解四舍五入的原理,以及如何运用近似数解决实际问题。
五.说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:利用多媒体课件、实物模型、数学软件等辅助教学。
六. 说教学过程1.导入新课:通过一个生活中的实际问题,引发学生对近似数的思考,从而导入新课。
2.知识讲解:讲解近似数的概念,并通过例题演示求近似数的方法。
3.实践操作:让学生动手操作,尝试自己求近似数,并解释四舍五入的原理。
4.应用拓展:通过实际例子,让学生感受近似数在生活中的应用。
5.总结反思:让学生总结本节课所学内容,反思自己在求近似数方面的不足。
七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。
可以设计如下板书:•概念:与实际非常接近的数•求法:四舍五入•应用:解决实际问题八. 说教学评价教学评价可以从学生的学习态度、课堂参与度、作业完成情况、考试成绩等方面进行。
七年级数学近似数知识点数学中有一个重要的概念——近似数。
顾名思义,近似数就是与实际值相近的数。
近似数不是精确的数,但是在一定程度上可以代表实际值,因此在日常生活中被广泛应用。
一、近似数的定义近似数是指与实际值相近的数。
它是一个数学概念,通常是通过把一个实际值四舍五入到适当的数量级,以便得到一个被认为“足够近似”的数值。
例如,当我们用1元钱购买一瓶水,水的实际价格可能是0.99元,但是出于方便,我们将其近似地表示为1元。
这就是近似数的应用。
二、近似数的精度近似数的精度是指它与实际值之间的差距,也称为“误差”。
误差越小,近似数的精度就越高。
例如,当我们用3.14来近似表示圆周率时,它与实际值(3.14159...)之间的误差很小,因此近似数的精度就很高。
三、近似数的运算在数学运算中,近似数也有其独特的运算法则。
以下是一些常用的近似数运算法则:1. 加减法法则:将精度较低的近似数统一到相同的数量级再进行运算。
例如,将1.23和0.05相加时,可以先将0.05近似为0.1,然后将两个数都表示为小数点后一位的精度,即1.2和0.1,最后再进行加法运算:1.2+0.1=1.3。
2. 乘法法则:精度较低的近似数不宜进行乘法运算,应尽量转化为分数再进行乘法运算。
例如,将1.5和1.2相乘时,可以将它们转化为3/2和6/5的分数形式,然后进行乘法运算:3/2×6/5=18/10=1.8。
3. 除法法则:将被除数和除数近似到相同的数量级后再进行除法运算。
例如,将1.5除以0.7时,可以将0.7近似为1,然后将两个数都表示为小数点后一位的精度,即1.5÷1.0=1.5。
四、近似数的应用近似数在日常生活中被广泛应用,以下是一些常见的应用场景:1. 计算:例如商场打折、收银计算、货币兑换、保险计算等。
2. 量化:例如温度、体重、身高、面积、体积、时间等。
3. 统计:例如抽样调查、数据分析、自然灾害预测、股票预测等。
第一章有理数1.5.3近似数一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.据统计,2017年某市实现地区生产总值2279.55亿元,用四舍五入法将2279.55精确到0.1的近似值为A.2280.0 B.2279.6C.2279.5 D.2279【答案】B【解析】2279.55≈2279.6(精确到0.1),故选B.2.按括号内的要求用四舍五入法取近似数,下列正确的是A.403.53≈403(精确到个位)B.2.604≈2.60(精确到十分位)C.0.0234≈0.0(精确到0.1)D.0.0136≈0.014(精确到0.0001)【答案】C3.用四舍五入法,把3.14159精确到千分位,取得的近似数是A.3.14 B.3.142 C.3.141 D.3.1416【答案】B【解析】把3.14159精确到千分位约为3.142,故选B.学&科网4.用四舍五入法按要求对1.06042取近似值,其中错误的是A.1.1(精确到0.1)B.1.06(精确到0.01)C.1.061(精确到千分位)D.1.0604(精确到万分位)【答案】C【解析】1.06042≈1.1(精确到0.1);1.06042≈1.06(精确到0.01);1.06042≈1.060(精确到千分位);1.06042≈1.0604(精确到万分位).故选C.5.四舍五入得到的近似数6.49万,精确到A.万位B.百分位C.百位D.千位【答案】C【解析】近似数6.49万精确到百位.故选C.学&科网二、填空题:请将答案填在题中横线上.6.把0.70945四舍五入精确至百分位是__________.【答案】0.71【解析】0.70945≈0.71(精确至百分位).故答案为:0.71.7.209506精确到千位的近似值是__________.【答案】2.10×105【解析】209506≈2.10×105(精确到千位).故答案为:2.10×105.8.8.4348精确到千分位的近似数是__________.【答案】8.435【解析】8.4348精确到千分位的近似数为8.435.故答案为:8.435.9.近似数3.20×106精确到__________位.【答案】万【解析】3.20×106精确到万位.故答案为:万.三、解答题:解答应写出文字说明、证明过程或演算步骤.10.用激光技术测得地球和月球之间的距离为377985654.32米,请按要求分别取得这个数的近似值,并分别写出相应的有效数字.(1)精确到千位;(2)精确到千万位;(3)精确到亿位.【答案】(1)3.77986×108米,(2)3.8×108米,(3)4×108米.11.下列各数精确到什么位?请分别指出来.(1)0.016;(2)1680;(3)1.20;(4)2.49万.【答案】(1)0.016精确到千分位;(2)1680精确到个位;(3)1.20精确到百分位;(4)2.49万精确到百位.学&科网【解析】(1)0.016精确到千分位;(2)1680精确到个位;(3)1.20精确到百分位;(4)2.49万精确到百位.12.车工小王加工生产了两根轴,当他把轴交给质检员验收时,质检员说:“不合格,作废!”小王不服气地说:“图纸要求精确到2.60m,一根为2.56m,另一根为2.62m,怎么不合格?”(1)图纸要求精确到2.60m,原轴的范围是多少?(2)你认为是小王加工的轴不合格,还是质检员故意刁难?【答案】(1)2.595m≤x<2.605m,(2)产品不合格。
七年级近似数知识点作为初中数学的一个重要内容,近似数不仅在日常生活中十分实用,也在学业上起着至关重要的作用。
因此,在初一的数学学习中,近似数也是必不可少的一个知识点。
下面,我们就来详细探讨一下七年级近似数的相关知识点。
一、近似数的概念首先,我们需要了解什么是近似数。
近似数是指一个数与所要表达的数相差较小,但不完全相等的数。
而近似数是通过截取所需精度以外的位数,对原数进行四舍五入或截取而得到的。
比如,将3.1415926截取到小数点后两位,就可以得到一个近似数3.14。
二、近似数的计算接下来,我们需要掌握如何对一个数进行近似计算。
这里我们通过一个例子来进行具体解释。
比如,将326.46近似到百位即可得到326。
这是因为百位就是326.46的第二位数字,而根据四舍五入法则,当百位后面的数字大于5时,这一数位要向前进1。
所以326.46近似到百位即可得到326。
三、近似数的应用除了计算外,近似数在实际生活中也有着广泛的应用。
比如,在超市买菜时,我们往往会用近似数估算价格;在旅游时,我们也会用近似数计算行程时间。
在数学课堂上,我们也可以用近似数来判断一个计算结果是否合理,或者对一些较长的数字进行处理,方便计算。
四、近似数的误差最后,我们需要了解近似数的误差。
误差是指近似数与真实数之间的差距。
误差的大小与所用的近似方法以及所截取的位数有关。
通常来说,位数越多,得到的近似数就越接近真实数。
总之,近似数是一个在生活中和学业中都十分实用的概念。
通过本文的介绍,我们了解了近似数的概念、计算方法、应用以及误差。
希望同学们能够通过实践,掌握好这一重要的数学知识点,更好地应对日常生活和学习。
《近似数》知识点解读
知识讲解:
准确数是与实际完全符合的数,如班级的人数,一个单位的车辆数等.
近似数是与实际非常接近的数,但与实际数还有差别.如我国有12亿人口,地球半径为×106m等.
相关概念:
有效数字:是指从该数字左边第一个非0的数字到该数字末尾的数字个数(有点绕口)。
举几个例子:3一共有1个有效数字,有一个有效数字,有4个有效数字,×103有两个有效数字(不要被103迷惑,只需要看的有效数字就可以了,10n 看作是一个单位)。
精确度:即数字末尾数字的单位。
比如说:精确到十分位(又叫做小数点后面一位),80万精确到万位。
9×105精确到10万位(总共就9一个数字,10n看作是一个单位,就和多少万是一个概念)。
请判断下列题的对错,并解释.
1.近似数的精确度与近似数25一样. ()
2.近似数4千万与近似数4000万的精确度一样. ()
3.近似数660万,它精确到万位.有三个有效数字. ()
4.用四舍五入法得近似数和是相等的. ()
5.近似数的二次与近似数370的精确度一样. ()
满意回答
1.错。
前者精确到十分位(小数点后面一位),后者精确到个位数。
2.错。
4千万精确到千万位,4000万精确到万位。
3.对。
4.错。
值虽然相等,但是取之范围和精确度不同.
5.错。
^2精确到十位,370精确到个位.
典型例题:
例1判断下列各数,哪些是准确数,哪些是近似数:
(1)初一(2)班有43名学生,数学期末考试的平均成绩是分;
(2)某歌星在体育馆举办音乐会,大约有一万二千人参加;
(3)通过计算,直径为10cm的圆的周长是;
(4)检查一双没洗过的手,发现带有各种细菌80000万个;
(5)1999年我国国民经济增长%.
解:(1)43是准确数.因为43是质数,求平均数时不一定除得尽,所以一般是近似数;
(2)一万二千是近似数;
(3)10是准确数,因为是π的近似值,所以是近似数;
(4)80000万是近似数;
(5)1999是准确数,%是近似数.
说明:1.在近似数的计算中,分清准确数和近似数是很重要的,它是决定我们用近似计算法则进行计算,还是用一般方法进行计算的依据.
2.产生近似数的主要原因:
(1)“计算”产生近似数.如除不尽,有圆周率π参加计算的结果等等;
(2)用测量工具测出的量一般都是近似数,如长度、重量、时间等等;
(3)不容易得到,或不可能得到准确数时,只能得到近似数,如人口普查的结果,就只能是一个近似数;
(4)由于不必要知道准确数而产生近似数.
例2下列由四舍五入得到的近似数,各精确到哪一位各有哪几个有效数字
(1)38200;(2);(3);(4)4×104
分析:对于一个四舍五入得到的近似数,如果是整数,如38200,就精确到个位;如果有一位小数,就精确到十分位;两位小数,就精确到百分位;象有三位小数就精确到千分位;像就精确到十万分位;而4×104=40000,只有一个有效数字4,则精确到万位.有效数字的个数应按照定义计算.
解:(1)38200精确到个位,有五个有效数字3、8、2、0、0.
(2)精确到千分位(即精确到有两个有效数字4、0.
(3)精确到十万分位(即精确到,有七个有效数字2、0、0、5、0、0、0.
(4)4×104精确到万位,有一个有效数字4.
说明:(1)一个近似数的位数与精确度有关,不能随意添上或去掉末位的零.如的有效数字是2、0、0、5、0、0、0七个.而的有效数字是2、0、0、5四个.因为精确到,而精确到,精确度不一样,有效数字也不同,所以右边的三个0不能随意去掉.
(2)对有效数字,如,4左边的两个0不是有效数字,4右边的0是有效数字.
(3)近似数40000与4×104有区别,40000表示精确到个位,有五个有效数字4、0、0、0、0,而4×104表示精确到万位,有1个有效数字4.
例3下列由四舍五入得到的近似数,各精确到哪一位各有几个有效数字
(1)70万;(2)万;(3)亿;(4)×105.
分析:因为这四个数都是近似数,所以
(1)的有效数字是2个:7、0,0不是个位,而是“万”位;
(2)的有效数字是3个:9、0、3,3不是百分位,而是“百”位;
(3)的有效数字是2个:1、8,8不是十分位,而是“千万”位;
(4)的有效数字是3个:6、4、0,0不是百分位,而是“千”位.
解:(1)70万. 精确到万位,有2个有效数字7、0;
(2)万.精确到百位,有3个有效数字9、0、3;
(3)亿.精确到千万位,有2个有效数字1、8;
(4)×105.精确到千位,有3个有效数字6、4、0.
说明:较大的数取近似值时,常用×万,×亿等等来表示,这里的“×”表示这个近似数的有效数字,而它精确到的位数不一定是“万”或“亿”.对于不熟练的学生,应当写出原数之后再判断精确到哪一位,例如万=90300,因为“3”在百位上,所以万精确到百位.
例4 用四舍五入法,按括号里的要求对下列各数取近似值.
(1)(精确到; (2)(保留两个有效数字);
(3)(精确到个位); (4)(保留三个有效数字).
分析:四舍五入是指要精确到的那一位后面紧跟的一位,如果比5小则舍,如果比5大或等于5则进1,与再后面各位数字的大小无关.
(1)要精确到即百分位,只看它后面的一位即千分位的数字,是8>5,应当进1,
所以近似值为.
(2)保留两个有效数字,3左边的0不算,从3开始,两个有效数字是3、0,再看第三个数字是4<5,应当舍,所以近似值为.
(3)、(4)同上.
解:(1)≈;(2)≈;
(3)≈3;(4)≈.
说明:与的最后一个0都不能随便去掉.是表示精确到,而表示精确到.对,最后一个0也是表示精确度的,表示精确到千分位,而只精确到百分位.
例5用四舍五入法,按括号里的要求对下列各数取近似值,并说出它的精确度(或有效数字).
(1)26074(精确到千位); (2)7049(保留2个有效数字);
(3)000(精确到亿位) ;(4)(保留3个有效数字).
分析:根据题目的要求:
(1)26074≈26000;
(2)7049≈7000;
(3)000≈000;
(4)≈705.
(1)、(2)、(3)题的近似值中看不出它们的精确度,所以必须用科学记数法表示.解:(1)26074=×104≈×104,精确到千位,有2个有效数字2、6.
(2)7049=×103≈×103,精确到百位,有两个有效数字7、0.
(3)000=×1010≈×1010,精确到亿位,有三个有效数字2、6、1.
(4)≈705,精确到个位,有三个有效数字7、0、5.
说明:求整数的近似数时,应注意以下两点:
(1)近似数的位数一般都与已知数的位数相同;
(2)当近似数不是精确到个位,或有效数字的个数小于整数的位数时,一般用科学记数法表示这个近似数.因为形如a×10n(1≤a<10,n为正整数=的数可以体现出整数的精确度.
反馈练习:
1. 由四舍五入得到的近似数的有效数字是()
A. 1个
B. 2个
C. 3个
D. 4个
2. 用四舍五入法取近似值,精确到百分位的近似值是_________,精确到千分位近似值是________.
3. 用四舍五入法取近似值,精确到的近似数是_________,保留三个有效数字的近似数是___________.
4. 用四舍五入法取近似值,精确到十位的近似数是______________;保留两个有效数字的近似数是____________.
5. 用四舍五入法得到的近似值精确到_____位,万精确到___位.
答案:1. C 2. ,. 3. ,.
4. 400,×102.
5. 千分,百.。