极化曲线求自腐蚀电流密度
- 格式:docx
- 大小:36.48 KB
- 文档页数:2
实验二铁的极化曲线的测定实验二铁的极化曲线的测定一、实验目的1、掌握恒电位法测定电极极化曲线的原理和实验技术。
通过测定Fe在H2SO4、HCl溶液中的阴极极化、阳极极化曲线,求得Fe的自腐蚀电位,自腐蚀电流和钝化电势、钝化电流等参数。
2、了解Cl-离子,缓蚀剂等因素对铁电极极化的影响。
3、讨论极化曲线在金属腐蚀与防护中的应用。
二、实验原理1、铁的极化曲线:金属的电化学腐蚀是金属与介质接触时发生的自溶解过程。
例如Fe →Fe2++2e (1)2H++2e →H2(2) Fe将不断被溶解,同时产生H2。
Fe电极和H2电极及H2SO4溶液构成了腐蚀原电池,其腐蚀反应为:Fe+2H+→ Fe2++H2(3)这就是Fe在酸性溶液中腐蚀的原因。
当电极不与外电路接通时,其净电流为零。
即I corr=I Fe=-I H≠0。
图1中ra为阴极极化曲线。
当对电极进行阴极极化,即加比Ecorr更负的电势,反应(1) 被抑制,反应(2)加速,电化学过程以H2析出为主,这种效应称为“阴极保护”。
塔菲尔(Tafel)半对数关系,即:图1中ab为阳极极化曲线。
当对电极进行阳极极化时,即加比Ecorr更正的电势,则反应(2) 被抑制,反应(1) 加速,电化学过程以Fe溶解为主。
符合公式:2、铁的钝化曲线:abc段是Fe的正常溶解,生成Fe2+,称为活化区。
cd段称为活化钝化过渡区。
de段的电流称为维钝电流,此段电极处于比较稳定的钝化区, Fe2+离子与溶液中的离子形成FeSO4沉淀层,阻滞了阳极反应,由于H+不易达到FeSO4层内部,使Fe表面的pH增大,Fe2O3、Fe3O4开始在Fe表面生成,形成了致密的氧化膜,极大地阻滞了Fe的溶解,因而出现钝化现象。
ef段称为过钝化区。
图3中W表示研究电极、C表示辅助电极、r表示参比电极。
参比电极和研究电极组成原电池,可确定研究电极的电位。
辅助电极与研究电极组成电解池,使研究电极处于极化状态。
铁的极化曲线实验结果的记录与处理:1、Fe在0.1mol/L的硫酸溶液中铁的极化钝化曲线联立两直线方程得:log Icorr= ‒4.25A , Icorr=5.58×10‒5A ;Ecorr= ‒0.56V。
因为实验所用电极直径为2mm,面积为Πmm2,故自腐蚀电流密度=自腐蚀电流/电极面积=5.58×10‒5 /(Π×0.0012)=17.8(A/ m2)由图知,钝化电流Ip=1.14×10‒2A,钝化电流密度=1.14×10‒2/(Π×0.0012)=3.63×103(A/ m2)钝化电位范围:1.318−1.602V2、Fe在1.0mol/L的硫酸溶液中铁的极化钝化曲线联立两直线方程得:log Icorr= ‒4.25A , Icorr=5.58×10‒5A ;Ecorr= ‒0.56V。
因为实验所用电极直径为2mm,面积为Πmm2,故自腐蚀电流密度=自腐蚀电流/电极面积=5.58×10‒5 /(Π×0.0012)=17.8(A/ m2)由图知,钝化电流Ip=1.14×10‒2A,钝化电流密度=1.14×10‒2/(Π×0.0012)=3.63×103(A/ m2)钝化电位范围:1.318−1.602V3、Fe在1.0mol/L的HCl溶液中铁的极化钝化曲线联立两直线方程得:log Icorr= ‒4.25A , Icorr=5.58×10‒5A ;Ecorr= ‒0.56V。
因为实验所用电极直径为2mm,面积为Πmm2,故自腐蚀电流密度=自腐蚀电流/电极面积=5.58×10‒5 /(Π×0.0012)=17.8(A/ m2)由图知,钝化电流Ip=1.14×10‒2A,钝化电流密度=1.14×10‒2/(Π×0.0012)=3.63×103(A/ m2)钝化电位范围:1.318−1.602V4、Fe在含1%的乌洛托品的1.0mol/L的HCl溶液中铁的极化钝化曲线联立两直线方程得:log Icorr= ‒4.25A , Icorr=5.58×10‒5A ;Ecorr= ‒0.56V。
铁的极化曲线1、 Fe 在0.1mol/L 的硫酸溶液中铁的极化钝化曲线-1.0-0.50.00.51.01.52.0-0.12-0.10-0.08-0.06-0.04-0.020.000.02BA-7-6-5-4-3-2-10CA两直线方程为:y = -5.5249x - 7.0471y = 2.5749x - 1.6552联立两直线方程得:log Icorr= ‒3.369 , Icorr=4.276x10-4A ,Ecorr= ‒0.6657V 。
因为实验所用电极直径为2mm,面积为Πmm 2,故自腐蚀电流密度=自腐蚀电流/电极面积=4.276×10-4 /(Π×0.0012)=136.1(A/ m 2)由图知,钝化电流Ip=3.98×10-2A ,钝化电流密度=3.98×10-2/(Π×0.0012)=1.26×104(A/ m 2) 钝化电位范围:1.318−1.602V2、Fe 在1.0mol/L 的硫酸溶液中铁的极化钝化曲线-1.0-0.50.00.5 1.01.52.00.020.00-0.02-0.04-0.06-0.08BA-6-5-4-3-2-1CA两直线方程为: y = 1.8789x - 1.622y = -3.3109x - 4.973联立两直线方程得:log Icorr= ‒2.835 , Icorr=1.462x10-3A,Ecorr= ‒0.6657V 。
因为实验所用电极直径为2mm,面积为Πmm 2,故自腐蚀电流密度=自腐蚀电流/电极面积=1.462×10-3 /(Π×0.0012)=465.3(A/ m 2) 由图知,钝化电流Ip=4.46×10-2A ,钝化电流密度=4.46×10-2/(Π×0.0012)=1.42×104(A/ m 2) 钝化电位范围:0.583−1.324V3、Fe 在1.0mol/L 的HCl 溶液中铁的极化钝化曲线-1.0-0.50.00.51.01.52.0-0.035-0.030-0.025-0.020-0.015-0.010-0.0050.0000.0050.010BA-6-5-4-3-2-1CA两直线方程为:y = -1.9267x - 4.171y = 1.9989x - 2.1957联立两直线方程得:log Icorr= ‒3.202A , Icorr=6.280×10-4A ; Ecorr= ‒0.503V 。
极化曲线求自腐蚀电流密度1. 引言自腐蚀电流密度是表征金属在自腐蚀环境中的腐蚀性能的重要参数。
通过测量极化曲线,可以获得金属在自腐蚀条件下的电流密度,进而评估其腐蚀倾向和腐蚀速率。
本文将介绍极化曲线的概念和测量方法,并详细探讨如何通过极化曲线求得自腐蚀电流密度。
2. 极化曲线的概念极化曲线是描述金属在电化学腐蚀条件下的电流密度与电位之间关系的曲线。
它是通过在不同电位下测量金属电流密度的变化来得到的。
一般来说,极化曲线可以分为两个区域:阳极极化区和阴极极化区。
在阳极极化区,金属电流密度随着电位的增加而增加;在阴极极化区,金属电流密度随着电位的增加而减小。
3. 极化曲线的测量方法测量极化曲线的方法有很多种,其中最常用的是三电极法和双电极法。
以下将详细介绍这两种方法的原理和步骤。
3.1 三电极法三电极法是通过在被测金属表面插入一个参比电极和一个工作电极,通过控制参比电极和工作电极之间的电位差来测量金属的电流密度。
具体步骤如下:1.准备工作电极、参比电极和电解质溶液。
2.将工作电极和参比电极插入电解质溶液中,使其与溶液充分接触。
3.通过外部电源控制参比电极和工作电极之间的电位差,并测量工作电极的电流响应。
4.通过改变电位差,测量不同电位下的电流密度。
5.根据测量数据绘制极化曲线。
3.2 双电极法双电极法是通过在被测金属表面插入一个工作电极和一个参比电极,通过改变工作电极的电位来测量金属的电流密度。
具体步骤如下:1.准备工作电极、参比电极和电解质溶液。
2.将工作电极和参比电极插入电解质溶液中,使其与溶液充分接触。
3.通过外部电源控制工作电极的电位,并测量工作电极的电流响应。
4.通过改变工作电极的电位,测量不同电位下的电流密度。
5.根据测量数据绘制极化曲线。
4. 极化曲线求自腐蚀电流密度的方法通过测量得到的极化曲线,可以通过以下方法求得金属的自腐蚀电流密度。
4.1 Tafel斜率法Tafel斜率法是通过极化曲线的斜率来求得自腐蚀电流密度的方法。
极化曲线测量金属的腐蚀速度极化曲线测量金属的腐蚀速度一、目的和要求1. 掌握恒电位法测定电极极化曲线的原理和实验技术。
通过测定Fe 在NaCl 溶液中的极化曲线,求算Fe 的自腐蚀电位,自腐蚀电流。
2. 讨论极化曲线在金属腐蚀与防护中的应用。
二、基本原理当金属浸于腐蚀介质时,如果金属的平衡电极电位低于介质中去极化剂(如H +或氧分子)的平衡电极电位,则金属和介质构成一个腐蚀体系,称为共轭体系。
此时,金属发生阳极溶解,去极化剂发生还原。
以金属锌在盐酸体系中为例:阳极反应: Zn-2e=Zn 2+阴极反应: H ++2e=H 2阳极反应的电流密度以 i a 表示,阴极反应的速度以 i k 表示,当体系达到稳定时,即金属处于自腐蚀状态时,i a =i k =i corr (i corr 为腐蚀电流),体系不会有净的电流积累,体系处于一稳定电位c ?。
根据法拉第定律,体系通过的电流和电极上发生反应的物质的量存在严格的一一对应关系,故可阴阳极反应的电流密度代表阴阳极反应的腐蚀速度。
金属自腐蚀状态的腐蚀电流密度即代表了金属的腐蚀速度。
因此求得金属腐蚀电流即代表了金属的腐蚀速度。
金属处于自腐蚀状态时,外测电流为零。
极化电位与极化电流或极化电流密度之间的关系曲线称为极化曲线。
极化曲线在金属腐蚀研究中有重要的意义。
测量腐蚀体系的阴阳极极化曲线可以揭示腐蚀的控制因素及缓蚀剂的作用机理。
在腐蚀点位附近积弱极化区的举行集会测量可以可以快速求得腐蚀速度。
还可以通过极化曲线的测量获得阴极保护和阳极保护的主要参数。
在活化极化控制下,金属腐蚀速度的一般方程式为:其中 I 为外测电流密度,i a 为金属阳极溶解的速度,i k 为去极化剂还原的速度,βa 、βk 分别为金属阳极溶解的自然对数塔菲尔斜率和去极化剂还原的自然对数塔菲尔斜率。
若以十为底的对数,则表示为b a 、b k 。
这就是腐蚀金属电极的极化曲线方程式,令 ?E 称为腐蚀金属电极的极化值,?E =0时,I =0;?E>0时,是阳极极化,I>0,体系通过阳极电流。
极化曲线法评定缓蚀剂一、实验目的:1.掌握用极化曲线塔菲尔区外推法测定金属的腐蚀速度、评选缓蚀剂的原理和方法;2.评定乌洛托品在盐酸水溶液中对碳钢的缓蚀效率。
二、基本原理:利用近代的电化学测试技术,已经可以测得以自腐蚀电位为起点的完整的极化曲线。
如图所示,这样的极化曲线可以分为三个区:(1)线性区——AB段(2)弱极化区——BC段(3)塔菲尔区——直线CD段。
把塔菲尔区的CD段(在φ-lgi图上)外推与自腐蚀电位的水平线相交于O点,此点所对应的电流密度即为金属的自腐蚀电流密度i c。
根据法拉第定律,即可以把i c 换算为腐蚀的重量指标或腐蚀的深度指标。
对于阳极极化曲线不易测准的体系,常常只由阴极极化曲线的塔菲尔直线外推与φc的水平线相交以求取i c。
这种利用极化曲线的塔菲尔直线外推以求腐蚀速度的方法称为极化曲线法或塔菲尔直线外推法。
它有许多局限性:它只适用于活化控制的腐蚀体系,如析氢型的腐蚀。
对于浓度极化较大的体系,对于电阻较大的溶液和在强烈极化时金属表面发生较大变化(如膜的生成或溶解)的情况就不适用。
此外,在外推作图时也会引入较大的误差。
用极化曲线法评选缓蚀剂是基于缓蚀剂会阻滞腐蚀的电极过程,降低腐蚀速度,从而改变受阻滞的电极过程的极化曲线的走向。
(b )缓蚀剂阻滞阳极过程(阳极型)(c )缓蚀剂阻滞阴阳极过程(混合型)由图中可见、未加缓蚀剂时,阴阳极理想极化曲线相交于S o ;,腐蚀电流为I o 。
加入缓蚀剂后,阴阳极理想极化曲线相交于S 点,腐蚀电流为I o 。
I 比I o 要小得多。
可见缓蚀剂明显地减缓了腐蚀。
根据缓蚀剂对电极过程阻滞的机理不同,可以把缓蚀剂分为阳极型、阴极型和混合型。
缓蚀剂的缓蚀率也可以直接用腐蚀电流来计算:I o -IZ= X 100%I o式中 Z —— 缓蚀剂的缓蚀率;I o —— 未加缓蚀剂时金属在介质中的腐蚀电流;I —— 加缓蚀剂后金属在介质中的腐蚀电流。
本实验用恒电位法测定碳钢分别在1mol/L 盐酸水溶液和1mol/L 盐酸水溶液加0.5%的乌洛托品的极化曲线,评定其缓蚀率。
极化曲线
是一种快速测定金属腐蚀速度和腐蚀倾向的方法,极化曲线的自腐蚀电位表明了材料的腐蚀趋势,电位越负说明腐蚀趋势越大,而自腐蚀电流密度icorr表明了腐蚀速度的快慢, icorr越大,说明腐蚀速度越快。
icorr是阴极极化曲线和阳极化曲线的塔菲尔区的切线交点对应的电流密度值。
操作参数:采用动电位极化曲线法评价耐蚀性能,测量溶液是3.5%NaCl,在自腐蚀电位±300mV进扫描,扫描速率为50mV/s。
显微硬度评价膜层性能
测定之前,先要将待测磨料制成反光磨片试样,置于显微硬度计的载物台上,通过加负荷装置对四棱锥形的金刚石压头加压负荷的大小可根据待测材料的硬度不同而增减。
金刚石压头压入试样后,在试样表面上会产生一个凹坑。
把显微镜十字丝对准凹坑,用目镜测微器测量凹坑对角线的长度。
根据所加负荷及凹坑对角线长度就可计算出所测物质的显微硬度值。
HV = 常数×试验力/压痕表面积≈0.1891 F/d2。
其最大的优点在于其硬度值与试验力的大小无关,只要是硬度均匀的材料,任意试验力性能不受影响;缺点在于试样要求高,技术要求高,多数停留在实验室使用,致使试验效率低。
仪器操作参数:试验力1.961N(200g),测量系统放大倍数400倍(测量)、100倍(观察),加载时间10s,电源交流电220V。
实验原理
阳极氧化,
它是一种比较传统的表面处理技术,就是把金属或合金放在合适的电解液中作为阳极进行通电、处理,使得金属或合金表面生成一种氧化薄膜的电化学氧化方法。
主题:动电位极化曲线计算腐蚀速率目录1. 动电位极化曲线的概念及原理2. 腐蚀速率的计算方法3. 实际案例分析4. 结论与展望1. 动电位极化曲线的概念及原理动电位极化曲线是一种常用的腐蚀分析方法,它通过测定金属在一定电位范围内的极化曲线,来研究金属的腐蚀行为。
在动电位极化曲线中,横轴表示电位,纵轴表示电流密度。
通过测定金属在极化曲线上的拐点,可以得到金属的腐蚀电位和腐蚀电流密度,进而计算腐蚀速率。
动电位极化曲线的测定可以在自然环境下进行,也可以在实验室中通过电化学方法进行。
通过对动电位极化曲线的分析,可以了解金属在具体环境中的腐蚀行为,为腐蚀预防提供重要参考。
2. 腐蚀速率的计算方法腐蚀速率是描述金属在一定环境条件下腐蚀程度的重要指标。
根据动电位极化曲线的测定结果,可以采用以下方法来计算金属的腐蚀速率。
(1)泊松方程法泊松方程法是一种常用的计算腐蚀速率的方法。
它通过测定金属在不同电位下的动电位极化曲线,并利用泊松方程建立腐蚀速率和电流密度之间的关系,来计算腐蚀速率。
(2)球形极化曲线法球形极化曲线法是一种基于动电位极化曲线的计算腐蚀速率的方法。
它利用金属在球形电极下的动电位极化曲线,通过对曲线的分析,来计算金属的腐蚀速率。
(3)Tafel斜率法Tafel斜率法是一种通过测定金属在不同电位下的动电位极化曲线,利用Tafel斜率和Tafel方程来计算腐蚀速率的方法。
通过对Tafel斜率和Tafel方程的运用,可以较准确地计算金属的腐蚀速率。
3. 实际案例分析以某海洋评台上使用的钢结构为例进行分析,该钢结构在海水中进行了腐蚀测试,得到了相应的动电位极化曲线。
通过对曲线的测定和分析,得到了钢结构在海水中的腐蚀电位和腐蚀电流密度。
根据腐蚀电位和腐蚀电流密度,可以利用上述方法计算钢结构在海水中的腐蚀速率。
通过实际数据的分析和计算,可以较准确地了解钢结构在海水中的腐蚀状况,为相关腐蚀防护措施的制定提供重要参考。
一、目的和要求1、 掌握恒电位法测定电极极化曲线的原理和实验技术。
通过测定Fe 在NaCl 溶液中的极化曲线,求算Fe 的自腐蚀电位,自腐蚀电流 2、论极化曲线在金属腐蚀与防护中的应用 二、基本原理当金属浸于腐蚀介质时,如果金属的平衡电极电位低于介质中去极化剂(如H +或氧分子)的平衡电极电位,则金属和介质构成一个腐蚀体系,称为共轭体系。
此时,金属发生阳极溶解,去极化剂发生还原。
在本实验中,镁合金和钢分别与L 的NaCl 溶液构成腐蚀体系。
镁合金与NaCl 溶液构成腐蚀体系的电化学反应式为:阳极: Mg= Mg 2++2e阴极: 2H 2O+2e=H 2+2OH -钢与NaCl 溶液构成腐蚀体系的电化学反应式为:阳极: Fe= Fe 2++2e阴极: 2H 2O+2e=H 2+2OH - @腐蚀体系进行电化学反应时的阳极反应的电流密度以 i a 表示, 阴极反应的速度以 i k 表示, 当体系达到稳定时,即金属处于自腐蚀状态时,i a =i k =i corr (i corr 为腐蚀电流),体系不会有净的电流积累,体系处于一稳定电位c ϕ。
根据法拉第定律,即在电解过程中,阴极上还原物质析出的量与所通过的电流强度和通电时间成正比,故可阴阳极反应的电流密度代表阴阳极反应的腐蚀速度。
金属自腐蚀状态的腐蚀电流密度即代表了金属的腐蚀速度。
因此求得金属腐蚀电流即代表了金属的腐蚀速度。
金属处于自腐蚀状态时,外测电流为零。
极化电位与极化电流或极化电流密度之间的关系曲线称为极化曲线。
测量腐蚀体系的阴阳极极化曲线可以揭示腐蚀的控制因素及缓蚀剂的作用机理。
在腐蚀点位附近积弱极化区的举行集会测量可以可以快速求得腐蚀速度。
在活化极化控制下,金属腐蚀速度的一般方程式为:其中 I 为外测电流密度,i a 为金属阳极溶解的速度,i k 为去极化剂还原的速度,βa 、βk 分别为金属阳极溶解的自然对数塔菲尔斜率和去极化剂还原的自然对数塔菲尔斜率。
腐蚀金属电极稳态极化曲线测量和数据处理一、实验目的:1、掌握恒电位测定极化曲线的原理和方法2、巩固金属极化理论,确定金属实施阳极保护的可能性。
初步了解阳极保护参数及其确定方法。
3、了解恒电位仪器及相关电化学仪器的使用。
4、测定铁在酸性介质中的极化曲线,求算自腐蚀电位、自腐蚀电流、掌握线性扫描伏安法和TAFEL方法测定极化曲线。
实验原理铁在酸溶液中,将不断被溶解,同时产生H2,即:Fe + 2H+ = Fe2+ + H2 (a)Fe/HCl体系是-个二重电极,即在Fe/H+界面上同时进行两个电极反应:Fe Fe2+ + 2e (b)2H+ + 2e H2 (c)反应(b)、(c)称为共轭反应。
正是由于反应(c)存在,反应(b)才能不断进行,这就是铁在酸性介质中腐蚀的主要原因。
当电极不与外电路接通时,其净电流I总为零。
在稳定状态下,铁溶解的阳极电流I(Fe)和H+还原出H2的阴极电流I(H),它们在数值上相等但符号相反,即:(1)IFe的大小反映Fe在H+中的溶解速率,而维持I(Fe),I(H)相等时的电势称为Fe/H+体系的自腐蚀电势εcor。
图12-1 Fe的极化曲线图12-1是Fe在H+中的阳极极化和阴极极化曲线图。
当对电极进行阳极极化(即加更大正电势)时,反应(c)被抑制,反应(b)加快。
此时,电化学过程以Fe的溶解为主要倾向。
通过测定对应的极化电势和极化电流,就可得到Fe/H+体系的阳极极化曲线rba。
由于反应(c)是由迁越步骤所控制,所以符合塔菲尔(Tafel)半对数关系,即:(2)直线的斜率为bFe。
当对电极进行阴极极化,即加更负的电势时,反应(b)被抑制,电化学过程以反应(c)为主要倾向。
同理,可获得阴极极化曲线rdc。
由于H+在Fe电极上还原出H2的过程也是由迁越步骤所控制,故阴极极化曲线也符合塔菲尔关系,即:(3)当把阳极极化曲线abr的直线部分ab和阴极极化曲线cdr的直线部分cd 外延,理论上应交于一点(z),z点的纵坐标就是,腐蚀电流Icor的对数,而z 点的横坐标则表示自腐蚀电势εcor的大小。
阳极极化曲线的测定实验报告阳极极化曲线的测定实验报告引言:阳极极化曲线是用于研究金属在电化学腐蚀过程中的行为的重要工具。
通过测定金属在不同电位下的电流密度,可以得到阳极极化曲线,从而了解金属的腐蚀行为及其抗腐蚀性能。
本实验旨在通过测定铁的阳极极化曲线,探究其腐蚀行为及其抗腐蚀性能。
实验方法:1. 准备工作:将实验所需的试样铁片进行清洗和抛光,确保表面光洁无杂质。
2. 搭建电化学腐蚀实验装置:将试样铁片作为阳极,配备铂丝作为对电极,以及参比电极。
将试样铁片浸入含有适量电解液的电解池中。
3. 测定阳极极化曲线:通过改变电位,测定不同电位下的电流密度,记录数据并绘制阳极极化曲线。
实验结果:通过实验测定,得到了铁的阳极极化曲线,如图1所示。
曲线呈现出三个明显的区域:主动腐蚀区、穿孔区和过氧化物区。
在主动腐蚀区,随着电位的增加,电流密度逐渐增大,但增速较慢。
这是由于铁表面的氧化膜逐渐变厚,形成一层保护膜,阻止了进一步的氧化反应。
在穿孔区,电流密度急剧增大,表明铁开始发生局部腐蚀。
这是由于氧化膜中存在缺陷,使得金属表面暴露在电解液中,导致局部腐蚀的发生。
在过氧化物区,电流密度逐渐减小,说明铁的腐蚀速率降低。
这是由于过氧化物的生成,形成了一层致密的氧化膜,有效地抑制了进一步的腐蚀反应。
讨论与分析:通过实验测定的阳极极化曲线,我们可以对铁的腐蚀行为及其抗腐蚀性能进行一定的分析与评价。
首先,从主动腐蚀区的曲线斜率可以得到铁的腐蚀速率。
曲线斜率越大,说明腐蚀速率越快。
通过对比不同金属的阳极极化曲线,可以评估铁的腐蚀性能与其他金属的相对抗腐蚀性能。
其次,在穿孔区的曲线上,可以观察到局部腐蚀的发生。
穿孔区的位置与腐蚀环境有关,不同腐蚀环境下金属的穿孔区位置不同。
通过观察穿孔区的位置,可以评估铁在不同腐蚀环境中的腐蚀抗性。
最后,在过氧化物区的曲线上,可以观察到铁的腐蚀速率减缓。
过氧化物的生成可以形成一层致密的氧化膜,有效地抑制了进一步的腐蚀反应。
极化曲线-电极电位与极化电流或极化电流密度之间关系的曲线叫作极化曲线极化曲线-电极电位与极化电流或极化电流密度之间关系的曲线叫作极化曲线,极化曲线是以电极电位为纵坐标,以电极上通过的电流为横坐标获得的曲线,它表征腐蚀原电池反应的推动力电位与反应速度电流之间的函数关系。
极化曲线分为4个区,活性溶解区、过渡钝化区、稳定钝化区、过钝化区。
学术术语来源——钛种植体基台与种植体上部结构合金的耐腐蚀性能文章亮点:1 金属种植体的腐蚀非常重要,因为它对种植体的生物相容性和机械整合产生不利影响。
随着基底材料的腐蚀,其表面钝化膜溶解,就会有离子释放到周围环境中。
过多金属离子的释放会产生不利的生物反应,甚至导致种植失败。
大量资料评价了钛种植体的耐腐蚀性,然而种植体上部结构合金的选择仍然存在着问题,合金本身的腐蚀及多种合金同时应用引起的电偶腐蚀已受到广泛关注。
2 实验利用动电位极化技术研究并探讨钛种植体基台、金合金、镍铬合金、钴铬合金及钛合金在人工唾液中的电化学腐蚀行为,并进行相互比较,发现金合金、纯钛是耐腐蚀性较好的材料,镍铬合金的腐蚀速度最大,应尽量避免用镍铬合金作为种植体上部结构。
关键词:生物材料;口腔生物材料;稳态电位;电偶序;电偶腐蚀;纯钛;金合金;钴铬合金;钛合金;镍铬合金主题词:钛;金合金;铬合金摘要背景:国内有学者运用动电位极化技术测定常用牙科金属自腐蚀电位值来评价低贵金属的腐蚀性能,发现合金的贵金属含量是影响其耐腐蚀性能的主要原因。
目的:评价TA2型商业纯钛、金合金、钴铬合金、钛合金及镍铬合金的体外耐腐蚀性能。
方法:将TA2型商业纯钛、金合金、钴铬合金、钛合金及镍铬合金分别浸入人工唾液中,运用动电位极化技术测量5种材料在人工唾液中的自腐蚀电位和自腐蚀电流密度。
结果与结论:5种合金的自腐蚀电位值由大到小排列顺序为金合金、商业纯钛、钛合金、钴铬合金、镍铬合金;金合金与纯钛电位较正,不易发生腐蚀;钛合金和钴铬合金居中,由于可以形成稳定氧化膜,具有较强的抗孔蚀和缝隙腐蚀能力;镍铬合金电位较负,则较容易发生溶解。
极化曲线分析钢筋的腐蚀过程极化曲线分析钢筋的腐蚀过程摘要:为了确定混凝土中钢筋锈蚀速率的控制因素,运用腐蚀极化曲线图分析活化钢筋阴阳极极化曲线和腐蚀电流随环境相对湿度的变化规律,并讨论在干湿循环过程中混凝土中钢筋的锈蚀过程。
结果表明,有锈蚀产物存在时,锈蚀产物中FeOOH可以取代氧成为钢筋锈蚀过程的阴极去极化剂,钢筋的总腐蚀电流为氧去极化和锈蚀产物去极化产生的腐蚀电流的加和。
钢筋的总腐蚀电流随着环境相对湿度的提高而增大,和氧在混凝土中的扩散速率的变化趋势截然相反,从而证明氧仅是混凝土内钢筋开始的锈蚀的必备条件,但却不是混凝中钢筋锈蚀过程控制素。
关键词:混凝土;钢筋;极化曲线;氧;腐蚀产物混凝土中钢筋的锈蚀是一个非常复杂的电化学过程,目前国内外学者在建立钢筋锈蚀速率模型时,普遍借鉴了金属腐蚀学的研究成果,假定混凝土中钢筋的锈蚀速率受氧扩散速率所控制[1-7],这种假定的正确和合理性直接决定了由此建立的理论模型的适用程度.由于金属腐蚀学研究的对象,大都是金属处于溶液、水或土壤中,整个腐蚀过程受氧扩散控制已为无数的研究所证实。
然而大气环境混凝土中钢筋的腐蚀和前几种不同,目前已有的研究发现钢筋的锈蚀速率随混凝土湿含量增大而增大,直至混凝土饱水,钢筋锈蚀速率也没有出现下降[8-9],和混凝土中氧扩散速率的变化趋势[10]截然相反,这是上述假定所无法解释的.姬永生等[11]通过试验研究和钢筋锈蚀产物物相组成的变化分析证明锈蚀产物中FeOOH可以取代氧成为钢筋锈蚀过程阴极反应的新的去极化剂,传统的氧作为单一阴极去极化剂的锈蚀机理面临着严峻的挑战。
因此,探究高湿供氧困难情况下混凝土内钢筋仍高速锈蚀的内在机理,对于建立正确、合理钢筋锈蚀速率模型具有重要的意义。
腐蚀极化曲线图是进行金属腐蚀机理分析的重要工具之一。
本文在文献[11]研究的基础上,运用腐蚀极化曲线图全面解释混凝土中钢筋锈蚀过程,探究混凝土由干燥到饱水变化过程混凝土内钢筋锈蚀速率变化的内在机理,并讨论在干湿循环过程中混凝土中钢筋的锈蚀过程,为预测钢筋混凝土的使用寿命奠定基础。
腐蚀金属电极稳态极化曲线测量和数据处理一、实验目的:1、掌握恒电位测定极化曲线的原理和方法2、巩固金属极化理论,确定金属实施阳极保护的可能性。
初步了解阳极保护参数及其确定方法。
3、了解恒电位仪器及相关电化学仪器的使用。
4、测定铁在酸性介质中的极化曲线,求算自腐蚀电位、自腐蚀电流、掌握线性扫描伏安法和TAFEL方法测定极化曲线。
实验原理铁在酸溶液中,将不断被溶解,同时产生H2,即:Fe + 2H+ = Fe2+ + H2 (a)Fe/HCl体系是-个二重电极,即在Fe/H+界面上同时进行两个电极反应:Fe Fe2+ + 2e (b)2H+ + 2e H2 (c)反应(b)、(c)称为共轭反应。
正是由于反应(c)存在,反应(b)才能不断进行,这就是铁在酸性介质中腐蚀的主要原因。
当电极不与外电路接通时,其净电流I总为零。
在稳定状态下,铁溶解的阳极电流I(Fe)和H+还原出H2的阴极电流I(H),它们在数值上相等但符号相反,即:(1)IFe的大小反映Fe在H+中的溶解速率,而维持I(Fe),I(H)相等时的电势称为Fe/H+体系的自腐蚀电势εcor。
图12-1 Fe的极化曲线图12-1是Fe在H+中的阳极极化和阴极极化曲线图。
当对电极进行阳极极化(即加更大正电势)时,反应(c)被抑制,反应(b)加快。
此时,电化学过程以Fe的溶解为主要倾向。
通过测定对应的极化电势和极化电流,就可得到Fe/H+体系的阳极极化曲线rba。
由于反应(c)是由迁越步骤所控制,所以符合塔菲尔(Tafel)半对数关系,即:(2)直线的斜率为bFe。
当对电极进行阴极极化,即加更负的电势时,反应(b)被抑制,电化学过程以反应(c)为主要倾向。
同理,可获得阴极极化曲线rdc。
由于H+在Fe电极上还原出H2的过程也是由迁越步骤所控制,故阴极极化曲线也符合塔菲尔关系,即:(3)当把阳极极化曲线abr的直线部分ab和阴极极化曲线cdr的直线部分cd 外延,理论上应交于一点(z),z点的纵坐标就是,腐蚀电流Icor的对数,而z 点的横坐标则表示自腐蚀电势εcor的大小。
自腐蚀电流密度计算
自腐蚀电流密度计算:自腐蚀电流密度计算是指在电化学腐蚀过程中,由于金属表面发生化学反应而产生的电流密度。
其计算公式为:
i = K ×A
其中,i为自腐蚀电流密度,单位为A/m²;K为自腐蚀速率常数,单位为m/s;A为金属表面积,单位为m²。
自腐蚀速率常数K是一个与金属种类、环境条件等有关的常数,可以通过实验测定得到。
金属表面积A可以通过直接测量或计算得到。
在实际工程中,需要注意控制自腐蚀电流密度,以防止金属腐蚀过快而造成设备损坏。
可以采取措施如改变环境条件、使用防腐涂层等来降低自腐蚀电流密度。
极化曲线求自腐蚀电流密度
自腐蚀电流密度可以通过测量极化曲线来获得,具体方法如下:
1. 准备工作:准备好待测的金属样品,并将其作为工作电极放在电解质溶液中。
2. 极化曲线测量:在测量中,需要通过改变工作电极的电势来获得极化曲线。
可以使用电位扫描法或电流密度扫描法进行测量。
- 电位扫描法:在这种方法中,将工作电极的电势从一个起始
点线性变化到一个终止点,并记录在每个电位下测得的电流密度值。
根据所测得的数据绘制极化曲线,横坐标为电势,纵坐标为电流密度。
- 电流密度扫描法:在这种方法中,将工作电极的电流密度从
一个起始点线性变化到一个终止点,并记录在每个电流密度下测得的电势值。
根据所测得的数据绘制极化曲线,横坐标为电流密度,纵坐标为电势。
3. 求自腐蚀电流密度:自腐蚀电流密度通常对应于极化曲线的原点,即在工作电极无外加电势的情况下的电流密度值。
4. 分析结果:根据所测得的极化曲线,可以进一步分析金属的腐蚀行为。
如果极化曲线在原点处呈现水平线,则说明金属处于自腐蚀状态,该水平线对应的电流密度即为自腐蚀电流密度。
需要注意的是,测量极化曲线时要注意电解质溶液的温度、测量仪器的准确性等因素,以获得可靠的结果。