磁芯资料
- 格式:xls
- 大小:1.69 MB
- 文档页数:2
1.磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2.软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3.软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。
Ferrite For Switching Power Supplies TECHNICAL DATAEI Cores (EI12.5 to EI60)EE Cores (EE10/11 to EE62.3/62/6)EER Cores (EER25.5 to EER42/42/20)ETD Cores (ETD19 to ETD49)PQ Cores (PQ20/16 to PQ50/50)LP Cores (LP23/8 to LP32/13)RM Cores (RM4 to RM14)EPC Cores (EPC13 to EPC30)EI Series EI12.5 Cores(JIS FEI 12.5)∗ Coil: ø0.2 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI12.5 gapped core (Typical)PC40EI12.5 core (Typical)EI12.5 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI12.5-Z1200±25% (1kHz, 0.5mA)∗2120 min. (100kHz, 200mT)0.12 max.8.8W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.2 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)EI Series EI16 Cores(JIS FEI 16)∗ Coil: ø0.23 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI16 gapped core (Typical)PC40EI16 core (Typical)EI16 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI16-Z1100±25% (1kHz, 0.5mA)∗1750 min. (100kHz, 200mT)0.31 max.29W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.23 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.23 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI19 gapped core (Typical)PC40EI19 core (Typical)EI19 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI19-Z1400±25% (1kHz, 0.5mA)∗1830 min. (100kHz, 200mT)0.42 max.40W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.23 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.23 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI22 gapped core (Typical)PC40EI22 core (Typical)EI22 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI22-Z2400±25% (1kHz, 0.5mA)∗3360 min. (100kHz, 200mT)0.60 max.33W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.23 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)EI Series EI22/19/6 Cores(JIS FEI 22)∗ Coil: ø0.23 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI22/19/6 gapped core (Typical)PC40EI22/19/6 core (Typical)EI22/19/6 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI22/19/6-Z2000±25% (1kHz, 0.5mA)∗2780 min. (100kHz, 200mT)0.64 max.48W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.23 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)EI Series EI25 Cores∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI25 gapped core (Typical)PC40EI25 core (Typical)EI25 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI25-Z2140±25% (1kHz, 0.5mA)∗2950 min. (100kHz, 200mT)0.79 max.68W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI28 gapped core (Typical)PC40EI28 core (Typical)EI28 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI28-Z4300±25% (1kHz, 0.5mA)∗6060 min. (100kHz, 200mT)1.65 max.107W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI30 gapped core (Typical)PC40EI30 core (Typical)EI30 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI30-Z4690±25% (1kHz, 0.5mA)∗6490 min. (100kHz, 200mT)3.1 max.155W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)EI Series EI33/29/13 Cores∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI33/29/13 gapped core (Typical)PC40EI33/29/13 core (Typical)EI33/29/13 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI33/29/13-Z4400±25% (1kHz, 0.5mA)∗5980 min. (100kHz, 200mT)3.5 max.206W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI35 gapped core (Typical)PC40EI35 core (Typical)EI35 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI35-Z3800±25% (1kHz, 0.5mA)∗5110 min. (100kHz, 200mT)2.85 max.218W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI40 gapped core (Typical)PC40EI40 core (Typical)EI40 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI40-Z4860±25% (1kHz, 0.5mA)∗6520 min. (100kHz, 200mT)4.8 max.348W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI50 gapped core (Typical)PC40EI50 core (Typical)EI50 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI50-Z6110±25% (1kHz, 0.5mA)∗8300 min. (100kHz, 200mT)9.2 max.508W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EI60 gapped core (Typical)PC40EI60 core (Typical)EI60 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EI60-Z5670±25% (1kHz, 0.5mA)∗7690 min. (100kHz, 200mT)12.5 max.618W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)EE Series EE10/11 Cores(JIS FEE 10.2)∗ Coil: ø0.18 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EE10/11 gapped core (Typical)PC40EE10/11 core (Typical)EE10/11 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EE10/11-Z850±25% (1kHz, 0.5mA)∗1450 min. (100kHz, 200mT)0.14 max.9.4W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.18 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.18 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EE13 gapped core (Typical)PC40EE13 core (Typical)EE13 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EE13-Z1130±25% (1kHz, 0.5mA)∗1770 min. (100kHz, 200mT)0.235 max.17W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.18 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.23 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40SEE16 gapped core (Typical)PC40SEE16 core (Typical)SEE16 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40SEE16-Z1240±25% (1kHz, 0.5mA)∗1850 min. (100kHz, 200mT)0.37 max.32W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.23 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)EE Series EE20/20/5 Cores(DIN 41295)∗ Coil: ø0.23 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EE20/20/5 gapped core (Typical)PC40EE20/20/5 core (Typical)EE20/20/5 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EE20/20/5-Z1400±25% (1kHz, 0.5mA)∗2270 min. (100kHz, 200mT)0.51 max.41W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.23 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)EE Series EE25/19 Cores∗ Coil: ø0.23 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EE25/19 gapped core (Typical)PC40EE25/19 core (Typical)EE25/19 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EE25/19-Z2000±25% (1kHz, 0.5mA)∗2570 min. (100kHz, 200mT)0.86 max.70W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.23 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)EE Series EE30/30/7 Cores(DIN 41295)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EE30/30/7 gapped core (Typical)PC40EE30/30/7 core (Typical)EE30/30/7 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EE30/30/7-Z2100±25% (1kHz, 0.5mA)∗3030 min. (100kHz, 200mT)1.51 max.133W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EE42/42/15 gapped core (Typical)PC40EE42/42/15 core (Typical)EE42/42/15 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EE42/42/15-Z4700±25% (1kHz, 0.5mA)∗7050 min. (100kHz, 200mT)8.0 max.419W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EE55/55/21 gapped core (Typical)PC40EE55/55/21 core (Typical)EE55/55/21 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EE55/55/21-Z7100±25% (1kHz, 0.5mA)∗10830 min. (100kHz, 200mT)11.0 max.814W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.23 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EE50.3/51/6 gapped core (Typical)PC40EE50.3/51/6 core (Typical)EE50.3/51/6 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EE50.3/51/6-Z2900±25% (1kHz, 0.5mA)∗3950 min. (100kHz, 200mT)5.83 max.213W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.23 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.23 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40EE62.3/62/6 gapped core (Typical)PC40EE62.3/62/6 core (Typical)EE62.3/62/6 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40EE62.3/62/6-Z3100±25% (1kHz, 0.5mA)∗4150 min. (100kHz, 200mT)8.85 max.250W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.23 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L-value for A L-value vs. Air gap length for Temperature rise vs. Total loss for PC40EER25.5 gapped core (Typical)PC40EER25.5 core (Typical)EER25.5 core (Typical)Part No.A L-value (nH/N2)Core loss (W) at 100°C Calculated output power(forward converter mode)100kHz, 200mTPC40EER25.5-Z1920±25% (1kHz, 0.5mA)∗2910 min. (100kHz, 200mT)0.98 max.87W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from itsextended linear part.Measuring conditions• Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz• Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity arefixed to 25°C and 45(%)RH. respectively.(approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L-value for A L-value vs. Air gap length for Temperature rise vs. Total loss for PC40EER28 gapped core (Typical)PC40EER28 core (Typical)EER28 core (Typical)Part No.A L-value (nH/N2)Core loss (W) at 100°C Calculated output power(forward converter mode)100kHz, 200mTPC40EER28-Z2870±25% (1kHz, 0.5mA)∗4350 min. (100kHz, 200mT)2.3 max.203W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from itsextended linear part.Measuring conditions• Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz• Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity arefixed to 25°C and 45(%)RH. respectively.(approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L-value for A L-value vs. Air gap length for Temperature rise vs. Total loss for PC40EER28L gapped core (Typical)PC40EER28L core (Typical)EER28L core (Typical)Part No.A L-value (nH/N2)Core loss (W) at 100°C Calculated output power(forward converter mode)100kHz, 200mTPC40EER28L-Z2520±25% (1kHz, 0.5mA)∗3660 min. (100kHz, 200mT)2.7 max.228W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from itsextended linear part.Measuring conditions• Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz• Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity arefixed to 25°C and 45(%)RH. respectively.(approx. 400×300×300cm)EER Series EER35 Cores(JIS FEER 35A)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L-value for A L-value vs. Air gap length for Temperature rise vs. Total loss for PC40EER35 gapped core (Typical)PC40EER35 core (Typical)EER35 core (Typical)Part No.A L-value (nH/N2)Core loss (W) at 100°C Calculated output power(forward converter mode)100kHz, 200mTPC40EER35-Z2770±25% (1kHz, 0.5mA)∗4000 min. (100kHz, 200mT)4.2 max.325W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from itsextended linear part.Measuring conditions• Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz• Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity arefixed to 25°C and 45(%)RH. respectively.(approx. 400×300×300cm)EER Series EER40 Cores∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L-value for A L-value vs. Air gap length for Temperature rise vs. Total loss for PC40EER40 gapped core (Typical)PC40EER40 core (Typical)EER40 core (Typical)Part No.A L-value (nH/N2)Core loss (W) at 100°C Calculated output power(forward converter mode)100kHz, 200mTPC40EER40-Z3620±25% (1kHz, 0.5mA)∗5160 min. (100kHz, 200mT)6.3 max.421W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from itsextended linear part.Measuring conditions• Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz• Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity arefixed to 25°C and 45(%)RH. respectively.(approx. 400×300×300cm)EER Series EER42 Cores(JIS FEER 42)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L-value for A L-value vs. Air gap length for Temperature rise vs. Total loss for PC40EER42 gapped core (Typical)PC40EER42 core (Typical)EER42 core (Typical)Part No.A L-value (nH/N2)Core loss (W) at 100°C Calculated output power(forward converter mode)100kHz, 200mTPC40EER42-Z4690±25% (1kHz, 0.5mA)∗6670 min. (100kHz, 200mT)8.6 max.433W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from itsextended linear part.Measuring conditions• Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz• Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity arefixed to 25°C and 45(%)RH. respectively.(approx. 400×300×300cm)EER Series EER42/42/20 Cores∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L-value for A L-value vs. Air gap length for Temperature rise vs. Total loss for PC40EER42/42/20 gapped core (Typical)PC40EER42/42/20 core (Typical)EER42/42/20core (Typical)Part No.A L-value (nH/N2)Core loss (W) at 100°C Calculated output power(forward converter mode)100kHz, 200mTPC40EER42/42/20-Z5340±25% (1kHz, 0.5mA)∗8260 min. (100kHz, 200mT)10.7 max.509W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from itsextended linear part.Measuring conditions• Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz• Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity arefixed to 25°C and 45(%)RH. respectively.(approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40ETD19 gapped core (Typical)PC40ETD19 core (Typical)ETD19 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40ETD19-Z1720±25% (1kHz, 0.5mA)∗2380 min. (100kHz, 200mT)1.1 max.79W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40ETD24 gapped core (Typical)PC40ETD24 core (Typical)ETD24 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40ETD24-Z2125±25% (1kHz, 0.5mA)∗2860 min. (100kHz, 200mT)1.6 max.115W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)∗ Coil: ø0.35 2UEW 100TsNI limit vs. A L -value forA L -value vs. Air gap length for Temperature rise vs. Total loss for PC40ETD29 gapped core (Typical)PC40ETD29 core (Typical)ETD29 core (Typical)Part No.A L -value (nH/N 2)Core loss (W) at 100°C Calculated output power (forward converter mode)100kHz, 200mT PC40ETD29-Z2500±25% (1kHz, 0.5mA)∗3540 min. (100kHz, 200mT)2.4 max.170W (100kHz)Note: NI limit shows the point where the excitingcurrent is 20% and 40% away from its extended linear part.Measuring conditions • Coil: ø0.35 2UEW 100Ts• Frequency: 1kHz • Level: 0.5mANote: The temperature rise is measured in theroom whose temperature and humidity are fixed to 25°C and 45(%)RH. respectively. (approx. 400×300×300cm)。
目前,Fe3Si的研究主要集中在其磁学性质上。
Fe3Si作为软磁材料常被用作发电机和变压器的铁芯,Fe3Si还被制成了音频或者视频磁头、卡片阅读器等,在高频信息领域方面应用广泛。
另外薄膜Fe3Si 也开始用于磁阻存储器中,并且可利用其自旋极化性质制备自旋电子器件。
Fe3Si金属间化合物因其优异的软磁性能,而被广泛应用于音频、视频及卡片阅读器用磁头材料,而且有望代替普通硅钢片,成为新一代能量转换用磁芯材料。
其还具有负的电阻温度系数,是一种有特殊性质的导体,有可能成为新型的电阻材料。
Fe3Si金属间化合物所表现出的优越抗氧化性能是其作为结构材料应用的一大优势,也可将其作为某些高温抗氧化结构部件或材料的抗氧化涂层。
传统钢铁材料表面Si化处理是提高材料自身抗氧化性能的有效方法,处理后的表面生成高Si含量的Fe(Si)固溶体,或Fe—si金属间化合物,以提高材料自身的高温抗氧化性能¨“。
因此,将Fe,si作为抗氧化结构涂层将与之有着同等重要的价值。
Fe 3si基合金具有优异的软磁性能,不仅有希望替代普通硅钢片(尤其在高频信息领域),而且还广泛用作音频和视频磁头材料和卡片阅读器用磁头材料,因而一直是能源和信息处理领域的研究热点.由于硅含量较高,导致B2 和DO3 有序相的出现,合金变得既硬又脆,使机械加工性能急剧恶化因此,制备工艺的发展和成熟,以及能否经济有效的生产是Fe si基合金广泛应用的关键.当今,电子信息设备正向智能化、数字化、小型轻便以及高频甚至超高频(从KHz到MHz ,进而向GHz频段)方向发展,占据很大体积和重量、被广泛使用的传统的磁性器件很明显不能满足电子设备的要求。
薄膜化的材料能够实现传统器件以往无法实现的很多功能。
微磁器件就是一种以磁性材料薄膜化技术为基础的器件,其凭借在高频以及超高频下具有优异的磁性能,使得传统磁性器件(如电感器、变压器等)逐渐向高频化、小型化发展的要求得以实现,也是实现以微磁器件与半导体器件为一体的磁性IC的前提之一。
开关电源磁芯尺寸功率等全参数适用标准文案开关电源磁芯尺寸功率等参数MnZn 功率铁氧体EPC功率磁芯特色:拥有热阻小、衰耗小、功率大、工作频次宽、重量轻、构造合理、易表面贴装、障蔽成效好等长处,但散热性能稍差。
用途:宽泛应用于体积小而功率大且有障蔽和电磁兼容要求的变压器,如精细仪器、程控互换机模块电源、导航设备等。
EPC型功率磁芯尺寸规格磁芯型号尺寸 Dimensions(mm)Type A B C D Emin F G Hmin10.20 ±EPC10/8 4.05 ±±±7.60 2.65 ±±13.30 ±EPC13/13 6.60 ±±±±±17.60 ±EPC17/178.55 ±±±±±19.60 ±EPC19/209.75 ±±±±±EPC25/2525.10 ±12.50 ± 8.00 ±11.50 ±±±27.10 ±16.00 ±13.00 ±12.00 ±EPC27/328.00 ± 4.00 ±30.10 ±17.50 ±15.00 ±13.00 ±EPC30/358.00 ± 4.00 ±39.00 ±19.60 ±15.60 ±18.00 ±14.00 ±10.00 ±EPC39/3942.40 ±22.00 ±15.00 ±17.00 ±16.00 ±EPC42/447.40 ±46.00 ±24.80 ±19.50 ±20.80 ±18.40 ±11.90 ±EPC46/4946.50 ±22.30 ±19.40 ±21.00 ±15.80 ±12.00 ±54.50 ±27.20 ±21.50 ±26.50 ±19.30 ±14.00 ±EPC54/54EPC功率磁芯电气特征及有效参数有效参数 Effective parameters磁芯型号材质AL(nH/N2)C1Le Ae Ve重量功耗约设计功率( W)Type Material±25%(mm-1)(mm)(mm2)(mm3)(g/PRS)(W/PRS,max) EPC10/8TP49501673 EPC13/13TP48303826EPC17/17TP4115091713 EPC19/20TP4900104715 EPC25/25TP41550274740 EPC27/32TP41550399160 EPC30/35TP4150061497770 EPC39/39TP442509016915210220 EPC42/44TP428009516916055235 EPC46/49TP4410022725242360 TP4480010122923129370 EPC54/54TP4600033643949600注:AL 值测试条件为1KHz,0.25v,100Ts,25± 3℃Pc值测试条件为 100KHz,200mT,100℃EE、EEL、EF 型功率磁芯特色:引线空间大,绕制接线方便。
磁性器件中磁芯的选用及设计开关电源中使用的磁性器件较多,其中常用的软磁器件有:作为开关电源核心器件的主变压器(高频功率变压器)、共模扼流圈、高频磁放大器、滤波阻流圈、尖峰信号抑制器等。
不同的器件对材料的性能要求各不相同,如表所示为各种不同器件对磁性材料的性能要求。
(一)、高频功率变压器变压器铁芯的大小取决于输出功率和温升等。
变压器的设计公式如下:P=K*f*N*B*S*I×10-6T=hc*Pc+hW*PW其中,P为电功率;K为与波形有关的系数;f为频率;N为匝数;S为铁芯面积;B为工作磁感;I为电流;T为温升;Pc为铁损;PW为铜损;hc和hW为由实验确定的系数。
由以上公式可以看出:高的工作磁感B可以得到大的输出功率或减少体积重量。
但B值的增加受到材料的Bs值的限制。
而频率f可以提高几个数量级,从而有可能使体积重量显著减小。
而低的铁芯损耗可以降低温升,温升反过来又影响使用频率和工作磁感的选取。
一般来说,开关电源对材料的主要要求是:尽量低的高频损耗、足够高的饱和磁感、高的磁导率、足够高的居里温度和好的温度稳定性,有些用途要求较高的矩形比,对应力等不敏感、稳定性好,价格低。
单端式变压器因为铁芯工作在磁滞回线的第一象限,对材料磁性的要求有别于前述主变压器。
它实际上是一只单端脉冲变压器,因而要求具有大的B=Bm-Br,即磁感Bm和剩磁Br之差要大;同时要求高的脉冲磁导率。
特别是对于单端反激式开关主变压器,或称储能变压器,要考虑储能要求。
线圈储能的多少取决于两个因素:一个是材料的工作磁感Bm值或电感量L,另一个是工作磁场Hm或工作电流I,储能W=1/2LI2。
这就要求材料有足够高的Bs值和合适的磁导率,常为宽恒导磁材料。
对于工作在±Bm 之间的变压器来说,要求其磁滞回线的面积,特别是在高频下的回线面积要小,同时为降低空载损耗、减小励磁电流,应有高磁导率,最合适的为封闭式环形铁芯,其磁滞回线见图所示,这种铁芯用于双端或全桥式工作状态的器件中。
ROHSISO9001:2000通过国家认证——全系列铁硅铝、铁硅磁粉芯生产供应商中国·浙江·海宁市伊尔曼格电子有限公司Haining Electronic-Magnetics CO.,LTD.China .Zhejiang<< 公司简介(中文)中国·浙江·海宁市伊尔曼格电子有限公司(Haining Electronic-Magnetics CO.,LTD.China.Zhejiang)中国·浙江·海宁市伊尔曼格电子有限公司(Hai Ning Electronic Magnetic.Co., LTD)是一家集研发、生产、销售、服务于一体的高科技企业。
公司总部设在浙江省海宁市科技创业中心,生产基地坐落于国家批准的浙江省海宁磁芯城(盐官镇),交通便利,信息畅通。
公司主要产品有铁硅铝磁粉芯,铁硅磁粉芯,新型铁粉芯等,产品技术服务领域涉及开关电源、UPS 电源、液晶电视、汽车ABS、电力、电子、通讯、仪器及自动化控制等行业,特别是铁硅铝磁粉芯-26、-40、-60、-75、-90、-125及铁硅磁粉芯-14、-26、-40、-60、-75、-90、-125、-147的研制成功与生产,填补了国内该领域的空白,成为国内首家全系列铁硅铝磁粉芯、铁硅磁粉芯产品的生产供应商。
公司是上海大学、上海电器科学研究所、天通电子股份有限公司等多名理论基础坚实,实践经验丰富的教授、高级工程师及工程师基础上创建的,还吸收了多名其他学校毕业生,技术力量雄厚;同时由一些有卓越技术专长知识、经验丰富的销售人员为客户提供技术支撑与服务,现已拥有一批国内外客户!公司拥有大块合金粉碎机;高性能粉碎机;新型制粉设备;大压力压机;高温热处理炉;高真空高温烧结炉等主要设备和多种相关测试仪器设备。
还与浙江大学、南京大学、西安交通大学及其研究所等建立了合作关系,为产品质量提供了保证。
非晶C型磁芯的技术特点及技术发展趋势技术特点非晶材料1K101的主要成份是铁Fe、硅Si、硼B,其按一定比例配备冶炼熔融后在106℃/秒`的降温速度下喷制成25—30μm的薄带,由于其急速降温冷却,其原子来不及有序排列成晶格织构而成非晶态,与传统的金属磁性材料相比,由于非晶合金原子排列无序,没有晶体的各向异性,而且电阻率高,因此具有高的导磁率、低损耗,高饱和磁通密度,是优良的的软磁材料。
被广泛用于替硅钢、坡莫合金和铁氧体等作为变压器铁芯、互感器、传感器等,可以大大提高变压器效率、缩小体积、减轻重量、降低能耗.用于生产非晶C型磁芯的材料为1K101,非晶C型磁芯其具有传统C型铁芯那种结构简单,线圈装配方便,电感调节方便等优点外,其在5KHz—20KHz频率段的高导磁、低铁损特性,被大量用于太阳能光伏产业逆变电路中的滤波电感,随着绿色能源产业的兴起,市场前景巨大。
产品核心技术有三点:a、铁芯退火;b、低应力浸漆固化;3、降铁损特殊工艺(已申请专利)技术发展趋势随着电子电器产品发展的小型化,高频化是必然涂经,那么非晶C型磁芯将在脉冲变压器、开关电源变压器、逆变电源变压器、中频变压器、大功率电抗器、功率因数校正器、滤波电感、共模电感、差模电感等领域被广泛应用。
非晶电力变压器铁芯非晶电力变压器铁芯亦是采用1K101(日立金属牌号2605SA1)材料,剪切卷制成型后经纵磁场退火,使其在工频(50—60Hz)条件下具有更低的铁损、更小的励磁功率(有利于减小变压器噪音),同功率容量的变压器相比较,非晶合晶铁芯制做的变压器空载损耗比传统S9型的硅钢铁芯变压器低70%. 早期非晶合金铁芯主要用在中小功率1600KV A以下油浸式变压器。
随着材料性能的提升、铁芯制做工艺水平提高、变压器设计制造技术水平的提高,功率容量已提升到2500KV A,且在干式变压器中以得到广泛应用。
产品核心技术:纵磁场退火技术发展趋势现在非晶电力变压器铁芯皆为单开口搭接式、矩形截面结构,存在噪音难以进一步降低的障碍,现业内有设想做成圆截面、全闭合式卷绕结构,若能成功将是非晶电力变压器铁芯的一场大变革,对降低成本,进一步降低空载损耗、降低噪音都有明显效益。
美式铁氧体磁芯参考(实物照片)图片版板归BG7OA所有1.FT-37-43、FT-50-43,颜色:黑儿发亮,有明显的晶体光泽(旧货无这种光斑),色泽均匀,无气泡、无微粒锈斑;表面有层极薄的保护层,摩擦后容易掉色;做工精细,边缘无明显毛刺.图片说明:图1为:FT-37-43;图2为:FT-50-43图1:图2:2.FT-37-61,FT-50-61、FT-140-61:-61材料由于为了环保要求,分环保品与非环保品,非环保品的-61材料颜色为黑灰色,无光泽,混装后磁芯摩擦掉下的粉末颜色好似铁锈;手感细腻,不粗糙,易吸水;比重较其他高磁导率材料小,环保品颜色略为黑灰色,略有光泽,有保护层,不易掉色;手感光滑(以下BN系列磁芯特点一样,以后并不再说明了)!图片说明:图1为:FT-37-61,图2为:FT-50-61、图3为:FT-140-61图1:图2:3.BN-43-2402、BN-43-202、BN-43-3312、BN-43-7051;-43材料的特点上面说了,除了形状不同外,没有其他特别之处,在这里要说明的是,除BN-43-3312、BN-43-7051(照片的左边或下面那只)不是环保品外,其他都是环保品:图片说明:图1为:BN-43-2402、图2为:BN-43-202、图3为:BN-43-3312、图4-6为:BN-43-7051:图1:图3:BN-43-3312弟弟的照片,这个很难买了!做HF Amplifier的输入变压器最好不过了!图4:图5:图6:4.FB-43-801、FB-73-801:刚才照了FB-73-801等10多种铁氧体磁珠,但由于环境不理想,照片的效果不好!所以今天只能上FB-43-801、FB-73-801磁珠的照片了,等周末再重新将其他磁珠的照片放上来供大家参考:图片说明:图1为FB-43-801、图2为:FB-73-801:图1:图2:5.BN-61-2402、BN-61-202、BN-61-002,请大家注意的是,这几种双孔磁芯的颜色除BN-61-002非环保品外,其颜色均是略为黑灰色的环保品,和BN-43-7051(非环保品)的颜色有些接近;但还是有办法辨别的:透过那层薄薄的保护层可以看到-61材料铁氧体组织的细微颗粒;还有就是磁芯的光泽较-43材的暗淡些,表面无晶体光斑,这是和-43材料最大区别!图片说明:图1为:BN-61-2402、图2为:BN-61-202、图3-5为:BN-61-002(照片的左边或下面的磁芯为非环保品):图1:图2:图3:图4:图5:6.FB-43-5621、FB-43-6873、FB-43-1020,这种形状的磁芯相信很多朋友都见过,但要说性能,我可有亲身体会:2003年,我将这些铁氧体磁管用在我公司的UPS里做EMC试验,得到了很好的效果。