2016年春人教版八年级数学下册畅优新课堂同步教案20.1.2.2平均数、中位数和众数的应用.doc
- 格式:doc
- 大小:72.00 KB
- 文档页数:2
20.1.1平均数——人教版版八年级上册第二十章第一节教学设计一、学生状况分析本节课是人教版版数学教材八年级下册第二十章《数据的代表》的第1节——“平均数”的第1课时.学生在小学阶段已经初步学习过算术平均数的概念,会简单地求一组数据的算术平均数,并会单一地用算术平均数理解一组数据的平均水平.进入初中阶段后,在七年级相关知识的学习过程中,学生已经经历了一些统计活动,解决了一些简单的现实问题,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验,具备了一定的合作与交流的能力.二、教学任务分析本节课的教学任务是:让学生理解算术平均数、加权平均数的概念;会求一组数据的算术平均数和加权平均数;能解决有关平均数的实际问题,发展学生的数学应用能力, 达成有关的情感态度目标.根据以上分析,制定本节课的教学任务入下:1.知识与技能(1)认识权、会求加权平均数,并体会权的差异对结果的影响.(2)理解简单平均数和加权平均数的区别和联系,并能利用其解决一些实际问题.2. 过程与方法(1)通过小组活动,初步经历数据的处理过程,发展学生数据处理能力.(2)经历从特殊到到一般的数学探究方法,认识加权平均数的意义和价值,解决简单的实际问题.3. 情感态度与价值观(1)通过小组合作的活动,进一步增强与他人交流的意识与能力,培养学生的合作意识和能力.(2)通过权对结果的影响,使学生体会数学与人类社会的密切联系,通过解决身边的实际问题,体会到从不同角度考虑问题的必要性,认识事物要经历从一般到特殊的过程.了解数学的价值,增进对数学的理解和学好数学的信心.在探索过程中形成实事求是的态度和勇于探索的精神.4、教学重难点 教学重点:(1)加权平均数的概念,会求加权平均数. (2)简单平均数与加权平均数的区别和联系. 教学难点:体会权的差异对结果的影响,认识到权的重要性. 三、教学过程设计本节课由五个教学环节组成,它们是“温旧孕新——探新知权——新知升华—学以致用——小结平均数”.其具体内容与分析如下:按照学生的认知规律,遵循以“学生为主体,教师为主导,数学活动为主线”的指导思教 学 内 容教师活动 学生活动 教学目的一、 温旧孕新问题1 2017年2月28日由《重庆晚报》打造的“重庆六一班”小记者培训课,在德普外国语学校开班,并授予德普为小记者培训基地. 经过激烈的比赛,学校现在要在甲、乙两名同学中选拔出一名“德普小记者”,他们的各项成绩(百分制)如下表:现在请计算两名候选者的平均成绩(百分制),如果你是评委,从他们的成绩看,应该选谁呢?展示视频图片以什么样的标准来比较他们的成绩?肯定分配中突出某项的方案具有合理性,并通过计算得出方案的可行性.在总分、平均分相等的情况下,具体该如何比较选拔?学生给出方案计算总分、平均分无法解决问题,让学生感受不同成绩在同一个问题上的重要程度不同,体会数据赋予“权”的必要性.形式变化,实质仍然反映了数据的不同重要程度.二、探新知权 1、加权平均数的概念 由小记者在四个测试中的重要程度不同,在老师的追问中,由学生自己探索出权的呈现形式,引入“权”的概念,导入课题. 权的定义: 权表示:数据的重要程度 数据的权反映数据的相对重要程度. 权形式:比例、百分比 根据不同的权重,所求的平均数就是加权平均数. 归纳: 一般地,若n 个数1x ,2x ,…,n x 的权分别提炼出权的定义:反映数据的重要程度.体会“权”的差异对“加权平均数”结果的影响.“简单平均数”可以看作是权相等的“加权平均数”.给学生一个反思自悟的过程.是 1w ,2w ,…,n w ,则 112212n nnx w x w x w x w w w ++=++叫做这n 个数的加权平均数(weighted average ) .书本171-172页“加权平均数”的相关内容.三、新知升华简单平均数与加权平均数统称为算术平均数. 当数据的权都相等时,所求的加权平均数就是简单平均数,简单平均数是加权平均数地特殊情况, 四、学以致用 一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分. 其中一位选手的单项成绩(百分制)如下表:(1)按演讲内容占60%、演讲能力占30%、演讲效果占10%,计算选手的平均成绩;(2)演讲内容、演讲能力、演讲效果按 3:2: 1的比确定,计算选手的平均成绩.五、学以致用 小组编题1. 选择你感兴趣的生活中加权平均数的例子为背景;2. 可以采用不同形式给出相应考察项目的权;3. 小组合作探究,要分工明确,设计出科学合理的求加权平均数的题目;4. 小组活动时间共18分钟;5. 活动结束后 ,每个小组派两个代表上台展示成果.六、小结—平均数 我最大的收获是…我对同学和同伴的表现感到… 我从同学身上学到了…本节课在对你今后的生活中对待一些事情进行分析时,会有什么帮助?七、布置作业.必做题:教科书第113页练习第2题;归纳概括公式(权的百分数的形式与比的形式)从加权平均数的多种形式计算巩固所学知识,并为下面生活中的加权平均例子提供素材.归纳概括公式利用刚才总结的公式列出式子.学生举例巩固所学体会“权”的对结果的影响,进一步理解“权”.感受加权平均数在生活中应用的广泛,体会数学的价值.巩固演练、反馈矫正(备用)1.(★)如果一组数据5, x, 3, 4的平均数是5, 那么x=____;2.(★★)某小区月底统计用电情况:其中有4户用电45度,有5户用电42度, 有6户用电50度, 则平均每户用电_____度;3. (★★)某校规定学生的体育成绩由三部分组成:体育课外活动占成绩的20%,体育理论测试占30%,体育技能测试占50%.小颖的上述三项成绩依次为92分、80 分、84 分,则小颖这学期的体育成绩是多少分?4. (★★★)小亮买甲种练习本a本,每本m元;买乙种练习本b本,每本n元,两种练习本平均每本多少元?你得了________颗★。
人教版数学八年级下册20.1.1《平均数》教学设计1一. 教材分析人教版数学八年级下册20.1.1《平均数》是学生在学习了统计学基础知识后进一步研究平均数这一概念。
平均数是描述一组数据集中趋势的重要指标,它在日常生活和各种科学研究中有着广泛的应用。
本节内容通过对平均数的定义、性质和求法的学习,使学生能理解平均数在统计学中的意义,掌握求平均数的方法,并能够运用平均数解决一些实际问题。
二. 学情分析学生在学习本节内容前,已经掌握了统计学的一些基础知识,如数据、统计表、统计图等。
他们具备了一定的数据分析能力,但对于平均数的概念和求法还比较陌生。
因此,在教学过程中,教师需要从学生的实际出发,通过生动具体的实例,引导学生理解平均数的含义,掌握求平均数的方法。
三. 教学目标1.知识与技能目标:使学生理解平均数的含义,掌握求平均数的方法,能够运用平均数解决一些实际问题。
2.过程与方法目标:通过实例分析,培养学生的数据分析能力,提高他们运用数学解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的良好学习习惯。
四. 教学重难点1.重点:平均数的定义及其求法。
2.难点:理解平均数在统计学中的意义,以及如何运用平均数解决实际问题。
五. 教学方法1.情境教学法:通过生动具体的实例,引导学生理解平均数的含义,掌握求平均数的方法。
2.启发式教学法:在教学过程中,教师要善于提问,引导学生积极思考,提高他们的问题解决能力。
3.小组合作学习法:通过小组讨论、合作交流,培养学生的团队协作能力,提高他们的数据分析能力。
六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习情况,设计好教学过程和教学活动。
2.学生准备:预习教材内容,了解平均数的概念和求法。
3.教学资源:多媒体教学设备、教学课件、练习题等。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题——平均数。
例如:某班有30名学生,他们的身高分别是160cm、165cm、170cm……200cm,请问该班学生的平均身高是多少?2.呈现(10分钟)教师通过PPT展示平均数的定义和性质,让学生初步了解平均数的概念。
人教版初中数学八年级下册教案《平均数》一. 教材分析平均数是初中数学中的一个重要概念,它反映了数据集中的趋势。
在本节课中,学生将学习平均数的定义、性质和计算方法,并能运用平均数解决实际问题。
教材通过生动的实例和丰富的练习,帮助学生理解和掌握平均数的概念,培养学生的数学思维能力和解决问题的能力。
二. 学情分析学生在小学阶段已经接触过平均数的概念,但对平均数的理解和计算方法可能还不够深入。
他们对平均数有一定的认识,但缺乏对平均数性质和应用的理解。
此外,学生可能对平均数的计算公式记忆不牢,需要通过练习来巩固。
三. 教学目标1.理解平均数的定义和性质,掌握平均数的计算方法。
2.能够运用平均数解决实际问题,提高解决问题的能力。
3.培养学生的数学思维能力和团队合作能力。
四. 教学重难点1.重点:平均数的定义、性质和计算方法。
2.难点:平均数的性质和应用。
五. 教学方法1.情境教学法:通过实例引入平均数的概念,让学生在实际情境中理解和掌握平均数。
2.练习法:通过大量的练习,巩固学生对平均数的理解和计算方法。
3.小组合作学习:让学生在小组内讨论和解决问题,培养学生的团队合作能力。
六. 教学准备1.教材和教辅资料。
2.实例和练习题。
3.投影仪和黑板。
七. 教学过程1.导入(5分钟)通过一个实际问题引入平均数的概念,例如:“某班有30名学生,他们的身高分别为160cm、165cm、170cm等,请计算该班学生的平均身高。
”让学生思考和讨论如何计算平均身高,引出平均数的概念。
2.呈现(15分钟)介绍平均数的定义和性质,通过实例和讲解让学生理解和掌握平均数的概念。
强调平均数的性质,例如:平均数是一组数据的集中趋势,受到极端值的影响等。
3.操练(15分钟)让学生进行大量的练习,巩固对平均数的理解和计算方法。
可以设置不同难度级别的题目,让学生根据自己的能力选择练习。
4.巩固(10分钟)通过小组合作学习,让学生在小组内讨论和解决问题。
人教版数学八年级下册20.1.1《平均数》教案5一. 教材分析《人教版数学八年级下册20.1.1》是八年级下册第一单元“平均数”的第一课时,本节课主要让学生了解平均数的含义,掌握求平均数的方法,并能运用平均数解决实际问题。
教材通过生活实例引入平均数的概念,让学生体会数学与生活的联系,培养学生的应用意识。
二. 学情分析学生在七年级已经学习了统计学的初步知识,对数据有一定的认识,但对于平均数的理解还不够深入。
通过调查发现,大部分学生对于平均数的求法较为熟悉,但少数学生对于如何运用平均数解决实际问题还存在困难。
因此,在教学过程中,需要关注这部分学生的学习需求,通过实例讲解和练习,提高他们运用平均数解决实际问题的能力。
三. 教学目标1.理解平均数的含义,掌握求平均数的方法。
2.能够运用平均数解决实际问题,培养学生的应用意识。
3.培养学生独立思考、合作交流的能力,提高学生的数学素养。
四. 教学重难点1.重点:平均数的含义,求平均数的方法。
2.难点:如何运用平均数解决实际问题,提高学生的应用能力。
五. 教学方法1.采用情境教学法,以生活实例导入,激发学生的学习兴趣。
2.运用小组合作学习法,引导学生积极参与讨论,培养学生的合作意识。
3.采用问题驱动法,引导学生思考,激发学生的求知欲。
4.利用练习法,巩固所学知识,提高学生的应用能力。
六. 教学准备1.准备相关的生活实例,用于导入和练习。
2.制作课件,展示平均数的定义和求法。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如“某班有30名学生,语文成绩分别为:80, 85, 90, …, 70,求该班语文成绩的平均分。
”引出平均数的概念,让学生体会数学与生活的联系。
2.呈现(10分钟)展示平均数的定义和求法,让学生理解和掌握。
平均数 = 总和 ÷ 数量3.操练(10分钟)让学生分组讨论,每组选择一个生活实例,运用平均数的方法求解。
第2课时平均数、中位数和众数的应用【知识与技能】描述众数的概念,会求一组数据的众数,能结合具体情境体会平均数、中位数、众数三者的区别,能初步选择恰当的数据代表对数据做出自己的评判.【过程与方法】通过实际背景,区分刻画“平均水平”的三个数据代表,形成获取数据、继续巩固对各种图表信息的识别与获取能力,养成对生活中所见到的统计图表进行数据处理和评判的主动意识.【情感态度】将知识的学习放在解决问题的情境中,作为数据处理过程的一部分,认识到数字与现实的联系.通过与同学间的交流合作,培养大家的合作精神.【教学重点】了解平均数、中位数、众数之间的差异.【教学难点】灵活运用这三个数据代表解决问题.一、情境导入,初步认识平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同.二、典例精析,掌握新知例某商场服装部为了调动营业员的积极性,决定实行目标管理,即确定一个月销售目标,根据目标完成的情况对营业员进行适当的奖惩.为了确定一个适当的目标,商场统计了每个营业员在某月的销售额(单位:万元),数据如下:17 18 16 13 24 15 28 26 18 1922 17 16 19 32 30 16 14 15 2615 32 23 17 15 15 28 28 16 19(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均的月销额是多少?(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.(3)如果想让一半左右的营业员都能达到目标,你认为月销售额定为多少合适?说明理由.【分析】(1)中的目的是依次探讨月销售额的众数,中位数和平均数,为了便于解答,应对所给出的30个数据进行分析整理(如列出频数分布表或频数分布直方图);(2)(3)小题则是选择平均数、中位数或众数来解决问题,这样可进一步认识用样本估计总体及数据处理.【教学说明】教师先予以分析,引导学生阅读理解题意,找出解决问题的方法,然后由学生自主探究,独立完成.教师巡视,及时引导学生利用频数分布表(或直方图)来找出数据的众数和中位数.对有困难的学生给予个别辅导.三、运用新知,深化理解教材P121练习【教学说明】通过练习,教师帮助学生分析,了解平均数、中位数和众数都可以作为一组数据的代表,它们有各自的特点.【答案】解:(1)第1组数据的平均数:(35+36+38+40+42+42+75)÷7=44(kg).众数是42kg,中位数是40kg.第2组数据的平均数:(35+36+38+40+42+42+45)÷7≈40(kg).众数是42kg,中位数是40kg.(2)第1组数据的平均数大于第2组数据的平均数,众数和中位数相同.四、师生互动,课堂小结今天你有哪些收获?与同伴交流.1.布置作业:从教材“习题20.1”中选取.2.完成练习册中本课时练习.引导学生采用自主探索与合作交流的学习方式,力求做到让每一个学生都能参与探究,最终学会学习.。
人教版数学八年级下册20.1.1《平均数》教学设计5一. 教材分析人教版数学八年级下册20.1.1《平均数》是学生在学习了统计学基础知识后,进一步探究平均数这一统计量的一次教学。
平均数是描述数据集中趋势的一项指标,它在日常生活和各个领域中都有广泛的应用。
此节内容通过具体的实例,让学生理解平均数的含义,学会求平均数的方法,并能够应用平均数解决实际问题。
二. 学情分析学生在之前的学习中已经掌握了统计学的一些基本知识,如数据的收集、整理和表示方法。
他们具备了一定的抽象思维能力,能够理解平均数的含义和求法。
但同时,学生对平均数的理解可能仅停留在表面,不能很好地运用平均数解决实际问题。
因此,在教学过程中,教师需要通过具体的实例和练习,帮助学生深入理解平均数,提高他们的应用能力。
三. 教学目标1.了解平均数的含义,理解平均数的求法。
2.能够运用平均数解决实际问题,提高学生的应用能力。
3.培养学生的抽象思维能力,提高他们的数学素养。
四. 教学重难点1.重点:理解平均数的含义,掌握求平均数的方法。
2.难点:运用平均数解决实际问题,深入理解平均数的性质。
五. 教学方法采用启发式教学法、案例教学法和小组合作学习法。
通过具体的实例,引导学生主动探究平均数的含义和求法,培养学生的抽象思维能力。
同时,通过小组合作学习,让学生在讨论和交流中,提高对平均数的理解和应用能力。
六. 教学准备1.准备相关的实例和练习题,以便在课堂上进行教学和练习。
2.准备多媒体教学设备,如投影仪、计算机等,以便进行课件展示和教学演示。
七. 教学过程1.导入(5分钟)教师通过一个简单的实例,如班级一次数学考试的成绩,引导学生思考:如何描述这组数据的一般水平?引出平均数的概念。
2.呈现(10分钟)教师通过多媒体展示几个不同类型的实例,让学生观察和思考:这些实例中的平均数是如何求得的?引导学生总结求平均数的方法。
3.操练(10分钟)教师给出几个练习题,让学生独立完成。
第2课时平均数、中位数和众数的应用
【知识与技能】
描述众数的概念,会求一组数据的众数,能结合具体情境体会平均数、中位数、众数三者的区别,能初步选择恰当的数据代表对数据做出自己的评判.
【过程与方法】
通过实际背景,区分刻画“平均水平”的三个数据代表,形成获取数据、继续巩固对各种图表信息的识别与获取能力,养成对生活中所见到的统计图表进行数据处理和评判的主动意识.
【情感态度】
将知识的学习放在解决问题的情境中,作为数据处理过程的一部分,认识到数字与现实的联系.通过与同学间的交流合作,培养大家的合作精神.
【教学重点】
了解平均数、中位数、众数之间的差异.
【教学难点】
灵活运用这三个数据代表解决问题.
一、情境导入,初步认识
平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同.
二、典例精析,掌握新知
例某商场服装部为了调动营业员的积极性,决定实行目标管理,即确定一个月销售目标,根据目标完成的情况对营业员进行适当的奖惩.为了确定一个适当的目标,商场统计了每个营业员在某月的销售额(单位:万元),数据如下:
17 18 16 13 24 15 28 26 18 19
22 17 16 19 32 30 16 14 15 26
15 32 23 17 15 15 28 28 16 19
(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均的月销额是多少?
(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.
(3)如果想让一半左右的营业员都能达到目标,你认为月销售额定为多少合适?说明理由.
【分析】(1)中的目的是依次探讨月销售额的众数,中位数和平均数,为了便于解答,应对所给出的30个数据进行分析整理(如列出频数分布表或频数分布直方图);(2)(3)小题则是选择平均数、中位数或众数来解决问题,这样可进一步认识用样本估计总体及数据处理.
【教学说明】教师先予以分析,引导学生阅读理解题意,找出解决问题的方法,然后由学生自主探究,独立完成.教师巡视,及时引导学生利用频数分布表(或直方图)来找出数据的众数和中位数.对有困难的学生给予个别辅导.
三、运用新知,深化理解
教材P121练习
【教学说明】通过练习,教师帮助学生分析,了解平均数、中位数和众数都可以作为一组数据的代表,它们有各自的特点.
【答案】解:(1)第1组数据的平均数:(35+36+38+40+42+42+75)÷7=44(kg).众数是42kg,中位数是40kg.第2组数据的平均数:(35+36+38+40+42+42+45)÷7≈40(kg).众数是42kg,中位数是40kg.(2)第1组数据的平均数大于第2组数据的平均数,众数和中位数相同.
四、师生互动,课堂小结
今天你有哪些收获?与同伴交流.
1.布置作业:从教材“习题20.1”中选取.
2.完成练习册中本课时练习.
引导学生采用自主探索与合作交流的学习方式,力求做到让每一个学生都能参与探究,最终学会学习.。