一类离散系统周期解的存在性
- 格式:pdf
- 大小:601.03 KB
- 文档页数:7
一类非线性系统周期解的存在性
本文旨在探讨一类非线性系统周期解的存在性。
非线性系统是由具有非线性特性的物理系统(如摩擦力),化学反应以及生物系统等构成的具有复杂动力学行为的物理系统。
由于其不可线性,因此它们具有解决复杂问题的特殊优势,且可以近似地模拟出实际问题的对应行为。
非线性系统具有周期解的存在性就是指:在某类非线性系统中,当其内部参数取一系列定义为特定值时,系统可能具有重复出现的解,这些解可以成为该系统的周期解。
这些周期的解可以提供巨大的优势,特别是在计算机模拟非线性系统过程中,对于系统的行为判定极其重要。
此外,为了确定一类非线性系统是否具有周期解,可以采用拉普拉斯变换来研究系统的稳定性。
拉普拉斯变换是用于描述非线性系统的稳定性的数学工具,通过计算拉普拉斯变换的幂级数可以检验该非线性系统内部参数是否具有周期性。
综上所述,从理论上讲,一类非线性系统具有周期解的存在性,可以使用拉普拉斯变换来判断其内部参数是否具有周期性,当参数为特定值时,非线性系统可能具有重复出现的解。
一类非线性系统具有周期解的存在性,可以提供更准确的模拟系统过程,并用于分析复杂问题的解决方案。
Existence of Periodic Solution on a Class of Discrete Difference System∗TANG Mei-lan†LIU Xin-ge(School of Mathematical Sciences and Computing Technology,Central South University,Changsha,410083)LIU Xin-bi(School of Materials Science and Engineering,Central South University,Hunan Changsha,410083)Abstract:Using trigonometrical series theory and contraction mapping principle,This paper studydifference systems X(n+1)=+∞j=−∞A(j)X(n−j)+f(n,x(n+·))and X(n+1)=+∞ j=−∞A(j)X(n−j)+G(n,X(n+·)),sufficient and necessary conditions on the existence of periodic solutions for thefirst equation and sufficient conditions on the uniqueness of the second equation are obtained.Keywords Discrete systems;periodic solution;trigonometrical series;contraction mapping principleCLC number:O175.14Document code:A1.IntroductionPaper[1]studied the existence of Periodic Solution of linear inhomogeneous differential equations˙x(t)= +∞−∞[dE(s)]x(t+s)+f(t),(A) where E:R→C n×n is continue to the left and of bounded total variation on R,i.e.,γ= ∞−∞|dE(s)|<∞,f∈C T,and x∈BC(R;C n):={ψ∈C(R;C n):ψis bounded on R}.Paper[1]obtained some sufficient and necessary conditions on the existence of periodic solutions for Eq.(A).Paper[2]studied the uniqueness of Periodic Solution of quasilinear functional differential equations˙x(t)= R[dE(s)]x(t+s)+G(t,x(t+·)),(B) where x(t)∈R n,E:R→R n2is continue to the left and of bounded total variation on R,i.e.,γ= ∞−∞|dE(s)|<∞,G:R×BC(R;R n)→R n is continue,G is T>0periodic with respect to itsfirst variable t,and G maps bounded set to bounded set.Paper[2]obtained some sufficient and necessary conditions on the uniqueness of periodic solutions for Eq.(B).Using trigonometrical series theory and contraction mapping principle,This paper study discrete linear inhomogeneous difference systems and qunasilinear delay difference systems,and obtain sufficientand necessary conditions on the existence of periodic solutions for the discrete linear inhomogeneous difference systems with sufficient conditions on the existence of periodic solutions for the qunasilinear delay difference systems,morever,The main results in [1],[2]are extended and improved to difference systems.2.Main ResultsIn this paper ,we investigate the following linear inhomogeneous difference periodic systemsX (n +1)=+∞j =−∞A (j )X (n −j )+f (n ).(1)where A (j )∈C n ×n ,X (n )∈C n ,f ∈l N ={{φ(n )}|φ(n +N )=φ(n ),},N ≥1is positive integer.Lemma 1Suppose that f (n )∈l N ,then f (n )can be uniquely expressed as f (n )=N −1 k =0ˆf(k )e µk n ,where ˆf(k )=1N,k ∈ω:={0,1,2,...,N −1}.Proof:Assume thatf (n )=N −1 k =0a (k )e µk n(2)hold,multiplying Eq.(2)by e −µj n and adding form 0to N-1,we obtainN −1 n =0f (n )e−µj n=N −1 n =0N −1 k =0a (k )e u k n e −u m n=N −1 k =0a (k )N −1 n =0e (µk −µj )n .Sincee (µk −µj )n =N k =j 0k =j,We haveN −1 n =0f (n )e −µm n =Na (k ),Hencea (k )=1NN −1 n =0|f (n )|2.中国科技论文在线___________________________________________________________________________Proof:Since f(n)=N−1k=0ˆf(k)eµk n,we have|f(n)|2=<f(n),f(n)>=<N−1k=0ˆf(k)eµk n,N−1 l=0ˆf(k)>e(µk−µl)n,ThenN−1n=0|f(n)|2=N−1 k,l=0ˆf(k)N N−1 n=0|f(n)|2.and the proof is complete.Theorem1Eq.(1)has a unique N-periodic solution if and only if eµk are not roots of the characteristic equationdet∆(µ)=0.µk=2kπN N−1n=0ˆx(k)eµk n,andf(n)=1Since linear equation∆(e µk )y =ˆf(k )(4)has solutions,assume that Eq.(4)has a unique solution ,thendet ∆(e µk )=0.(5)Assume that Eq.(4)has many solutions,let ˆy (k )is other solution of Eq.(4),It is immediate thaty (n )=N −1k =0ˆy (k )e µk n satisfy the following equationy (n +1)=+∞j =−∞A (j )y (n −j )+N −1 k =0ˆf(k )e µk n .(6)In addition,x (n )=N −1 k =0ˆx (k )e µk n also satisfy the following equation x (n +1)=+∞j =−∞A (j )x (n −j )+N −1 k =0ˆf(k )e µk n .(7)Let Eq.(6)subtract Eq.(7),we obtaing (n +1)=+∞j =−∞A (j )g (n −j ),(8)where g (n )=x (n )−y (n ).Since Eq.(1)has a unique solution ,then the corresponding homogeneous linear Eq.(8)has a unique null solution,therefore Eq.(5)hold,that is ,e u k are not roots of the characteristic equation det ∆(µ)=0.On the other hand ,assume that det ∆(e µk )=0hold to each k ∈ω,then for every certain k ,linear Eq.(4)has a unique solution.That is ,to each k ∈ω,Eq.(4)uniquely define a c (k )such that∆(e µk )c (k )=ˆf(k ).(9)It is obvious thatz (n )=N −1 k =0c (k )e µk n satisfy Eq.(7).Let φ(n )=N −1 k =0β(k )e µk n is other solu-tion of Eq.(7),then φ(n )−z (n )is a solution of the corresponding homogeneous linear Eq.(8),Since det ∆(e µk )=0,hence Eq.(8)has a unique null solution,then φ(n )=z (n ),that is ,z (n )is the unique N-periodic solution of Eq.(8).By Lemma 1,it is easy to know that Eq.(7)is the equivalent equation of Eq.(1),hencez (n )=N −1 k =0c (k )e µk n is the unique N-periodic solution of Eq.(1).and the proof is complete.Next,We prove a more general result giving a necessary and sufficient condition for the existenceof N-petiodic solutions also in the general case when det ∆(e µk )=0for some integers.That is,Theorem 2Eq.(1)has a N-periodic solution if and only if f (n )∈l N (E ).where A (K )={a ∈C n ∗|a ∆(e µk )=0},(k ∈ω),C n ∗is the space of n-dimension row vector ,l N (E )={f ∈l N |a ˆf (k )=0for all a ∈A (K ),k ∈ω}.ProofFirst assume that x (n )is a N-periodic solution of Eq.(1).Multiplying Eq.(1)by e −µk nand summing from 0to N-1,we obtain∆(e µk )ˆx (k )=ˆf(k ),中国科技论文在线___________________________________________________________________________that is,linear equation Eq.(4)has solutions.From elementary linear algebra,Eq.(4)has solutions if and only if aˆf(k)=0for all a∈A(K) such that a∆(µk)=0.Thus,the existence of a N-periodic solution of Eq.(1)implies f n∈l N(E).On the other hand,Now assume that f(n)∈l N(E),then Eq.(4)has solutions.Choose c(k)such that∆(eµk)c(k)=ˆf(k).It is obvious that z(n)=N−1k=0c(k)eµk n is the N-periodic solution ofx(n+1)=+∞j=−∞A(j)x(n−j)+N−1 k=0ˆf(k)eµk n.By Lemma1,Eq.(1)and Eq.(7)have same solutions,hence N−1k=0c(k)eµk n is N-periodic solution ofEq.(1).Therefore if f n∈l N(E),then Eq.(1)has at least one N-periodic solution.and the proof is complete.Finally,we consider the quasilinear delay difference equationsX(n+1)=+∞j=−∞A(j)X(n−j)+G(n,X(n+·)),(10)where A(j)∈C n×n,X(n)∈C n,G is N-periodic with respect to itsfirst variable n,and G maps bounded set to bounded set.Let|·|denote any norm of C n,for any matrix D∈C n×n,|D|denotes operator norm induced by the norm in C n.From theorem1,we know that Equation(1)has a unique N-periodic solution if and only if det∆(eµk)=0for all k∈ω,at the same time,x(n)can be expressed as followingx(n)=N−1k=0∆−1(eµk)ˆf(k)eµk n.(11)On Eq.(10),we haveTheorem3Assume that det∆(eµk)=0,for each k∈ω,G(n,ϕ)satisflies Lipschitz condition for ϕ∈l N,and Lipschitz constant L such thatL2N−1k=0|∆−1(eµk)|2<1,(12)Then Eq.(10)has a unique N-periodic solution.Considering the operator E:l N→l N defined byEf(n)=N−1k=0∆−1(eµk)ˆf(k)eµk n.(13)Then it is easy to know Ef(n)is the unique N-periodic solution od Eq.(1).Lemma3Assume that E:l N→l N is the operator defined by Eq.(13),then E is a linear operator ,andE ≤(N−1k=0|∆−1(eµk)|2)1where E is the norm of the operator E.Proof It is obvious that the operator E is linear operator.By lemma2and Cauchy inequality,we have1N N−1n=0|f(n)|2 N−1 k=0|∆−1(eµk)|2 .HenceN−1n=0|Ef(n)|2≤ N−1 n=0|f(n)|2 N−1 k=0|∆−1(eµk)|2 . SinceE =supf=0|Ef|22,Then E ≤ N−1 k=0|∆−1(eµk)|2 12f1−f2 ,Then,by(12),T:l N→l N is a contraction mapping.By contraction mapping principle,T has a uniquefixed point f∗in l N.Hence,Ef∗is the unique N-periodic solution of Eq.(10).and the proof is complete.Reference[1]L.Hatvani,T.Krisztin.On the existence of periodic solutions for linear inhomogeneous and quasi-linear functional differential equations[J].J.Diff.Eqns.,97(1992),1-15.[2]Ma,S.W.,Yu,J.S.Wang,Z.C.,.On the existence and uniquence of periodic solutions for quasilinearfunctional differential equations[J].22A(1)(2001):105-110.[3]Wang,L.,Wang,M.Q..Orinary difference equation[M].Wu Lu Mu Qi:Xin Qiang University press,1991,208-223.[4]Ma,S.W.,Yu,J.S.Wang,Z.C.,Semilinear equations at resonance with the kernel of an arbitrarydimensions[J],Tohoku Math.J.50(1998),513-529.[5]Elaydi.S..Periodicity and stability of linear volterra,difference systems[J].J.Math Anal Appl,181(1994):483-492.[6]San,L.J.,Periodic solutions on high dimension nonautonomous system[J].Journal of Boomathematics,11(2)(1996):17-25.(410083)LIU Xinbi(410083)X n+1=+∞j=−∞A j X n−j+f(n,x(n+·))X(n+1)=+∞j=−∞A j X n−j+G(n,X(n+·)),KeywordsSubject Classification O175.14。