高三数学一轮复习讲座一集合与简易逻辑
- 格式:doc
- 大小:130.50 KB
- 文档页数:6
高考数学一轮总复习:第一章集合与简易逻辑第1课时集合1.下列各组集合中表示同一集合的是( )A.M={(3,2)},N={(2,3)}B.M={2,3},N={3,2}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={2,3},N={(2,3)}答案 B2.若A={0,1,2,3},B={x|x=3a,a∈A},则A∩B=( ) A.{1,2} B.{0,1}C.{0,3} D.{3}答案 C解析B={x|x=3a,a∈A}={0,3,6,9},所以A∩B={0,3}.3.设集合M={x|x2=x},N={x|lgx≤0},则M∪N=( ) A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]答案 A解析集合M={0,1},集合N={x|0<x≤1},M∪N={x|0≤x≤1},所以M∪N=[0,1].4.若A={x|x2-2x<0},B={x|1x≤1},则A∩B=( )A.(0,1) B.(0,2) C.(1,2) D.[1,2) 答案 D解析因为A={x|x2-2x<0}={x|0<x<2},B={x|1x≤1}={x|x≥1或x<0},所以A∩B={x|1≤x<2}.5.已知m∈A,n∈B,且集合A={x|x=2a,a∈Z},B={x|x=2b+1,b∈Z},C={x|x=4c+1,c∈Z},则有( )A.m+n∈A B.m+n∈BC.m+n∈C D.m+n不属于A,B,C中任意一个集合答案 B解析∵m∈A,∴设m=2a1,a1∈Z,又n∈B,∴设n=2b1+1,b1∈Z,∴m+n=2(a1+b1)+1,而a1+b1∈Z,∴m+n∈B,故选B.6.已知集合A={x∈N|πx<16},B={x|x2-5x+4<0},则A∩(∁R B)的真子集的个数为( )A.1 B.3C.4 D.7答案 B解析因为A={x∈N|πx<16}={0,1,2},B={x|x2-5x+4<0}={x|1<x<4},故∁R B={x|x≤1或x≥4},故A∩(∁R B)={0,1},故A∩(∁R B)的真子集的个数为22-1=3,故选B.7.设集合A={x||x-1|<2},B={y|y=2x,x∈[0,2]},则A∩B=( ) A.[0,2] B.(1,3)C.[1,3) D.(1,4)答案 C解析|x-1|<2⇔-2<x-1<2,故-1<x<3,即集合A=(-1,3).根据指数函数的性质,可得集合B=[1,4].所以A∩B=[1,3).8.已知实数集R,集合A={x|log2x<1},B={x∈Z|x2+4≤5x},则(∁R A)∩B =( )A.[2,4] B.{2,3,4}C.{1,2,3,4} D.[1,4]答案 B解析由log2x<1,解得0<x<2,故A=(0,2),故∁R A=(-∞,0]∪[2,+∞),由x2+4≤5x,即x2-5x+4≤0,解得1≤x≤4,又x∈Z,所以B={1,2,3,4}.故(∁R A)∩B={2,3,4}.故选B.9.若全集U=R,集合A={x|1<2x<4},B={x|x-1≥0},则A∩(∁UB)=( )A.{x|1<x<2} B.{x|0<x≤1}C.{x|0<x<1} D.{x|1≤x<2}答案 C解析由题意知,A={x|0<x<2},B={x|x≥1},∁UB={x|x<1},所以A∩(∁UB)={x|0<x<1}.10.已知全集U为R,集合A={x|x2<16},B={x|y=log3(x-4)},则下列关系正确的是( )A.A∪B=R B.A∪(∁UB)=RC.(∁U A)∪B=R D.A∩(∁UB)=A答案 D解析因为A={x|-4<x<4},B={x|x>4},所以∁UB={x|x≤4},所以A∩(∁UB)=A,故选D.11.已知集合A={x|x>2},B={x|x<2m,m∈R}且A⊆∁R B,那么m的值可以是( )A.1 B.2C.3 D.4答案 A解析由B={x|x<2m,m∈R},得∁R B={x|x≥2m,m∈R}.因为A⊆∁R B,所以2m≤2,m≤1,故选A.12.已知集合A={x|1<x<k},集合B={y|y=2x-5,x∈A},若A∩B={x|1<x<2},则实数k的值为( )A.5 B.4.5C.2 D.3.5答案 D解析B=(-3,2k-5),由A∩B={x|1<x<2},知k=2或2k-5=2,因为k=2时,2k-5=-1,A∩B=∅,不合题意,所以k=3.5,故选D.13.已知函数f(x)的图像如图所示,设集合A={x|f(x)>0},B={x|x2<4},则A∩B=( )A.(-2,-1)∪(0,2) B.(-1,1)C .(-2,-1)∪(1,2)D .(-∞,3)答案 C解析 由题意可得A =(-∞,-1)∪(1,3),B =(-2,2),所以A∩B=(-2,-1)∪(1,2).14. 集合A ={0,|x|},B ={1,0,-1},若A ⊆B ,则A∩B=________,A ∪B =________,∁B A =________.答案 {0,1} {1,0,-1} {-1}解析 因为A ⊆B ,所以|x|∈B,又|x|≥0,结合集合中元素的互异性,知|x|=1,因此A ={0,1},则A∩B={0,1},A ∪B ={1,0,-1},∁B A ={-1}.15.设全集U =A∪B={x∈N *|lgx<1},若A∩(∁U B)={m|m =2n +1,n =0,1,2,3,4},则集合B =________.答案 {2,4,6,8}解析 U ={1,2,3,4,5,6,7,8,9},A ∩(∁U B)={1,3,5,7,9},∴B ={2,4,6,8}.16. 已知集合A ={x|log 2x<1},B ={x|0<x<c},(c>0).若A∪B=B ,则c 的取值范围是________.答案 [2,+∞)解析 A ={x|0<x<2},由数轴分析可得c≥2.17.已知集合P ={x|a +1≤x≤2a+1},Q ={x|x 2-3x≤10}. (1)若a =3,求(∁R P )∩Q;(2)若P∪Q=Q ,求实数a 的取值范围. 答案 (1){x|-2≤x<4} (2)(-∞,2]解析 (1)因为a =3,所以P ={x|4≤x≤7},∁R P ={x|x<4或x>7}.又Q ={x|x 2-3x -10≤0}={x|-2≤x≤5},所以(∁R P )∩Q={x|x<4或x>7}∩{x|-2≤x≤5}={x|-2≤x<4}.(2)由P∪Q=Q ,得P ⊆Q.当P≠∅时,有⎩⎨⎧a +1≥-2,2a +1≤5,2a +1≥a+1,解得0≤a≤2;当P =∅,即2a +1<a +1时,有P ⊆Q ,得a<0.综上,实数a 的取值范围是(-∞,2].18.已知集合A ={x|1<x<3},集合B ={x|2m<x<1-m}. (1)若A ⊆B ,求实数m 的取值范围;(2)若A∩B=(1,2),求实数m 的取值范围; (3)若A∩B=∅,求实数m 的取值范围.答案 (1)(-∞,-2] (2)m =-1 (3)[0,+∞)解析(1)由A ⊆B ,得⎩⎨⎧1-m>2m ,2m ≤1,1-m≥3,得m≤-2,即实数m 的取值范围为(-∞,-2]. (2)由已知,得⎩⎨⎧2m≤1,1-m =2⇒⎩⎨⎧m ≤12,m =-1,∴m =-1.(3)由A∩B=∅,得①若2m≥1-m ,即m≥13时,B =∅,符合题意;②若2m<1-m ,即m<13时,需⎩⎨⎧m<13,1-m≤1或⎩⎨⎧m<13,2m ≥3,得0≤m<13或∅,即0≤m<13.综上知m≥0,即实数m 的取值范围为[0,+∞).第2课时 命题及其关系、充分条件与必要条件1. 命题“若x 2<1,则-1<x<1”的逆否命题是( ) A .若x 2≥1,则x≥1或x≤-1 B .若-1<x<1,则x 2<1 C .若x>1或x<-1,则x 2>1 D .若x≥1或x≤-1,则x 2≥1 答案 D解析原命题的逆否命题是把条件和结论都否定后,再交换位置,注意“-1<x<1”的否定是“x≥1或x≤-1”.2.命题“若m>-1,则m>-4”以及它的逆命题、否命题、逆否命题中,假命题的个数为( )A.1 B.2C.3 D.4答案 B解析原命题为真命题,从而其逆否命题也为真命题;逆命题“若m>-4,则m>-1”为假命题,故否命题也为假命题,故选B.3.命题“若x2+y2=0,则x=y=0”的否命题是( )A.若x2+y2=0,则x,y中至少有一个不为0B.若x2+y2≠0,则x,y中至少有一个不为0C.若x2+y2≠0,则x,y都不为0D.若x2+y2=0,则x,y都不为0答案 B解析否命题既否定条件又否定结论.4.下列命题中为真命题的是( )A.命题“若x>y,则x>|y|”的逆命题B.命题“若x2≤1,则x≤1”的否命题C.命题“若x=1,则x2-x=0”的否命题D.命题“若a>b,则1a<1b”的逆否命题答案 A解析A中原命题的逆命题是“若x>|y|,则x>y”,由x>|y|≥y可知其是真命题;B中原命题的否命题是“若x2>1,则x>1”,是假命题,因为x2>1⇔x>1或x<-1;C中原命题的否命题是“若x≠1,则x2-x≠0”,是假命题;D中原命题的逆命题是“若1a≥1b,则a≤b”是假命题,举例:a=1,b=-1,故选A.5.若命题p的否命题是命题q的逆否命题,则命题p是命题q的( ) A.逆命题B.否命题C.逆否命题D.p与q是同一命题答案 A解析设p:若A,则B,则p的否命题为若綈A,则綈B,从而命题q为若B,则A,则命题p是命题q的逆命题,故选A.6.设有下面四个命题:p 1:若复数z满足1z∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=z2;p 4:若复数z∈R,则z-∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4答案 B解析对于p1,由1z∈R,即z-z·z-∈R得z-|z|2∈R,∴z-∈R,∴z∈R.故p1为真命题.对于p2,显然i2=-1,但i∉R.故p2为假命题.对于p3,若z1=1,z2=2,则z1z2=2,满足z1z2∈R,而它们的实部不相等,不是共轭复数.故p3为假命题.对于p4,z∈R,则z-∈R.故p4为真命题,故选B.7.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处截面的面积恒相等,则体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析p⇒q,而q p,∴选A.8.“α=π6+2kπ(k∈Z )”是“cos2α=12”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 由α=π6+2kπ(k∈Z ),知2α=π3+4kπ(k∈Z ),则cos2α=cosπ3=12成立, 当cos2α=12时,2α=2kπ±π3,即α=kπ±π6(k∈Z ),故选A.9. “1x >1”是“e x -1<1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 ∵1x >1,∴x ∈(0,1).∵e x -1<1,∴x<1.∴“1x>1”是“e x -1<1”的充分不必要条件.10. 设a ,b ∈R ,则“a>b”是“a|a|>b|b|”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 C解析 构造函数f(x)=x|x|,则f(x)在定义域R 上为奇函数.因为f(x)=⎩⎨⎧x 2,x ≥0,-x 2,x <0,所以函数f(x)在R 上单调递增,所以a>b ⇔f(a)>f(b)⇔a|a|>b|b|.选C.11. “(m-1)(a -1)>0”是“log a m>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件答案 B解析 (m -1)(a -1)>0等价于⎩⎨⎧m>1,a>1或⎩⎨⎧m<1,a<1,而log a m>0等价于⎩⎨⎧m>1,a>1或⎩⎨⎧0<m<1,0<a<1,所以条件具有必要性,但不具有充分性,比如m =0,a =0时,不能得出log a m>0,故选B.12. 命题“对任意x∈[1,2),x 2-a≤0”为真命题的一个充分不必要条件可以是( )A .a ≥4B .a>4C .a ≥1D .a>1答案 B解析 由题意知a≥x 2,对x∈[1,2)恒成立,当x∈[1,2)时,1≤x 2<4,则a≥4.从而a>4是命题为真的一个充分不必要条件.13.若不等式13<x<12的必要不充分条件是|x -m|<1,则实数m 的取值范围是( )A .[-43,12]B .[-12,43]C .(-∞,12)D .(43,+∞)答案 B解析 由|x -m|<1,解得m -1<x<m +1.因为不等式13<x<12的必要不充分条件是|x -m|<1,所以⎩⎪⎨⎪⎧m -1≤13,12≤m +1,且等号不能同时取得,解得-12≤m ≤43,故选B.14. 若“x>1”是“不等式2x >a -x 成立”的必要而不充分条件,则实数a 的取值范围是( )A .a>3B .a<3C .a>4D .a<4 答案 A解析 若2x >a -x ,即2x +x>a.设f(x)=2x +x ,则函数f(x)为增函数.由题意知“2x +x>a 成立,即f(x)>a 成立”能得到“x>1”,反之不成立.因为当x>1时,f(x)>3,∴a>3.15.(1)“x>y>0”是“1x <1y ”的________条件.(2)“tanθ≠1”是“θ≠π4”的________条件.答案 (1)充分不必要 (2)充分不必要 解析 (1)1x <1y ⇒xy ·(y -x)<0,即x>y>0或y<x<0或x<0<y. (2)题目即判断θ=π4是tanθ=1的什么条件,显然是充分不必要条件. 16. 下列不等式:①x<1;②0<x<1;③-1<x<0;④-1<x<1.其中可以作为“x 2<1”的一个充分条件的所有序号为________. 答案 ②③④17.设命题p :2x -1x -1<0,命题q :x 2-(2a +1)x +a(a +1)≤0,若p 是q 的充分不必要条件,求实数a 的取值范围.答案 [0,12]解析 2x -1x -1<0⇒(2x -1)(x -1)<0⇒12<x<1,x 2-(2a +1)x +a(a +1)≤0⇒a ≤x ≤a +1, 由题意得(12,1)[a ,a +1],故⎩⎨⎧a ≤12,a +1≥1,解得0≤a≤12.第3课时 逻辑联结词与量词1.下列命题中的假命题是( )A.∀x∈R,e x-1>0 B.∀x∈N*,(x-1)2>0 C.∃x∈R,lnx<1 D.∃x∈R,tanx=2答案 B解析因为当x=1时,(x-1)2=0,所以B为假命题,故选B.2.命题“∃x0∈∁RQ,x3∈Q”的否定是( )A.∃x0∉∁RQ,x3∈Q B.∃x∈∁RQ,x3∈QC.∀x∉∁R Q,x3∈Q D.∀x∈∁RQ,x3∉Q答案 D解析该特称命题的否定为“∀x∈∁RQ,x3∉Q”.3.命题“∀x∈R,f(x)·g(x)≠0”的否定是( )A.∀x∈R,f(x)=0且g(x)=0 B.∀x∈R,f(x)=0或g(x)=0C.∃x0∈R,f(x)=0且g(x)=0 D.∃x∈R,f(x)=0或g(x)=0答案 D解析根据全称命题与特称命题的互为否定的关系可得:命题“∀x∈R,f(x)g(x)≠0”的否定是“∃x0∈R,f(x)=0或g(x)=0”.故选D.4.若命题p:x∈A∩B,则綈p:( )A.x∈A且x∉B B.x∉A或x∉BC.x∉A且x∉B D.x∈A∪B答案 B5.下列命题的否定是真命题的是( )A.有些实数的绝对值是正数B.所有平行四边形都不是菱形C.任意两个等边三角形都是相似的D.3是方程x2-9=0的一个根答案 B6.已知命题p,q,“綈p为真”是“p∧q为假”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析因为綈p为真,所以p为假,那么p∧q为假,所以“綈p为真”是“p∧q为假”的充分条件;反过来,若“p∧q为假”,则“p真q假”或“p假q真”或“p假q假”,所以由“p∧q为假”不能推出綈p为真.综上可知,“綈p为真”是“p∧q为假”的充分不必要条件.7.设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则( )A.綈p:∀x∈A,2x∉B B.綈p:∀x∉A,2x∉BC.綈p:∃x∉A,2x∈B D.綈p:∃x∈A,2x∉B答案 D解析因全称命题的否定是特称命题,故命题的否定为綈p:∃x∈A,2x∉B.故选D.8.已知集合A={y|y=x2+2},集合B={x|y=lg x-3},则下列命题中真命题的个数是( )①∃m∈A,m∉B;②∃m∈B,m∉A;③∀m∈A,m∈B;④∀m∈B,m∈A.A.4 B.3C.2 D.1答案 C解析因为A={y|y=x2+2},所以A={y|y≥2},因为B={x|y=lg x-3},所以B={x|x>3},所以B是A的真子集,所以①④为真,②③为假命题,所以真命题的个数为2,故选C.9.下列4个命题中,其中的真命题是( )p 1:∃x∈(0,+∞),(12)x<(13)xp2:∃x∈(0,1),log12x>log13xp 3:∀x∈(0,+∞),(12)x<log12xp 4:∀x∈(0,13),(12)x<log13xA.p1,p3B.p1,p4C.p2,p3D.p2,p4答案 D解析 p 1,p 2为存在性命题,所以只要找到符合条件的x 即可.p 1可作出y =(12)x ,y =(13)x 的图像,通过观察发现找不到符合条件的x ;p 2同样作图可得∀x ∈(0,1),log 12x>log 13x ,所以p 2正确;p 3通过作图可发现图像中有一部分(12)x <log 12x ,所以p 3错误;在p 4中,可得当x∈(0,13)时,(12)x <(12)0=1,log 13x>log 13(13)=1,所以(12)x<1<log 13x ,p 4正确.综上可得:p 2,p 4正确.10.已知命题p :∃x 0∈R ,mx 02+1≤0;命题q :∀x ∈R ,x 2+mx +1>0.若p∨q 为假命题,则实数m 的取值范围为( )A .{m|m ≥2}B .{m|m ≤-2}C .{m|m ≤-2或m≥2}D .{m|-2≤m≤2}答案 A解析 由p :∃x ∈R ,mx 2+1≤0,可得m<0;由q :∀x ∈R ,x 2+mx +1>0,可得Δ=m 2-4<0,解得-2<m<2.因为p∨q 为假命题,所以p 与q 都是假命题,若p 是假命题,则有m≥0;若q 是假命题,则有m≤-2或m≥2,故实数m 的取值范围为{m|m≥2}.故选A.11. 已知命题p :∃x ∈R ,lnx +x -2=0,命题q :∀x ∈R ,2x ≥x 2,则下列命题中为真命题的是( )A .p ∧qB .綈p∧qC .p ∧(綈q)D .綈p∧(綈q) 答案 C解析 分别判断p ,q 真假,令f(x)=lnx +x -2,可得f(1)f(2)<0.由零点存在性定理可知∃x ∈(1,2),使得f(x)=lnx +x -2=0,p 为真;通过作图可判断出当x∈(2,4)时,2x <x 2,故q 为假:结合选项可得:p∧(綈q)为真.12. 不等式组⎩⎨⎧x +y≥1,x -2y≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D,x +2y≥-2; p 2:∃(x ,y)∈D,x +2y≥2; p 3:∀(x ,y )∈D,x +2y≤3;p 4:∃(x ,y )∈D,x +2y≤-1.其中的真命题是( )A.p2,p3B.p1,p4C.p1,p2D.p1,p3答案 C解析画出可行域如图所示中阴影部分,由图可知,当目标函数z=x+2y经过可行域内的点A(2,-1)时,z取得最小值0,故x+2y≥0,因此p1,p2是真命题,选C.13.若命题p的否定是“对所有正数x,x>x+1”,则命题p是________.答案∃x0∈(0,+∞),x≤x+114.已知p:1x2-x-2>0,则綈p对应的x的集合为________.答案{x|-1≤x≤2}解析p:1x2-x-2>0⇔x>2或x<-1,∴綈p:-1≤x≤2.注:本题若利用綈p:1x2-x-2≤0求解会致误.15.已知命题“∀x∈R,sinx-a≥0”是真命题,则a的取值范围是________.答案(-∞,-1]解析由题意,对∀x∈R,a≤sinx成立.由于对∀x∈R,-1≤sinx≤1,所以a≤-1.16.若命题“∃x0∈R,x2+(a-1)x+1≤0”为假命题,则实数a的取值范围为________.答案(-1,3)解析由“∃x0∈R,x2+(a-1)x+1≤0”为假命题,得“∀x∈R,x2+(a-1)x+1>0”为真命题,所以Δ=(a-1)2-4<0,解得-1<a<3,所以a的取值范围为(-1,3).x-a≥0”,q:“存在x∈R,x2 17.已知p:“对任意的x∈[2,4],log2+2ax+2-a=0”.若p,q均为命题,而且“p且q”是真命题,求实数a的取值范围.答案a≤-2或a=1解析p:a≤1,q:4a2-4(2-a)≥0,即a≤-2或a≥1.因为p且q是真命题,所以a≤-2或a=1.。
高三数学第一轮复习集合及简易逻辑 集合的概念一一.教学目标:理解集合、子集的概念,能利用集合中元素的性质解决问题,掌握集合问题的常规处理方法.二.教学重点:集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用.三.教学过程:(一)主要知识:1.集合、子集、空集的概念;2.集合中元素的3个性质,集合的3种表示方法;3.若有限集A 有n 个元素,则A 的子集有2n 个,真子集有21n -,非空子集有21n -个,非空真子集有22n-个.(二)主要方法:1.解决集合问题,首先要弄清楚集合中的元素是什么;2.弄清集合中元素的本质属性,能化简的要化简;3.抓住集合中元素的3个性质,对互异性要注意检验;4.正确进行“集合语言”和普通“数学语言”的相互转化.(三)例题分析:例1.已知集合2{1}P y x ==+,2{|1}Q y y x ==+,2{|1}E x y x ==+,2{(,)|1}F x y y x ==+,{|1}G x x =≥,则 ( D )()A P F =()B Q E =()C E F =()D Q G =解法要点:弄清集合中的元素是什么,能化简的集合要化简.例2.设集合{},,P x y x y xy =-+,{}2222,,0Q x y x y =+-,若P Q =,求,x y 的值及集合P 、Q . 解:∵P Q =且0Q ∈,∴0P ∈.(1)若0x y +=或0x y -=,则220x y -=,从而{}22,0,0Q x y =+,与集合中元素的互异性矛盾,∴0x y +≠且0x y -≠;(2)若0xy =,则0x =或0y =.当0y =时,{},,0P x x =,与集合中元素的互异性矛盾,∴0y ≠;当0x =时,{,,0}P y y =-,22{,,0}Q y y =-,由P Q =得220y y y y y -=⎧⎪=-⎨≠⎪⎩① 或220y y y y y -=-⎧⎪=⎨≠⎪⎩② 由①得1y =-,由②得1y =,∴{01x y ==-或{01x y ==,此时{1,1,0}P Q ==-.例3.设集合1{|,}24k M x x k Z ==+∈, 1{|,}42k N x x k Z ==+∈,则 ( B ) ()A M N =()B M N ⊂≠()C M N ⊇()D MN φ= 解法一:通分; 解法二:从14开始,在数轴上表示. 例4.若集合{}2|10,A x x ax x R =++=∈,集合{}1,2B =,且A B ⊆,某某数a 的取值X 围. 解:(1)若A φ=,则240a ∆=-<,解得22a -<<;(2)若1A ∈,则2110a ++=,解得2a =-,此时{1}A =,适合题意;(3)若2A ∈,则22210a ++=,解得52a =-,此时5{2,}2A =,不合题意; 综上所述,实数m 的取值X 围为[2,2)-.(四)巩固练习:1.已知2{|2530}M x x x =--=,{|1}N x mx ==,若N M ⊆,则适合条件的实数m 的集合P 为1{0,2,}3-;P 的子集有8个;P 的非空真子集有6个.2.已知:2()f x x ax b =++,{}{}|()22A x f x x ===,则实数a 、b 的值分别为2,4-. 3.调查100名携带药品出国的旅游者,其中75人带有感冒药,80人带有胃药,那么既带感冒药又带胃药的人数的最大值为 75 ,最小值为 55 .4.设数集3{|}4M x m x m =≤≤+,1{|}3N x n x n =-≤≤,且M 、N 都是集合{|01}x x ≤≤的子集,如果把b a -叫做集合{}|x a x b ≤≤的“长度”,那么集合M N 的长度的最小值是112. 四.课后作业:《自我测试A 》1,教学与测试1.五.教学后记: 虽已是高三的学生,数学的基础还是很单薄,对集合的概念知道但不会灵活应用,特别是集合元素的三要素大家都知道,但一做题目还是不行。
集合与简易逻辑考点一:集合(一)知识清单1. 集合的含义及其关系1.集合中的元素具有的三个性质:确定性、无序性和互异性;2.集合的3种表示方法:列举法、描述法、韦恩图;3.集合中元素与集合的关系:文字语言符号语言属于∈不属于∉4.常见集合的符号表示数集自然数集正整数集整数集有理数集实数集复数集符号N*N或+N Z Q R C2:集合间的基本关系关系文字语言符号语言相等集合A与集合B中的所有元素都相同BA⊆且A⊆B⇔BA=子集A中任意一元素均为B中的元素BA⊆或AB⊇真子集A中任意一元素均为B中的元素,且B中至少有一元素不是A的元素A B空集空集是任何集合的子集,是任何非空集合的真子集A⊆φ,φB(φ≠B)若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有真子集的个数是n 2-1, 所有非空真子集的个数是22-n 3:集合的基本运算 1.两个集合的交集:A B = {}x x A x B ∈∈且; 2.两个集合的并集: AB ={}x x A x B ∈∈或;3.设全集是U,集合A U ⊆,则U C A ={}x x U x A ∈∉且4:方法指导1.对于集合问题,要首先确定属于哪类集合(数集、点集或某类图形),然后确定处理此类问题的方法.2.关于集合的运算,一般应把各参与运算的集合化到最简,再进行运算.3.含参数的集合问题,多根据集合元素的互异性来处理.4.集合问题多与函数、方程、不等式有关,要注意各类知识的融会贯通.解决问题时常用数形结合、分类讨论等数学思想.5.强化数形结合、分类讨论的数学思想.(二) 典型例题分析题型一:集合的概念例1、 已知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-=的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有( )A. 3个B. 2个C. 1个D. 无穷多个 变式:下面四个命题正确的是( )(A )10以内的质数集合是{1,3,5,7} (B )方程x 2-4x +4=0的解集是{2,2} (C )0与{0}表示同一个集合(D )由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}题型二:集合的性质例2、 集合{}0,2,A a =,{}21,B a=,若{}0,1,2,4,16AB =,则a 的值为 ( )A.0B.1C.2D.4例3、 例3.设全集U=R ,A={x ∈N ︱1≤x ≤10},B={ x ∈R ︱x 2+ x -6=0},则下图中阴影表示的集合为 ( )A .{2}B .{3}C .{-3,2}D .{-2,3}例4、 已知全集32{1,3,2}S x x x =--,A ={1,21x -}如果}0{=A C S ,则这样的实数x 是否存在?若存在,求出x ,若不存在,说明理由题型三:集合的运算例5、 已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则N A C B = ( )A.}{1,5,7B.}{3,5,7 C.}{1,3,9 D.}{1,2,3变式:1. 若集合121log 2A x x ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭≥,则R C A =( )A.(]2,0(,)2-∞⋃+∞B.2(,)2+∞C.(]2,0,2⎡⎫-∞⋃+∞⎪⎢⎪⎣⎭D.2,2⎡⎫+∞⎪⎢⎪⎣⎭ 2. 设集合P={m|-1<m ≤0},Q={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立},则下列关系中成立的是 ( )A.P QB.Q PC.P=QD.P ∩Q=Q 3.若{U n n =是小于9的正整数},{A n U n =∈是奇数},{B n U n =∈是3的倍数},则()UAB = .4.若{}3A x R x =∈<,{}21xB x R =∈>,则A B = .5.已知集合{1,1}M =-,11{|24,}2x N x x Z +=<<∈,则M N =( ).A. {1,1}-B. {0}C. {1}-D. {1,0}-6.设集合2{|log 1}A x x =<,1{|0}2x B x x -=<+,则A B =例6、 已知函数()f x =的定义域集合是A,函数22()lg[(21)]g x x a x a a =-+++的定义域集合是B(1)求集合A 、B(2)若A U B=B,求实数a 的取值范围.题型四:图解法解集合问题例7、 已知集合M=⎭⎬⎫⎩⎨⎧=+149|22y x x ,N=⎭⎬⎫⎩⎨⎧=+123|y x y ,则=N M ( ) A .∅B .)}0,2(),0,3{(C .]3,3[-D .{}2,3变式 1.已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且1}x y +=,则A B 的元素个数为( ).A.4B.3C.2D.1变式2. 设集合()22{,|1}416x y A x y =+=,{(,)|3}x B x y y ==,则A B ⋂的子集的个数是( )A .4B .3C .2D .1例8、 设集合A ={x ||x -a |<2},B ={x |212+-x x <1},若A ⊆B ,求实数a 的取值范围。
知识点总结1 集合与简易逻辑一、集合(一)元素与集合1.集合的含义某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象.2.集合元素的特征(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素.(2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现.(3)无序性:集合与其组成元素的顺序无关.3.元素与集合的关系元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ∉)两种.4.集合的常用表示法集合的常用表示法有列举法、描述法、图示法(韦恩图).5.常用数集的表示 数集 自然数集 正整数集 整数集 有理数集 实数集符号 NN ∗或N + Z Q R (二)集合间的基本关系1.集合A 为集合B 的子集 ,记作A B ⊆(或B A ⊇),读作“A 包含于B ”(或“B 包含A ”).(2)真子集:若A B ⊆,且存在b B ∈,但b A ∉,则集合A 是集合B 的真子集,记作AB (或B A ⊃≠). 读作“A 真包含于B ”或“B 真包含A ”.(3)相等:对于两个集合A 与B ,如果A B ⊆,同时B A ⊆,那么集合A 与B 相等,记作A =B .(4)空集:把不含任何元素的集合叫做空集,记作∅;(三)集合的基本运算(1)交集:由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 与B 的交集,记作A B ⋂, 即{}|A B x x A x B ⋂=∈∈且.(2) 并集:由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作A B ⋃,(3) 即{}|A B x x A x B ⋃=∈∈或.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作U C A ,即{|,}U C A x x U x A =∈∉且.(四)集合的运算性质(1)集合的运算性质:①交换律:A ∪B =B ∪A ;A ∩B =B ∩A ;②结合律:(A ∪B )∪C =A ∪(B ∪C );(A ∩B )∩C =A ∩(B ∩C );③分配律:(A ∩B )∪C =(A ∪C )∩(B ∪C );(A ∪B )∩C =(A ∩C )∪(B ∩C );【集合常用结论】1.子集个数:含有n个元素的有限集合M,其子集个数为2n;其真子集个数为2n-1;其非空子集个数为2n-1;其非空真子集个数为2n-2.2. 是任何集合的子集,是任何非空集合的真子集.3.∁U(A∪B)=(∁U A)∩(∁U B);∁U(A∩B)=(∁U A)∪(∁U B);4.A∪B=A⇔B⊆A;A∩B=B⇔B⊆A.5.集合运算中的常用方法若已知的集合是不等式的解集,用数轴求解;若已知的集合是点集,用数形结合法求解;若已知的集合是抽象集合,用Venn图求解.二、简易逻辑(一).全称命题、特称(存在性)命题及其否定(1)全称命题p:∀x∈M,p(x),其否定为特称(存在性)命题:¬p:∃x0∈M,¬p(x0).(2)特称(存在性)命题p:∃x0∈M,p(x0),其否定为全称命题:¬p:∀x∈M,¬p(x).(二).充分条件与必要条件的判定方法(1)定义法:若p⇒q,则p是q的充分条件(或q是p的必要条件);若p⇒q,且q⇏p,则p是q的充分不必要条件(或q是p的必要不充分条件).(2)集合法:利用集合间的包含关系。
第05课时:第一章 集合与简易逻辑——简易逻辑一.课题:简易逻辑 二.教学目标:了解命题的概念和命题的构成;理解逻辑联结词“或”“且”“非”的含义;理解四种命题及其互相关系;反证法在证明过程中的应用.三.教学重点:复合命题的构成及其真假的判断,四种命题的关系.四.教学过程:(一)主要知识:1.理解由“或”“且”“非”将简单命题构成的复合命题;2.由真值表判断复合命题的真假;3.四种命题间的关系.(二)主要方法:1.逻辑联结词“或”“且”“非”与集合中的并集、交集、补集有着密切的关系,解题时注意类比;2.通常复合命题“或”的否定为“且”、“且”的否定为“或”、“全为”的否定是“不全为”、“都是”的否定为“不都是”等等;3.有时一个命题的叙述方式比较的简略,此时应先分清条件和结论,该写成“若,则”的形式;4.反证法中出现怎样的矛盾,要在解题的过程中随时审视推出的结论是否与题设、定义、定理、公理、公式、法则等矛盾,甚至自相矛盾.(三)例题分析:例1.指出下列命题的构成形式及构成它的简单命题,并判断复合命题的真假:(1)菱形对角线相互垂直平分.(2)“”解:(1)这个命题是“且”形式,菱形的对角线相互垂直;菱形的对角线相互平分,∵为真命题,也是真命题 ∴且为真命题.(2)这个命题是“或”形式,;,∵为真命题,是假命题 ∴或为真命题.注:判断复合命题的真假首先应看清该复合命题的构成形式,然后判断构成它的简单命题的真假,再由真值表判断复合命题的真假.例2.分别写出命题“若,则全为零”的逆命题、否命题和逆否命题.解:否命题为:若,则不全为零 逆命题:若全为零,则220x y +=逆否命题:若不全为零,则220x y +≠注:写四种命题时应先分清题设和结论.例3.命题“若,则有实根”的逆否命题是真命题吗?证明你的结论.解:方法一:原命题是真命题,∵0m >,∴,因而方程20x x m +-=有实根,故原命题“若0m >,则20x x m +-=有实根”是真命题;又因原命题与它的逆否命题是等价的,故命题“若0m >,则20x x m +-=有实根”的逆否命题是真命题.方法二:原命题“若0m >,则20x x m +-=有实根”的逆否命题是“若20x x m +-=无实根,则”.∵20x x m +-=无实根 ∴即,故原命题的逆否命题是真命题.例4.(考点6智能训练14题)已知命题:方程有两个不相等的实负根,命题:方程无实根;若或为真,且为假,求实数的取值范围.分析:先分别求满足条件和的的取值范围,再利用复合命题的真假进行转化与讨论. 解:由命题可以得到:∴ 由命题可以得到: ∴∵或为真,且为假 有且仅有一个为真 当为真,为假时, 当为假,为真时,所以,的取值范围为或.例5.(《高考A 计划》考点5智能训练第14题)已知函数对其定义域内的任意两个数,当时,都有,证明:至多有一个实根.解:假设()0f x =至少有两个不同的实数根,不妨假设,由方程的定义可知:即 由已知12x x <时,有这与式①矛盾因此假设不能成立故原命题成立.注:反证法时对结论进行的否定要正确,注意区别命题的否定与否命题.例6.(《高考A 计划》考点5智能训练第5题)用反证法证明命题:若整数系数一元二次方程:有有理根,那么中至少有一个是偶数,下列假设中正确的是( )A.假设,,a b c 都是偶数B.假设,,a b c 都不是偶数C.假设,,a b c 至多有一个是偶数D.假设,,a b c 至多有两个是偶数(四)巩固练习:1.命题“若不正确,则不正确”的逆命题的等价命题是 ( )A.若不正确,则不正确B. 若不正确,则正确C 若正确,则不正确 D. 若正确,则正确2.“若,则没有实根”,其否命题是 ( ) A 若,则20ax bx c ++=没有实根B 若240b ac ->,则20ax bx c ++=有实根C 若,则20ax bx c ++=有实根D 若240b ac -≥,则20ax bx c ++=没有实根内容总结(1)第05课时:第一章 集合与简易逻辑——简易逻辑一.课题: TC "§简易逻辑" 简易逻辑二.教学目标:了解命题的概念和命题的构成(2)2.由真值表判断复合命题的真假。
2010年高三一轮复习讲座一 ---- 集合与简易逻辑二、复习要求1、理解集合及表示法,掌握子集,全集与补集,子集与并集的定义;2、掌握含绝对值不等式及一元二次不等式的解法;3、理解逻辑联结词的含义,会熟练地转化四种命题,掌握反证法;4、理解充分条件,必要条件及充要条件的意义,会判断两个命题的充要关系;5、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。
三、学习指导1、集合的概念:(1)集合中元素特征,确定性,互异性,无序性;(2)集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。
如数集{y|y=x2},表示非负实数集,点集{(x,y)|y=x2}表示开口向上,以y轴为对称轴的抛物线;(3)集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N+={0,1,2,3,…};②描述法。
2、两类关系:(1)元素与集合的关系,用∈或∉表示;(2)集合与集合的关系,用⊆,≠⊂,=表示,当A⊆B时,称A是B的子集;当A≠⊂B时,称A是B的真子集。
3、集合运算(1)交,并,补,定义:A∩B={x|x∈A且x∈B},A∪B={x|x∈A,或x∈B},C U A={x|x ∈U,且x∉A},集合U表示全集;(2)运算律,如A∩(B∪C)=(A∩B)∪(A∩C),C U(A∩B)=(C U A)∪(C U B),C U(A∪B)=(C U A)∩(C U B)等。
4、命题:(1)命题分类:真命题与假命题,简单命题与复合命题;(2)复合命题的形式:p且q,p或q,非p;(3)复合命题的真假:对p且q而言,当q、p为真时,其为真;当p、q中有一个为假时,其为假。
对p或q而言,当p、q均为假时,其为假;当p、q中有一个为真时,其为真;当p为真时,非p为假;当p为假时,非p为真。
(3)四种命题:记“若q 则p ”为原命题,则否命题为“若非p 则非q ”,逆命题为“若q 则p “,逆否命题为”若非q 则非p “。
其中互为逆否的两个命题同真假,即等价。
因此,四种命题为真的个数只能是偶数个。
5、充分条件与必要条件(1)定义:对命题“若p 则q ”而言,当它是真命题时,p 是q 的充分条件,q 是p 的必要条件,当它的逆命题为真时,q 是p 的充分条件,p 是q 的必要条件,两种命题均为真时,称p 是q 的充要条件;(2)在判断充分条件及必要条件时,首先要分清哪个命题是条件,哪个命题是结论,其次,结论要分四种情况说明:充分不必要条件,必要不充分条件,充分且必要条件,既不充分又不必要条件。
从集合角度看,若记满足条件p 的所有对象组成集合A ,满足条件q 的所有对象组成集合q ,则当A ⊆B 时,p 是q 的充分条件。
B ⊆A 时,p 是q 的充分条件。
A=B 时,p 是q 的充要条件;(3)当p 和q 互为充要时,体现了命题等价转换的思想。
6、反证法是中学数学的重要方法。
会用反证法证明一些代数命题。
7、集合概念及其基本理论是近代数学最基本的内容之一。
学会用集合的思想处理数学问题。
四、典型例题例1、已知集合M={y|y=x 2+1,x ∈R},N={y|y=x+1,x ∈R},求M ∩N 。
解题思路分析:在集合运算之前,首先要识别集合,即认清集合中元素的特征。
M 、N 均为数集,不能误认为是点集,从而解方程组。
其次要化简集合,或者说使集合的特征明朗化。
M={y|y=x 2+1,x ∈R}={y|y ≥1},N={y|y=x+1,x ∈R}={y|y ∈R}∴ M ∩N=M={y|y ≥1}说明:实际上,从函数角度看,本题中的M ,N 分别是二次函数和一次函数的值域。
一般地,集合{y|y=f(x),x ∈A}应看成是函数y=f(x)的值域,通过求函数值域化简集合。
此集合与集合{(x ,y )|y=x 2+1,x ∈R}是有本质差异的,后者是点集,表示抛物线y=x 2+1上的所有点,属于图形范畴。
集合中元素特征与代表元素的字母无关,例{y|y ≥1}={x|x ≥1}。
例2、已知集合A={x|x 2-3x+2=0},B+{x|x 2-mx+2=0},且A ∩B=B ,求实数m 范围。
解题思路分析:化简条件得A={1,2},A ∩B=B ⇔B ⊆A根据集合中元素个数集合B 分类讨论,B=φ,B={1}或{2},B={1,2}当B=φ时,△=m 2-8<0∴ 22m 22<<-当B={1}或{2}时,⎩⎨⎧=+-=+-=∆02m 2402m 10或,m 无解当B={1,2}时,⎩⎨⎧=⨯=+221m 21 ∴ m=3综上所述,m=3或22m 22<<-说明:分类讨论是中学数学的重要思想,全面地挖掘题中隐藏条件是解题素质的一个重要方面,如本题当B={1}或{2}时,不能遗漏△=0。
例3、用反证法证明:已知x 、y ∈R ,x+y ≥2,求 证x 、y 中至少有一个大于1。
解题思路分析:假设x<1且y<1,由不等式同向相加的性质x+y<2与已知x+y ≥2矛盾∴ 假设不成立∴ x 、y 中至少有一个大于1说明;反证法的理论依据是:欲证“若p 则q ”为真,先证“若p 则非q ”为假,因在条件p 下,q 与非q 是对立事件(不能同时成立,但必有一个成立),所以当“若p 则非q ”为假时,“若p 则q ”一定为真。
例4、若A 是B 的必要而不充分条件,C 是B 的充要条件,D 是C 的充分而不必要条件,判断D 是A 的什么条件。
解题思路分析:利用“⇒”、“⇔”符号分析各命题之间的关系D ⇒C ⇔B ⇒A∴ D ⇒A ,D 是A 的充分不必要条件说明:符号“⇒”、“⇔”具有传递性,不过前者是单方向的,后者是双方向的。
例5、求直线 :ax-y+b=0经过两直线 1:2x-2y-3=0和 2:3x-5y+1=0交点的充要条件。
解题思路分析:从必要性着手,分充分性和必要性两方面证明。
由 ⎩⎨⎧=+-=--01y 5x 303y 2x 2得 1, 2交点P (411,417) ∵ 过点P∴ 0b 411417a =+-⨯ ∴ 17a+4b=11充分性:设a ,b 满足17a+4b=11∴ 4a 1711b -= 代入 方程:04a 1711y ax =-+- 整理得:0)417x (a )411y (=---此方程表明,直线 恒过两直线0417x ,0411y =-=-的交点(411,417) 而此点为 1与 2的交点∴ 充分性得证∴ 综上所述,命题为真 说明:关于充要条件的证明,一般有两种方式,一种是利用“⇔”,双向传输,同时证明充分性及必要性;另一种是分别证明必要性及充分性,从必要性着手,再检验充分性。
同步练习(一) 选择题1、设M={x|x 2+x+2=0},a=lg(lg10),则{a}与M 的关系是A 、{a}=MB 、M ≠⊆{a}C 、{a}≠⊇MD 、M ⊇{a}2、已知全集U=R ,A={x|x-a|<2},B={x|x-1|≥3},且A ∩B=φ,则a 的取值范围是A 、 [0,2]B 、(-2,2)C 、(0,2]D 、(0,2)3、已知集合M={x|x=a 2-3a+2,a ∈R},N 、{x|x=b 2-b ,b ∈R},则M ,N 的关系是A 、 M ≠⊆NB 、M ≠⊇NC 、M=ND 、不确定4、设集合A={x|x ∈Z 且-10≤x ≤-1},B={x|x ∈Z ,且|x|≤5},则A ∪B 中的元素个数是A 、11B 、10C 、16D 、155、集合M={1,2,3,4,5}的子集是A 、15B 、16C 、31D 、326、对于命题“正方形的四个内角相等”,下面判断正确的是A 、所给命题为假B 、它的逆否命题为真C 、它的逆命题为真D 、它的否命题为真7、“α≠β”是cos α≠cos β”的A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件8、集合A={x|x=3k-2,k ∈Z},B={y|y=3 +1, ∈Z},S={y|y=6m+1,m ∈Z}之间的关系是A 、S ≠⊆B ≠⊆A B 、S=B ≠⊆AC 、S ≠⊆B=AD 、S ≠⊇B=A9、方程mx 2+2x+1=0至少有一个负根的充要条件是A 、0<m ≤1或m<0B 、0<m ≤1C 、m<1D 、m ≤110、已知p :方程x 2+ax+b=0有且仅有整数解,q :a ,b 是整数,则p 是q 的A 、充分不必要条件B 、必要不充分条件充要条件 D 、既不充分又不必要条件(二) 填空题11、已知M={Z 24m |m ∈-},N={x|}N 23x ∈+,则M ∩N=__________。
12、在100个学生中,有乒乓球爱好者60人,排球爱好者65人,则两者都爱好的人数最少是________人。
13、关于x 的方程|x|-|x-1|=a 有解的充要条件是________________。
14、命题“若ab=0,则a 、b 中至少有一个为零”的逆否命题为____________。
15、非空集合p 满足下列两个条件:(1)p ≠⊆{1,2,3,4,5},(2)若元素a ∈p ,则6-a ∈p ,则集合p 个数是__________。
(三) 解答题16、设集合A={(x ,y)|y=ax+1},B={(x ,y)|y=|x|},若A ∩B 是单元素集合,求a 取值范围。
17、已知抛物线C :y=-x 2+mx-1,点M (0,3),N (3,0),求抛物线C 与线段MN 有两个不同交点的充要条件。
18、设A={x|x 2+px+q=0}≠φ,M={1,3,5,7,9},N={1,4,7,10},若A ∩M=φ,A∩N=A ,求p 、q 的值。
19、已知21x a 2+=,b=2-x ,c=x 2-x+1,用反证法证明:a 、b 、c 中至少有一个不小于1。
参考答案(一)选择题1、C2、A3、C4、C5、D6、B7、B8、C9、D 10、A(二)填空题11、φ 12、25,60 13、-1≤a ≤1 14、若a 、b 均不为0,则ab ≠0 15、7(三)解答题16、a ≥1或a ≤-1,提示:画图17、3<m ≤31018、⎩⎨⎧=-=16q 8p ,或⎩⎨⎧=-=10q 20p ,或⎩⎨⎧=-=40q 14p。