最新中考数学试题及解析
- 格式:doc
- 大小:2.13 MB
- 文档页数:10
2024年黑龙江伊春中考数学试题及答案考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分一、选择题(每小题3分,共30分)1. 下列计算正确的是( )A. 326a a a ⋅=B. ()527a a =C. ()339328a b a b -=-D.()()22a b a b a b -++=-【答案】C【解析】【分析】本题主要考查同底数幂的乘法,幂的乘方与积的乘方,平方差公式,运用相关运算法则求出各选项的结果后再进行判断即可.【详解】解:A 、3256a a a a ⋅=≠,故选项A 计算错误,此选项不符合题意;B 、()52107a a a =≠,故选项B 计算错误,此选项不符合题意;C 、()339328a b a b -=-,此选项计算正确,符合题意;D 、 ()()()()22a b a b b a b a b a -++=-+=-,故选项D 计算错误,此选项不符合题意;故选:C .2. 下列图形既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题主要考查了轴对称图形和中心对称图形,根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A 、是轴对称图形,不是中心对称图形,故A 选项不合题意;B、既是轴对称图形又是中心对称图形,故B选项符合题意;C、是轴对称图形,不是中心对称图形,故C选项不合题意;D、是轴对称图形,不是中心对称图形,故D选项不合题意.故选:B.3. 由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是()A. 3B. 4C. 5D. 6【答案】B【解析】【分析】根据三视图的知识,主视图是由4个小正方形组成,而左视图是由4个小正方形组成,故这个几何体的底层最少有3个小正方体,第2层最少有1个小正方体.【详解】解:根据左视图和主视图,这个几何体的底层最少有1+1+1=3个小正方体,第二层最少有1个小正方体,因此组成这个几何体的小正方体最少有3+1=4个.故选B.【点睛】本题考查了由三视图判断几何体,意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.4. 一组数据2,3,3,4,则这组数据的方差为()A. 1B. 0.8C. 0.6D. 0.5【答案】D【解析】【分析】本题主要考查了方差的计算,解题的关键是方差的计算公式的识记.根据方差的计算公式,先算出数据的平均数,然后代入公式计算即可得到结果.【详解】平均数为:()233443+++÷=方差为:()()()()222221233333434S ⎡⎤=⨯-+-+-+-⎣⎦()110014=⨯+++0.5=故选:D .5. 关于x 的一元二次方程()22420m x x -++=有两个实数根,则m 的取值范围是( )A. 4m ≤ B. 4m ≥ C. 4m ≥-且2m ≠ D. 4m ≤且2m ≠【答案】D【解析】【分析】本题考查了一元二次方程根的判别式.根据一元二次方程20(0)ax bx c a ++=≠的根的判别式24b ac ∆=-的意义得到20m -≠且0∆≥,即244(2)20m -⨯-⨯≥,然后解不等式组即可得到m 的取值范围.【详解】解: 关于x 的一元二次方程()22420m x x -++=有实数根,20m ∴-≠且0∆≥,即244(2)20m -⨯-⨯≥,解得:4m ≤,m ∴取值范围是4m ≤且2m ≠.故选:D .6. 已知关于x 的分式方程2333x x kx -=--无解,则k 的值为( )A. 2k =或1k =- B. 2k =- C. 2k =或1k = D. 1k =-【答案】A【解析】【分析】本题考查了解分式方程无解的情况,理解分式方程无解的意义是解题的关键.先将分式方程去分母,化为整式方程,再分两种情况分别求解即可.【详解】解:去分母得,2(3)3kx x --=-,整理得,(2)9k x -=-,的当2k =时,方程无解,当2k ≠时,令3x =,解得1k =-,所以关于x 的分式方程2333x x kx -=--无解时,2k =或1k =-.故选:A .7. 国家“双减”政策实施后,某班开展了主题为“书香满校园”的读书活动.班级决定为在活动中表现突出的同学购买笔记本和碳素笔进行奖励(两种奖品都买),其中笔记本每本3元,碳素笔每支2元,共花费28元,则共有几种购买方案( )A. 5B. 4C. 3D. 2【答案】B【解析】【分析】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.设购买x 支笔记本,y 个碳素笔,利用总价=单价⨯数量,即可得出关于x ,y 的二元一次方程,再结合x ,y 均为正整数,即可得出购买方案的个数.【详解】解:设购买x 支笔记本,y 个碳素笔,依题意得:3228x y +=,3142y x ∴=-.又x ,y 均为正整数,∴211x y =⎧⎨=⎩或48x y =⎧⎨=⎩或65x y =⎧⎨=⎩或82x y =⎧⎨=⎩,∴共有4种不同的购买方案.故选:B .8. 如图,双曲线()120y x x=>经过A 、B 两点,连接OA 、AB ,过点B 作BD y ⊥轴,垂足为D ,BD 交OA 于点E ,且E 为AO 的中点,则AEB △的面积是( )A. 4.5B. 3.5C. 3D. 2.5【答案】A【解析】【分析】本题考查了反比例函数,相似三角形的判定与性质等知识,过点A 作AF BD ⊥,垂足为F ,设12,A a a ⎛⎫ ⎪⎝⎭,证明AFE ODE ∽,有AF AE EF OD OE DE ==,根据E 为AO 的中点,可得AF OD =,EF DE =,进而有1122EF DE DF a ===,162A AF OD y a ===,可得6B y OD a==,2B x a =,则有32BE BD DE a =-=,问题随之得解.【详解】如图,过点A 作AF BD ⊥,垂足为F ,设12,A a a ⎛⎫ ⎪⎝⎭,0a >,∵BD y ⊥轴,AF BD ⊥,∴AF y ∥轴,DF a =,∴AFE ODE ∽,∴AF AE EF OD OE DE==,∵E 为AO 的中点,∴AE OE =,∴1AF AE EF OD OE DE===,∴AF OD =,EF DE =∴1122EF DE DF a ===,162A AF OD y a ===,∵B OD y =,∴6B y OD a==,∴2B x a =,∴2B BD x a ==,∴32BE BD DE a =-=,∴11639 4.52222ABE S AF BE a a =⨯⨯=⨯⨯== ,故选:A .9. 如图,菱形ABCD 中,点O 是BD 的中点,AM BC ⊥,垂足为M ,AM 交BD 于点N ,2OM =,8BD =,则MN 的长为( )【答案】C【解析】【分析】本题主要考查了解三角形,菱形的性质、直角三角形斜边中线等于斜边一半.先由菱形性质可得对角线AC 与BD 交于点O ,由直角三角形斜边中线等于斜边一半可得2OA OC OM ===,进而由菱形对角线求出边长,由sin sin MAC OBC ∠=∠=sin MC AC MAC =∠=,tan MN BM OBC =∠=.【详解】解:连接AC ,如图,∵菱形ABCD 中,AC 与BD 互相垂直平分,又∵点O 是BD 的中点,∴A 、O 、C 三点在同一直线上,∴OA OC =,∵2OM =,AM BC ⊥,∴2OA OC OM ===,∵8BD =,∴142OB OD BD ===,∴BC ===,21tan 42OC OBC OB ===∠,∵90ACM MAC ∠+∠=︒,90ACM OBC ∠+∠=︒,∴MAC OBC∠=∠∴sin sin OC MAC OBC BC ∠=∠===,∴sin MC AC MAC =∠=,∴BM BC MC =-=-=,∴1tan 2MN BM OBC =∠==故选:C .10. 如图,在正方形ABCD 中,点H 在AD 边上(不与点A 、D 重合),90BHF ∠=︒,HF 交正方形外角的平分线DF 于点F ,连接AC 交BH 于点M ,连接BF 交AC 于点G ,交CD 于点N ,连接BD .则下列结论:①45HBF ∠=︒;②点G 是BF 的中点;③若点H 是AD 的中点,则sin NBC ∠=BN =;⑤若12AH D H =,则112BND AHM S S =△△,其中正确的结论是( )A. ①②③④B. ①③⑤C. ①②④⑤D. ①②③④⑤【答案】A【解析】【分析】连接DG,可得BD AB=AC 垂直平分BD ,先证明点B 、H 、D 、F 四点共圆,即可判断①;根据AC 垂直平分BD ,结合互余可证明DG FG =,即有DG FG BG ==,则可判断②正确;证明ABM DBN ∽,即有BN BD BM AB ==,可判断④;根据相似有212ABM DBN S AB S BD ⎛⎫== ⎪⎝⎭ ,根据12AH D H =可得3AH AD =,再证明AHM CBM ∽,可得13AHM ABM S HM S BM == ,即可判断⑤;根据点H 是AD 的中点,设2AD =,即求出BH ==,同理可证明AHM CBM ∽,可得23BM BH ==,即可得BN ==,进而可判断③.【详解】连接DG ,如图,∵四边形ABCD 是正方形,∴45BDC BAC ADB ∠=∠=∠=︒,BD AB =90BAD ADC ∠=∠=︒,AC 垂直平分BD ,∴90CDP ∠=︒,∵DF 平分CDP ∠,∴1452CDF CDP CDB ∠=∠=︒=∠,∴90BDF CDF CDB ∠=∠+∠=︒,∵90BHF BDF ∠=︒=∠,∴点B 、H 、D 、F四点共圆,∴45HFB HDB ∠=∠=︒,DHF DBF ∠=∠,∴18045HBF HFB FHB ∠=︒-∠-∠=︒,故①正确,∵AC 垂直平分BD ,∴BG DG =,∴BDG DBG ∠=∠,∵90BDF ∠=︒,∴90BDG GDF DBG DFG ∠+∠=︒=∠+∠,∴GDF DFG ∠=∠,∴DG FG =,∴DG FG BG ==,∴点G 是BF 的中点,故②正确,∵90BHF BAH ∠=︒=∠,∴90AHB DHF AHB ABH ∠+∠=︒=∠+∠,∴DHF ABH ∠=∠,∵DHF DBF ∠=∠,∴ABH DBF ∠=∠,又∵45BAC DBC ∠=∠=︒,∴ABM DBN ∽,∴BNBDBM AB ==,∴BN =,故④正确,∴212ABM DBN S AB S BD⎛⎫== ⎪⎝⎭ ,若12AH D H =,则()1122AH HD AD AH ==-,∴3AH AD =,∴13=AH AD ,即13H HA ABC AD ==,∵AD BC ∥,∴AHM CBM ∽,∴13HMAHBM BC ==,∴13AHM ABM S HM S BM == ,∴3ABM AHM S S = ,∵12ABM DBN S S = ,∴26BND ABM AHM S S S == △,故⑤错误,如图,③若点H 是AD 的中点,设2AD =,即2AB BC AD ===,∴112AH AD ==,∴BH ==,同理可证明AHM CBM ∽,∴12HM AH BM BC ==,∴32HM BM BH BM BM+==,∴23BM BH ==,∵BN =,∴BN ==,∵2BC =,∴在Rt BNC △中,23NC ==,sin NC NBC BN ∠==,故③正确,则正确的有:①②③④,故选:A .【点睛】本题是一道几何综合题,主要考查了正方形的性质,相似三角形的判定与性质,正弦,圆周角定理以及勾股定理等知识,证明点B 、H 、D 、F 四点共圆,ABM DBN ∽,是解答本题的关键.二、填空题(每小题3分,共30分)11. 国家统计局公布数据显示,2023年我国粮食总产量是13908亿斤,将13908亿用科学记数法表示为________.【答案】121.390810⨯【解析】【分析】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.【详解】1 亿81.010=⨯,13908亿48121.39081010 1.390810=⨯⨯=⨯故答案为:121.390810⨯12. 在函数y =中,自变量x 的取值范围是________.【答案】3x ≥##3x≤【解析】【分析】本题主要考查函数自变量取值范围,分别根据二次根式有意义的条件和分式有意义的条件列出不等式求解即可.【详解】解:根据题意得,30x -≥,且20x +≠,解得,3x ≥,故答案为:3x ≥.13. 已知菱形ABCD 中对角线AC BD 、相交于点O ,添加条件_________________可使菱形ABCD 成为正方形.【答案】AC BD =或AB BC⊥【解析】【分析】本题主要考查的是菱形和正方形的判定,熟练掌握菱形的判定定理是解题的关键,依据正方形的判定定理进行判断即可.【详解】解:根据对角线相等的菱形是正方形,可添加:AC BD =;根据有一个角是直角的菱形是正方形,可添加的:AB BC ⊥;故添加的条件为:AC BD =或AB BC ⊥.14. 七年一班要从2名男生和3名女生中选择两名学生参加朗诵比赛,恰好选择1名男生和1名女生的概率是________.【答案】35【解析】【分析】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.画树状图,共有12种等可能的结果,其中选取的2名学生恰好是1名男生、1名女生的结果有6种,再由概率公式求解即可.【详解】解:画树状图如下:由图可知,共有20种等可能的结果,其中选取的2名学生恰好是1名男生、1名女生的结果有12种,∴选取的2名学生恰好是1名男生、1名女生的概率为:123205=,故答案为:35.15. 关于x 的不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有3个整数解,则a 的取值范围是________.【答案】102a -≤<【解析】【分析】本题考查解一元一次不等式(组),一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.先解出不等式组中每个不等式的解集,然后根据不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有3个整数解,即可得到关于a 的不等式组,然后求解即可.【详解】解:由420-≥x ,得:2x ≤,由102x a ->,得:2x a >, 不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有3个整数解,∴这3个整数解是0,1,2,120a ∴-≤<,解得102a -≤<,故答案为:102a -≤<.16. 如图,ABC 内接于O ,AD 是直径,若25B ∠=︒,则CAD ∠________︒.【答案】65【解析】【分析】本题考查了圆周角定理,直角三角形的两个锐角互余,连接CD ,根据直径所对的圆周角是直角得出=90ACD ∠︒,根据同弧所对的圆周角相等得出25D B ∠=∠=︒,进而根据直角三角形的两个锐角互余,即可求解.【详解】解:如图所示,连接CD ,∵ABC 内接于O ,AD 是直径,∴=90ACD ∠︒,∵ AC AC =,25B ∠=︒,∴25D B ∠=∠=︒∴902565CAD ∠=︒-︒=︒,故答案为:65.17. 若圆锥的底面半径为3,侧面积为36π,则这个圆锥侧面展开图的圆心角是________︒.【答案】90【解析】【分析】此题主要考查了圆锥的侧面积公式以及与展开图扇形面积关系,求出圆锥的母线长是解决问题的关键.根据圆锥的侧面积公式πS rl =求出圆锥的母线长,再结合扇形面积公式即可求出圆心角的度数.【详解】根据圆锥侧面积公式:πS rl =,可得π336πl ⨯⨯=解得:12l =,2π1236π360n ⨯∴=,解得90n =,∴侧面展开图的圆心角是90︒.故答案为:90.18. 如图,在Rt ABC △中,90ACB ∠=︒,1tan 2BAC ∠=,2BC =,1AD =,线段AD 绕点A 旋转,点P 为CD 的中点,则BP 的最大值是________.【答案】12+【解析】【分析】本题考查了解直角三角形,三角形中位线定理,旋转的性质,解题的关键是找出BP 取最大值时B 、P 、M 三点的位置关系.取AC 的中点M ,连接PM 、BM ,利用解三角形求出BM ==,利用三角形中位线定理推出1122PM AD ==,当AD 在AC 下方时,如果B 、P 、M 三点共线,则BP 有最大值.【详解】解:取AC 的中点M ,连接PM 、BM .∵90ACB ∠=︒,1tan 2BAC ∠=,2BC =,∴124tan 2BC AC BAC ==÷=∠,∴122AM CM AC ===,∴BM ===,∵P 、M 分别是CD AC 、的中点,∴1122PM AD ==.如图,当AD 在AC 下方时,如果B 、P 、M 三点共线,则BP 有最大值,最大值为12BM MP +=,故答案为:12+.19. 矩形ABCD 中,3AB =,4BC =,将AB 沿过点A 的一条直线折叠,折痕交直线BC 于点P (点P 不与点B 重合),点B 的对称点落在矩形对角线所在的直线上,则PC 长为________.【答案】52或72或10【解析】【分析】本题考查了矩形与折叠问题,解直角三角形,先根据点B 的对称点落在矩形对角线所在的直线上的不同位置分三种情况,画出对应的图形,再根据矩形性质,利用解直角三角形求出PC 即可.【详解】解:①点B 的对称点落在矩形对角线BD 上,如图1,∵在矩形ABCD 中,3AB CD ==,4BC AD ==,由折叠性质可知:BB AP '⊥,∴BAP BPA BPA CBD∠+∠=∠+∠∴=BAP CBD∠∠∴3tan =tan =4CD BAP CBD BC ∠∠=,∴39tan 642BP AB BAP =∠=⨯=∴97822PC BC BP =-=-=;②点B 的对称点B '落在矩形对角线AC 上,如图2,∵在矩形ABCD 中,3AB CD ==,4BC AD ==,90B Ð=°,∴5AC ===,∴4cos 5BC ACB AC ∠==,由折叠性质可知:=90ABP AB P '∠=∠︒,3AB AB '==,∴532B C AC AB ''=-=-=∴452cos 52B C PC ACB '==÷=∠;③点B 的对称点B '落在矩形对角线CA 延长线上,如图3,∵在矩形ABCD 中,3AB CD ==,4BC AD ==,90B Ð=°,∴5AC ===,∴4cos 5BC ACB AC ∠==,由折叠性质可知:=90ABP AB P '∠=∠︒,3AB AB '==,∴538B C AC AB ''=+=+=∴4810cos 5B C PC ACB '==÷=∠;综上所述:则PC 长为52或72或10.故答案为:52或72或10.20. 如图,在平面直角坐标系中,正方形OMNP 顶点M 的坐标为()3,0,OAB 是等边三角形,点B 坐标是()1,0,OAB 在正方形OMNP 内部紧靠正方形OMNP 的边(方向为O M N P O M →→→→→→ )做无滑动滚动,第一次滚动后,点A 的对应点记为1A ,1A 的坐标是()2,0;第二次滚动后,1A 的对应点记为2A ,2A 的坐标是()2,0;第三次滚动后,2A 的对应点记为3A ,3A 的坐标是132⎛⎫ ⎪ ⎪⎝⎭;如此下去,……,则2024A 的坐标是________.【答案】()1,3【解析】【分析】本题考查了点的坐标变化规律,正方形性质,等边三角形性质,根据三角形的运动方式,依次求出点A 的对应点1A ,2A , ,12A 的坐标,发现规律即可解决问题.【详解】解: 正方形OMNP 顶点M 的坐标为()3,0,3OM MN NP OP ∴====,OAB 是等边三角形,点B 坐标是()1,0,∴,由题知,1A 的坐标是()2,0;2A 的坐标是()2,0;3A 的坐标是132⎛⎫ ⎪ ⎪⎝⎭;继续滚动有,4A 的坐标是()3,2;5A 的坐标是()3,2;6A 的坐标是5,32⎛ ⎝;7A 的坐标是()1,3;8A 的坐标是()1,3;9A 的坐标是52⎫⎪⎪⎭;10A 的坐标是()0,1;11A 的坐标是()0,1;12A 的坐标是12⎛ ⎝;13A 的坐标是()2,0; 不断循环,循环规律为以1A ,2A , ,12A ,12个为一组,2024121688÷= ,∴2024A 的坐标与8A 的坐标一样为()1,3,故答案为:()1,3.三、解答题(满分60分)21. 先化简,再求值:22222111m m m m m m ⎛⎫-+÷- ⎪-+⎝⎭,其中cos 60m =︒.【答案】1m -+,12【解析】【分析】本题主要考查分式的化简求值及特殊三角函数值,先对分式进行化简,然后利用特殊三角函数值进行代值求解即可.【详解】解:原式()()()()21111m m m m m m-+=⋅+--1m =-+,当1cos 602m =︒=时原式12=.22. 如图,在正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,3B -,()5,2C -.(1)画出ABC 关于y 轴对称的111A B C △,并写出点1B 的坐标;(2)画出ABC 绕点A 逆时针旋转90︒后得到的22AB C ,并写出点2B 的坐标;(3)在(2)的条件下,求点B 旋转到点2B 的过程中所经过的路径长(结果保留π)【答案】(1)作图见解析,()12,3B(2)作图见解析,()23,0B -(3【解析】【分析】本题考查了利用旋转变换作图,轴对称和扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.(1)根据题意画出即可;关于y 轴对称点的坐标横坐标互为相反数,纵坐标不变;(2)根据网格结构找出点B 、C 以点A 为旋转中心逆时针旋转90︒后的对应点,然后顺次连接即可;(3)先求出AB =,再由旋转角等于90︒,利用弧长公式即可求出.【小问1详解】解:如图,111A B C △为所求;点1B 的坐标为()2,3,小问2详解】如图,22AB C 为所求;()23,0B -,【小问3详解】AB ==,点B 旋转到点2B=.23. 如图,抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,其中()1,0B ,()0,3C .(1)求抛物线的解析式.(2)在第二象限的抛物线上是否存在一点P ,使得APC △的面积最大.若存在,请直接写出点P 坐标和APC △的面积最大值;若不存在,请说明理由.【答案】(1)223y x x =--+(2)存在,点P 的坐标是315,24P ⎛⎫- ⎪⎝⎭,APC △的面积最大值是278【解析】【分析】本题主要考查二次函数的图象与性质以及与几何综合:【(1)将B ,C 两点坐标代入函数解析式,求出b ,c 的值即可;(2)过点P 作PE x ⊥轴于点E ,设()2,23P x x x --+,且点P 在第二象限,根据APC APE AOC PCOE S S S S =+- 梯形可得二次函数关系式,再利用二次函数的性质即可求解.【小问1详解】解:将()1,0B ,()0,3C 代入2y x bx c =-++得,103b c c -++=⎧⎨=⎩解得:23b c =-⎧⎨=⎩223y x x ∴=--+【小问2详解】解:对于223y x x =--+,令0,y =则2230,x x --+=解得,123,1x x =-=,∴()3,0A -,∴3,OA =∵()0,3C ,∴3OC =,过点P 作PE x ⊥轴于点E ,如图,设()2,23P x x x --+,且点P 在第二象限,∴,3,OE x AE x =-=+∴APC APE AOCPCOE S S S S =+- 梯形()111222AE PE OC PE OE OA OC =⨯++⨯-⨯()()()()2211132332333222x x x x x x =+--++--+--⨯⨯23327228x ⎛⎫=-++ ⎪⎝⎭∵302-<,∴S 有最大值,∴当32x =-时,S 有最大值,最大值为278,此时点P 的坐标为315,24⎛⎫- ⎪⎝⎭24. 为贯彻落实教育部办公厅关于“保障学生每天校内、校外各一小时体育活动时间”的要求,某学校要求学生每天坚持体育锻炼.学校从全体男生中随机抽取了部分学生,调查他们的立定跳远成绩,整理如下不完整的频数分布表和统计图,结合下图解答下列问题:组别分组(cm )频数A50100x <≤3B 100150x <≤m C150200x <≤20D200250x <≤14E 250300x <≤5(1)频数分布表中m = ,扇形统计图中n = .(2)本次调查立定跳远成绩的中位数落在 组别.(3)该校有600名男生,若立定跳远成绩大于200cm 为合格,请估计该校立定跳远成绩合格的男生有多少人?【答案】(1)8,40(2)C (3)估计该校立定跳远成绩合格的男生有228人【解析】【分析】本题主要考查了扇形统计图和频数表、中位数,用样本估计总体,(1)用A 组的频数除以所占的百分比,即可求出调查的总人数;用总人数减去其它组的人数,即可求得B 组的人数,用C 组的人数除以总人数即可求解;(2)根据中位数的求法,即可求解;(3)用总人数乘以样本中立定跳远成绩合格的男生人数所占,即可求解.【小问1详解】解:被抽取的学生数为:36%50÷=(人)故503201458m =----=(人),%205040%n =÷=,即40n =,故答案为:8,40;【小问2详解】解:把这组数据从小到大排列,第25和第26个数据的平均数为这组数据的中位数,382526+<< ,5142526+<<,∴把这组数据从小到大排列,第25和第26个数据都在C 组,故本次调查立定跳远成绩的中位数落在C 组,答案为:C ;【小问3详解】解:14560022850+⨯=(人)答:该校立定跳远成绩合格的男生有228人.25. 甲、乙两货车分别从相距225km 的A 、B 两地同时出发,甲货车从A 地出发途经配货站时,停下来卸货,半小时后继续驶往B 地,乙货车沿同一条公路从B 地驶往A 地,但乙货车到达配货站时接到紧急任务立即原路原速返回B 地,结果比甲货车晚半小时到达B 地.如图是甲、乙两货车距A 地的距离()km y 与行驶时间()h x 之间的函数图象,结合图象回答下列问题:(1)甲货车到达配货站之前的速度是 km/h ,乙货车的速度是 km/h ;(2)求甲货车在配货站卸货后驶往B 地的过程中,甲货车距A 地的距离()km y 与行驶时间()h x 之间的函数解析式;(3)直接写出甲、乙两货车在行驶的过程中,出发多长时间甲、乙两货车与配货站的距离相等.【答案】(1)30,40(2)EF 的函数解析式是()802154 5.5y x x =-≤≤(3)经过1.5h 或45h 14或5h 甲、乙两货车与配货站的距离相等【解析】【分析】本题考查一次函数的应用,待定系数法求一次函数解析式的运用,认真分析函数图象,读懂函数图象表示的意义是解题关键.(1)由图象可知甲货车到达配货站路程为105km ,所用时间为3.5h ,乙货车到达配货站路程为120km ,到达后返回,所用时间为6h ,根据速度=距离÷时间即可得;(2)甲货车从A 地出发途经配货站时,停下来卸货,半小时后继续驶往B 地,由图象结合已知条件可知(4,105)E 和点(5.5,225)F ,再利用待定系数法求出y 与x 的关系式即可得答案;(3)分两车到达配货站之前和乙货车到达配货站时接到紧急任务立即原路原速返回B 地后、甲货车卸货,半小时后继续驶往B 地,三种情况与配货站的距离相等,分别列方程求出x 的值即可得答案.【小问1详解】解:由图象可知甲货车到达配货站路程为105km ,所用时间为3.5h ,所以甲货车到达配货站之前的速度是105 3.5=30÷(km/h )∴乙货车到达配货站路程为225105=120(km)-,到达配货站时接到紧急任务立即原路原速返回B 地,总路程为240km ,总时间是6h ,∴乙货车速度240640km /h =÷=,故答案为:30;40【小问2详解】甲货车从A 地出发途经配货站时,停下来卸货,半小时后继续驶往B 地,由图象可知(4,105)E 和点(5.5,225)F 设(4 5.5)EF y kx b x =+≤≤∴41055.5225k b k b +=⎧⎨+=⎩解得:21580b k =-⎧⎨=⎩,∴甲货车距A 地的距离()km y 与行驶时间()h x 之间的函数解析式()802154 5.5y x x =-≤≤【小问3详解】设甲货车出发h x ,甲、乙两货车与配货站的距离相等,①两车到达配货站之前:1053012040x x -=-,解得:32x =,②乙货车到达配货站时开始返回,甲货车未到达配货站:1053040120x x -=-,解得:4514x =,③甲货车在配货站卸货后驶往B 地时:0802151054012x x =---,解得:5x =,答:经过1.5h 或45h 14或5h 甲、乙两货车与配货站的距离相等.26. 已知ABC 是等腰三角形,AB AC =,12MAN BAC ∠=∠,MAN ∠在BAC ∠的内部,点M 、N 在BC 上,点M 在点N 的左侧,探究线段BM NC MN 、、之间的数量关系.(1)如图①,当90BAC ∠=︒时,探究如下:由90BAC ∠=︒,AB AC =可知,将ACN △绕点A 顺时针旋转90︒,得到ABP ,则CN BP =且90PBM ∠=︒,连接PM ,易证AMP AMN △≌△,可得MP MN =,在Rt PBM △中,222BM BP MP +=,则有222BM NC MN +=.(2)当60BAC ∠=︒时,如图②:当120BAC ∠=︒时,如图③,分别写出线段BM NC MN 、、之间的数量关系,并选择图②或图③进行证明.【答案】图②的结论是:222BM NC BM NC MN ++⋅=;图③的结论是:222BM NC BM NC MN +-⋅=;证明见解析【解析】【分析】本题主要考查等边三角形的性质,全等三角形的判定与性质,30度角所对的直角边等于斜边的一半,勾股定理等知识 ,选②,以点B 为顶点在ABC 外作60ABK ∠=︒,在BK 上截取BQ CN =,连接QA QM 、,过点Q 作QH BC ⊥,垂足为H ,构造全等三角形,得出AN AQ =,CAN QAB ∠=∠,再证明AQM ANM △≌△,得到MN QM =;在Rt QHM △中由勾股定理得222QH HM QM +=,即22212BM BQ QM ⎫⎛⎫++=⎪ ⎪⎪⎝⎭⎭,整理可得结论;选③方法同②【详解】解:图②的结论是:222BM NC BM NC MN ++⋅=证明:∵,60,AB AC BAC =∠=︒∴ABC 是等边三角形,∴60ABC ACB ∠=∠=︒,以点B 为顶点在ABC 外作60ABK ∠=︒,在BK 上截取BQ CN =,连接QA QM 、,过点Q 作QH BC ⊥,垂足为H ,AB AC = ,C ABQ ∠=∠,CN BQ=ACN ABQ∴△≌△AN AQ ∴=,CAN QAB∠=∠又30CAN BAM ∠+∠=︒30BAM QAB ∴∠+∠=︒即QAM MAN∠=∠又AM AM = ,AQM ANM ∴△≌△,MN QM ∴=;∵60,60,ABQ ABC ∠=︒∠=︒∴60QBH ∠=︒,∴30,BQH ∠=︒12B BH Q ∴=,QH BQ =∴12HM BM BH BM BQ =+=+,在Rt QHM △中,可得:222QH HM QM +=即22212BM BQ QM ⎫⎛⎫++=⎪ ⎪⎪⎝⎭⎭整理得222BM BQ B Q M M B Q ⋅++=222NC B M N N B M M C ∴=⋅++图③的结论是:222BM NC BM NC MN +-⋅=证明:以点B 顶点在ABC 外作30ABK ∠=︒,在BK 上截取BQ CN =,连接QA QM 、,过点Q 作QH BC ⊥,垂足为H ,为AB AC = ,C ABQ ∠=∠,CN BQ=ACN ABQ∴△≌△AN AQ ∴=,CAN QAB∠=∠又60CAN BAM ∠+∠=︒60BAM QAB ∴∠+∠=︒即QAM MAN∠=∠又AM AM = ,AQM ANM ∴△≌△,MN QM∴=在Rt BQH 中,60QBH ∠=︒,30BQH ∠=︒12B BH Q ∴=,QH BQ =12HM BM BH BM BQ =-=-,在Rt QHM △中,可得:222QH HM QM +=即22212BQ BM BQ QM ⎫⎛⎫+-=⎪ ⎪⎪⎝⎭⎭整理得222BM BQ B Q M M B Q ⋅+-=222NC B M N N B M M C ∴=⋅+-27. 为了增强学生的体质,某学校倡导学生在大课间开展踢毽子活动,需购买甲、乙两种品牌毽子.已知购买甲种品牌毽子10个和乙种品牌毽子5个共需200元;购买甲种品牌毽子15个和乙种品牌毽子10个共需325元.(1)购买一个甲种品牌毽子和一个乙种品牌毽子各需要多少元?(2)若购买甲乙两种品牌毽子共花费1000元,甲种品牌毽子数量不低于乙种品牌毽子数量的5倍且不超过乙种品牌毽子数量的16倍,则有几种购买方案?(3)若商家每售出一个甲种品牌毽子利润是5元,每售出一个乙种品牌毽子利润是4元,在(2)条件下,学校如何购买毽子商家获得利润最大?最大利润是多少元?【答案】(1)购买一个甲种品牌毽子需15元,购买一个乙种品牌毽子需10元的(2)共有3种购买方案(3)学校购买甲种品牌毽子60个,购买乙种品牌毽子10个,商家获得利润最大,最大利润是340元【解析】【分析】本题考查了二元一次方程组、一元一次不等式组以及一次函数的应用,(1)设购买一个甲种品牌毽子需a 元,购买一个乙种品牌毽子需b 元,根据题意列出二元一次方程组,问题得解;(2)设购买甲种品牌毽子x 个,购买乙种品牌毽子31002x ⎛⎫-⎪⎝⎭个,根据题意列出一元一次不等式组,解不等式组即可求解;(3)设商家获得总利润为y 元,即有一次函数3541002y x x ⎛⎫=+-⎪⎝⎭,根据一次函数的性质即可求解.【小问1详解】解:设购买一个甲种品牌毽子需a 元,购买一个乙种品牌毽子需b 元.由题意得:1052001510325a b a b +=⎧⎨+=⎩,解得:1510a b =⎧⎨=⎩,答:购买一个甲种品牌毽子需15元,购买一个乙种品牌毽子需10元;【小问2详解】解:设购买甲种品牌毽子x 个,购买乙种品牌毽子1000153100102x x -⎛⎫=- ⎪⎝⎭个.由题意得:3510023161002x x x x ⎧⎛⎫≥- ⎪⎪⎪⎝⎭⎨⎛⎫⎪≤- ⎪⎪⎝⎭⎩,解得:14586417x ≤≤,x 和31002x ⎛⎫- ⎪⎝⎭均为正整数,60x ∴=,62,64,3100102x -=,7,4,∴共有3种购买方案.【小问3详解】设商家获得总利润为y 元,3541002y x x ⎛⎫=+- ⎪⎝⎭,400y x =-+,10k =-< ,y ∴随x 的增大而减小,∴当60x =时,340y =最大,答:学校购买甲种品牌毽子60个,购买乙种品牌毽子10个,商家获得利润最大,最大利润是340元.28. 如图,在平面直角坐标系中,等边三角形OAB 的边OB 在x 轴上,点A 在第一象限,OA 的长度是一元二次方程2560x x --=的根,动点P 从点O 出发以每秒2个单位长度的速度沿折线OA AB -运动,动点Q 从点O 出发以每秒3个单位长度的速度沿折线OB BA -运动,P 、Q 两点同时出发,相遇时停止运动.设运动时间为t 秒(0 3.6t <<),OPQ △的面积为S .(1)求点A 的坐标;(2)求S 与t 的函数关系式;(3)在(2)的条件下,当S =时,点M 在y 轴上,坐标平面内是否存在点N ,使得以点O 、P 、M 、N 为顶点的四边形是菱形.若存在,直接写出点N 的坐标;若不存在,说明理由.【答案】(1)点A的坐标为(A (2)()())2202233 3.6t S t t ⎧<≤⎪⎪⎪=+<≤⎨⎪⎪+<<⎪⎩ (3)存在,(12,4N +,()22,4N -,(32,N -,4N ⎛⎝【解析】【分析】(1)运用因式分解法解方程求出OA 的长,根据等边三角形的性质得出6,60OA OB AC OAB AOB ABO ===∠=∠=∠=︒,过点A 作AC x ⊥轴,垂足为C ,求出AC 的长即可;(2)分02t <≤,23t <≤和3 3.6t <<三种情况,运用三角形面积公式求解即可;(3)当2=时求出2t =,得4OP =,分OP 为边和对角线两种情况可得点N 的坐标;当2+=和+=O 、P 、M 、N 为顶点的四边形是菱形【小问1详解】解:2560x x --=,解得16x =,21x =-OA 的长度是2560x x --=的根,6OA ∴=∵OAB 是等边三角形,∴6,60OA OB AC OAB AOB ABO ===∠=∠=∠=︒,过点A 作AC x ⊥轴,垂足为C ,在Rt AOC 中,60,AOC ∠=︒∴30,OAC ∠=︒116322OC OA ∴==⨯=,∴AC ===∴点A 的坐标为(A 【小问2详解】解:当02t <≤时.过P 作PD x ⊥轴,垂足为点D ,∴2OP t =,3OQ t =,30OPD ∴∠=︒∴,OD t =∴PD ===,211322S OQ PD t ∴=⨯⨯=⨯=;当23t <≤时,过Q 作QE OA ⊥,垂足为点E∵60,A ∠=︒∴30,AQE ∠=︒又123,AQ t =-∴13622AE AQ t ==-,QE ==又2OP t =,2122S t ⎛⎫∴=⨯⨯=+ ⎪ ⎪⎝⎭。
2023年山东菏泽中考数学试题及答案一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号涂在答题卡的相应位置.)1.剪纸文化是我国最古老的民间艺术之一,下列剪纸图案中既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】A 【解析】【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】解:A.既是轴对称图形,也是中心对称图形,故A 符合题意;B.是轴对称图形,不是中心对称图形,故B 不符合题意;C.不是轴对称图形,也不是中心对称图形,故C 不符合题意;D.不是轴对称图形,是中心对称图形,故D 不符合题意.故选:A.【点睛】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.2.下列运算正确的是()A.632a a a ÷= B.235a a a ⋅= C.()23622a a = D.()222a b a b +=+【答案】B 【解析】【分析】利用同底数幂的乘除法、积的乘方与幂的乘方以及完全平方公式分别判断即可.【详解】解:A、633a a a ÷=,故选项错误;B、235a a a ⋅=,故选项正确;C、()23624a a =,故选项错误;D、()2222a b a ab b +=++,故选项错误;故选:B.【点睛】此题主要考查了整式的混合运算,同底数幂的乘除法、积的乘方、幂的乘方以及完全平方公式,正确掌握相关乘法公式是解题关键.3.一把直尺和一个含30︒角的直角三角板按如图方式放置,若120∠=︒,则2∠=()A.30︒B.40︒C.50︒D.60︒【答案】B 【解析】【分析】根据平行线的性质,得出3120∠=∠=︒,进而260340Ð=°-Ð=°.【详解】由图知,3120∠=∠=︒∴2603602040Ð=°-Ð=°-°=°故选:B【点睛】本题考查平行线的性质,特殊角直角三角形,由图形的位置关系推出角之间的数量关系是解题的关键.4.实数a ,b ,c 在数轴上对应点的位置如图所示,下列式子正确的是()A.()0c b a -<B.()0b c a -<C.()0a b c -> D.()0a cb +>【答案】C 【解析】【分析】根据数轴可得,0a b c <<<,再根据0a b c <<<逐项判定即可.【详解】由数轴可知0a b c <<<,∴()0c b a ->,故A 选项错误;∴()0b c a ->,故B 选项错误;∴()0a b c ->,故C 选项正确;∴()0a c b +<,故D 选项错误;故选:C.【点睛】本题考查实数与数轴,根据0a b c <<<进行判断是解题关键.5.如图所示的几何体是由5个大小相同的小正方体组成的,它的主视图是()A.B.C.D.【答案】A 【解析】【分析】根据主视图是从正面看到的图形进行求解即可.【详解】解:从正面看该几何体,有三列,第一列有2层,第二和第三列都只有一层,如图所示:故选:A.【点睛】本题主要考查了简单几何组合体的三视图,熟知三视图的定义是解题的关键.6.一元二次方程2310x x +-=的两根为12x x ,,则1211+x x 的值为()A.32B.3-C.3D.32-【答案】C【解析】【分析】先求得123x x +=-,121x x ⋅=-,再将1211+x x 变形,代入12x x +与12x x ⋅的值求解即可.【详解】解:∵一元二次方程2310x x +-=的两根为12x x 、,∴123x x +=-,121x x ⋅=-∴1211+x x 1212x x x x +=31=--3=.故选C.【点睛】本题主要考查了一元二次方程根与系数的关系,牢记12b x x a+=-,12cx x a ⋅=是解决本题的关键.7.ABC 的三边长a ,b ,c满足2()|0a b c -+-=,则ABC 是()A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形【答案】D 【解析】【分析】由等式可分别得到关于a 、b 、c 的等式,从而分别计算得到a 、b 、c 的值,再由222+=a b c 的关系,可推导得到ABC 为直角三角形.【详解】解∵2()|0a b c -+-=又∵()200a b c ⎧-≥≥-≥⎪⎩∴()2000a b c ⎧-==-=⎪⎩,∴02300a b a b c ⎧-=⎪--=⎨⎪-=⎩解得33a b c ⎧=⎪=⎨⎪=⎩,∴222+=a b c ,且a b =,∴ABC 为等腰直角三角形,故选:D.【点睛】本题考查了非负性和勾股定理逆定理的知识,求解的关键是熟练掌握非负数的和为0,每一个非负数均为0,和勾股定理逆定理.8.若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:(1,3),(2,6),(0,0)A B C --等都是三倍点”,在31x -<<的范围内,若二次函数2y x x c =--+的图象上至少存在一个“三倍点”,则c 的取值范围是()A.114c -≤< B.43c -≤<- C.154c -<< D.45c -≤<【答案】D 【解析】【分析】由题意可得:三倍点所在的直线为3y x =,根据二次函数2y x x c =--+的图象上至少存在一个“三倍点”转化为2y x x c =--+和3y x =至少有一个交点,求0∆≥,再根据3x =-和1x =时两个函数值大小即可求出.【详解】解:由题意可得:三倍点所在的直线为3y x =,在31x -<<的范围内,二次函数2y x x c =--+的图象上至少存在一个“三倍点”,即在31x -<<的范围内,2y x x c =--+和3y x =至少有一个交点,令23x x x c =--+,整理得:240x x c --+=,则()()22444116+40b ac c c ∆---⨯-⨯≥===,解得4c ≥-,当3x =-时,()()213312+y c c =----+-=,29y =-,∴912+c ->-,解得:3c <,当1x =时,111+y c c =--+-2=,23y =,∴3>2+c -,解得:5c <,综上:c 的取值范围是45c -≤<,故选:D.【点睛】本题考查二次函数与一次函数交点问题,熟练掌握相关性质是关键.二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内.)9.因式分解:24m m -=______.【答案】()4-m m 【解析】【分析】直接提取公因式m ,进而分解因式即可.【详解】解:m 2-4m =m (m -4).故答案为:m (m -4).【点睛】本题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10.计算:0|2|2sin 602023+︒-=___________.【答案】1【解析】【分析】根据先计算绝对值,特殊角的三角函数值,零指数幂,再进行加减计算即可.22sin 602023-+︒-2212=⨯-1=故答案为:1.【点睛】本题考查了实数的运算,掌握绝对值、特殊角的三角函数值、零指数幂的运算是解题的关键.11.用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为__________.【答案】5 9【解析】【分析】先列表得出所有的情况,再找到符合题意的情况,利用概率公式计算即可.【详解】解:0不能在最高位,而且个位数字与十位数字不同,列表如下:1230102030121312123231323一共有可以组成9个数字,偶数有10、12、20、30、32,∴是偶数的概率为5 9.故答案为:5 9.【点睛】本题考查了列表法求概率,注意0不能在最高位.12.如图,正八边形ABCDEFGH的边长为4,以顶点A为圆心,AB的长为半径画圆,则阴影部分的面积为__________(结果保留π).【答案】6π【解析】【分析】先利用正八边形求出圆心角的度数,再利用扇形的面积公式求解即可.【详解】解:由题意,()821801358HAB -⋅︒∠==︒,4AH AB ==∴213546360S ππ⋅==阴,故答案为:6π.【点睛】本题考查正多边形与圆,扇形的面积等知识,解题的关键是记住扇形的面积2360n r S π=,正多边形的每个内角度数为()2180n n-⋅︒.13.如图,点E 是正方形ABCD 内的一点,将ABE 绕点B 按顺时针方向旋转90︒得到CBF V .若55ABE ∠=︒,则EGC ∠=__________度.【答案】80【解析】【分析】先求得BEF ∠和CBE ∠的度数,再利用三角形外角的性质求解即可.【详解】解:∵四边形ABCD 是正方形,∴90ABC ∠=︒,∵55ABE ∠=︒,∴905535CBE ∠=︒-︒=︒,∵ABE 绕点B 按顺时针方向旋转90︒得到CBF V ∴90EBF ∠=︒,BE BF =,∴45BEF ∠=︒,∴EGC ∠=354580CBE BEF ∠+∠=︒+︒=︒,故答案为:80.【点睛】本题考查了正方形的性质,等腰三角形的性质,旋转图形的性质和三角形外角的性质,利用旋转图形的性质求解是解题的关键.14.如图,在四边形ABCD 中,90,5,4,ABC BAD AB AD AD BC ∠=∠=︒==<,点E 在线段BC 上运动,点F 在线段AE 上,ADF BAE =∠∠,则线段BF的最小值为__________.【答案】2-##2-+【解析】【分析】设AD 的中点为O ,以AD 为直径画圆,连接OB ,设OB 与O 的交点为点F ',证明90DFA ∠=︒,可知点F 在以AD 为直径的半圆上运动,当点F 运动到OB 与O 的交点F '时,线段BF 有最小值,据此求解即可.【详解】解:设AD 的中点为O ,以AD 为直径画圆,连接OB ,设OB 与O 的交点为点F ',∵90ABC BAD ∠=∠=︒,∴AD BC ∥,∴DAE AEB ∠=∠,∵ADF BAE =∠∠,∴90DFA ABE ==︒∠∠,∴点F 在以AD 为直径的半圆上运动,∴当点F 运动到OB 与O 的交点F '时,线段BF 有最小值,∵4=AD ,∴122AO OF AD '===,,∴BO ==,BF2-,2-.【点睛】本题考查了平行线的性质,圆周角定理的推论,勾股定理等知识,根据题意分析得到点F 的运动轨迹是解题的关键.三、解答题(本题共78分,把解答或证明过程写在答题卡的相应区域内.)15.解不等式组:()5231,32232x x x x x ⎧-<+⎪⎨--≥+⎪⎩.【答案】23x ≤【解析】【分析】分别求出各个不等式的解,再取各个解集的公共部分,即可.【详解】解:解()5231x x -<+得:52x <,解32232x x x --≥+得:23x ≤,∴不等式组的解集为23x ≤.【点睛】本题主要考查解一元一次不等式组,熟练掌握解不等式组的基本步骤,是解题的关键.16.先化简,再求值:223x x xx y x y x y⎛⎫+÷ ⎪-+-⎝⎭,其中x ,y 满足230x y +-=.【答案】42x y +,6【解析】【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时将除法变为乘法,约分得到最简结果,将230x y +-=变形整体代入计算即可求解.【详解】解:原式()()()()()()()()3x x y x x y x y x y x y x y x y x y x ⎡⎤+--+=+⨯⎢⎥-+-+⎣⎦()()()()2233x y x y x xy x xy x y x y x -+++-=⨯-+()()()()242x y x y x xy x y x y x -++=⨯-+42x y =+;由230x y +-=,得到23x y +=,则原式()226x y =+=.【点睛】此题考查分式的化简求值,解题关键熟练掌握分式混合运算的顺序以及整体代入法求解.17.如图,在ABCD Y 中,AE 平分BAD ∠,交BC 于点E ;CF 平分BCD ∠,交AD 于点F .求证:AE CF =.【答案】证明见解析【解析】【分析】由平行四边形的性质得B D ∠=∠,AB CD =,AD BC ∥,由平行线的性质和角平分线的性质得出BAE DCF ∠=∠,可证BAE DCF ≌△△,即可得出AE CF =.【详解】证明:∵四边形ABCD 是平行四边形,∴B D ∠=∠,AB CD =,BAD DCB ∠=∠,AD BC ∥,∵AE 平分BAD ∠,CF 平分BCD ∠,∴BAE DAE BCF DCF ∠=∠=∠=∠,在BAE 和DCF 中,B D AB CD BAE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA BAE DCF ≌ ∴AE CF =.【点睛】本题主要考查平行四边形的性质,平行线的性质及全等三角形的判定与性质,根据题目已知条件熟练运用平行四边形的性质,平行线的性质是解答本题的关键.18.无人机在实际生活中的应用广泛,如图所示,某人利用无人机测最大楼的高度BC ,无人机在空中点P 处,测得点P 距地面上A 点80米,点A 处俯角为60︒,楼顶C 点处的俯角为30︒,已知点A 与大楼的距离AB 为70米(点A ,B ,C ,P 在同一平面内),求大楼的高度BC(结果保留根号)【答案】大楼的高度BC为.【解析】【分析】如图,过P 作PH AB ⊥于H ,过C 作CQ PH ⊥于Q ,而CB AB ⊥,则四边形CQHB 是矩形,可得QH BC =,BH CQ =,求解3sin 60802PH AP =︒=⨯= ,cos 6040AH AP =︒= ,可得704030CQ BH ==-=,tan 30PQ CQ =︒=得BC QH ===.【详解】解:如图,过P 作PH AB ⊥于H ,过C 作CQ PH ⊥于Q ,而CB AB ⊥,则四边形CQHB 是矩形,∴QH BC =,BH CQ =,由题意可得:80AP =,60PAH ∠=︒,30PCQ ∠=︒,70AB =,∴3sin 608032PH AP =︒=⨯= cos 6040AH AP =︒= ,∴704030CQ BH ==-=,∴tan 30103PQ CQ =︒= ∴40333BC QH ===,∴大楼的高度BC 为3.【点睛】本题考查的是矩形的判定与性质,解直角三角形的实际应用,理解仰角与俯角的含义是解本题的关键.19.某班学生以跨学科主题学习为载体,综合运用体育,数学,生物学等知识,研究体育课的运动负荷,在体育课基本部分运动后,测量统计了部分学生的心率情况,按心率次数x (次/分钟)分为如下五组:A 组:5075x ≤<,B 组:75100x ≤<,C 组:100125x ≤<,D 组:125150x ≤<,E 组:150175x ≤≤.其中,A 组数据为73,65,74,68,74,70,66,56.根据统计数据绘制了不完整的统计图(如图所示),请结合统计图解答下列问题:(1)A 组数据的中位数是_______,众数是_______;在统计图中B 组所对应的扇形圆心角是_______度;(2)补全学生心率频数分布直方图;(3)一般运动的适宜行为为100150x ≤<(次/分钟),学校共有2300名学生,请你依据此次跨学科项目研究结果,估计大约有多少名学生达到适宜心率?【答案】(1)69,74,54;(2)见解析(3)大约有1725名学生达到适宜心率.【解析】【分析】(1)根据中位数和众数的概念求解,先求出总人数,然后求出B 组所占的百分比,最后乘以360︒即可求出在统计图中B 组所对应的扇形圆心角;(2)根据样本估计总体的方法求解即可.【小问1详解】将A 组数据从小到大排列为:56,65,66,68,70,73,74,74,∴中位数为6870692+=;∵74出现的次数最多,∴众数是74;88%100÷=,1536054100︒⨯=︒∴在统计图中B 组所对应的扇形圆心角是54︒;故答案为:69,74,54;【小问2详解】10081545230----=∴C 组的人数为30,∴补全学生心率频数分布直方图如下:【小问3详解】304523001725100+⨯=(人),∴大约有1725名学生达到适宜心率.【点睛】本题主要考查调查与统计的相关知识,理解频数分布直方图,扇形统计图的相关信息,掌握运用样本百分比估算总体数量是解题的关键.20.如图,已知坐标轴上两点()()0,4,2,0A B ,连接AB ,过点B 作BC AB ⊥,交反比例函数k y x=在第一象限的图象于点(,1)C a .(1)求反比例函数k y x=和直线OC 的表达式;(2)将直线OC 向上平移32个单位,得到直线l ,求直线l 与反比例函数图象的交点坐标.【答案】(1)4y x=,14y x =(2)()2,2或18,2⎛⎫--⎪⎝⎭【解析】【分析】(1)如图,过点C 作CD x ⊥轴于点D ,证明ABO BCD ∽ ,利用相似三角形的性质得到2BD =,求出点C 的坐标,代入k y x=可得反比例函数解析式,设OC 的表达式为y mx =,将点()4,1C 代入即可得到直线OC 的表达式;(2)先求得直线l 的解析式,联立反比例函数的解析式即可求得交点坐标.【小问1详解】如图,过点C 作CD x ⊥轴于点D ,则1CD =,90CDB ∠=︒,∵BC AB ⊥,∴90ABC ∠=︒,∴90ABO CBD ∠+∠=︒,∵90CDB ∠=︒,∴90BCD CBD ∠+∠=︒,∴BCD ABO ∠=∠,∴ABO BCD ∽ ,∴OA BD OB CD=,∵()()0,4,2,0A B ,∴4OA =,2OB =,∴421BD =,∴2BD =,∴224OD =+=,∴点()4,1C ,将点C 代入k y x =中,可得4k =,∴4y x=,设OC 的表达式为y mx =,将点()4,1C 代入可得14m =,解得:14m =,∴OC 的表达式为14y x =;【小问2详解】直线l 的解析式为1342y x =+,当两函数相交时,可得13442x x +=,解得12x =,8x =-,代入反比例函数解析式,得1122x y =⎧⎨=⎩,22812x y =-⎧⎪⎨=-⎪⎩∴直线l 与反比例函数图象的交点坐标为()2,2或18,2⎛⎫-- ⎪⎝⎭【点睛】本题考查了相似三角形的判定与性质,待定系数法求函数的解析式,反比例函数与一次函数的交点问题,一次函数的平移问题,解一元二次方程等知识.21.某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A ,B 两块(如图所示),花园里种满牡丹和芍药,学校已定购篱笆120米.(1)设计一个使花园面积最大的方案,并求出其最大面积;(2)在花园面积最大的条件下,A ,B 两块内分别种植牡丹和芍药,每平方米种植2株,知牡丹每株售价25元,芍药每株售价15元,学校计划购买费用不超过5万元,求最多可以购买多少株牡丹?【答案】(1)长为60米,宽为20米时,有最大面积,且最大面积为1200平方米(2)最多可以购买1400株牡丹【解析】【分析】(1)设长为x 米,面积为y 平方米,则宽为1203x -米,可以得到y 与x 的函数关系式,配成顶点式求出函数的最大值即可;(2)设种植牡丹的面积为a 平方米,则种植芍药的面积为()1200a -平方米,由题意列出不等式求得种植牡丹面积的最大值,即可解答.【小问1详解】解:设长为x 米,面积为y 平方米,则宽为1203x -米,∴()221140601200331203y x x x x x =⨯=--+-+=-,∴当60x =时,y 有最大值是1200,此时,宽为120203x -=(米)答:长为60米,宽为20米时,有最大面积,且最大面积为1200平方米.【小问2详解】解:设种植牡丹的面积为a 平方米,则种植芍药的面积为()1200a -平方米,由题意可得()252152120050000a a ⨯+⨯-≤解得:700a ≤,即牡丹最多种植700平方米,70021400⨯=(株),答:最多可以购买1400株牡丹.【点睛】本题考查二次函数的应用、一元一次不等式的应用,解题的关键是明确题意,找出所求问题需要的条件.22.如图,AB 为O 的直径,C 是圆上一点,D 是 BC的中点,弦DE AB ⊥,垂足为点F .(1)求证:BC DE =;(2)P 是»AE 上一点,6,2AC BF ==,求tan BPC ∠;(3)在(2)的条件下,当CP 是ACB ∠的平分线时,求CP 的长.【答案】(1)证明见解析;(2)43(3)【解析】【分析】(1)由D 是 BC的中点得 CD BD =,由垂径定理得 BE BD =,得到»»BC DE =,根据同圆中,等弧对等弦即可证明;(2)连接OD ,证明ACB OFD ∽ ,设O 的半径为r ,利用相似三角形的性质得=5r ,210AB r ==,由勾股定理求得BC ,得到84tan 63BC CAB AC ∠===,即可得到tan BPC ∠43=;(3)过点B 作BG CP ⊥交CP 于点G ,证明CBG 是等腰直角三角形,解直角三角形得到cos 45CG BG BC ==︒=,由tan BPC ∠43=得到43BG GP =,解得GP =可求解.【小问1详解】解:∵D 是 BC的中点,∴ CDBD =,∵DE AB ⊥且AB 为O 的直径,∴ BEBD =,∴»»BCDE =,∴BC DE =;【小问2详解】解:连接OD ,∵ CDBD =,∴CAB DOB ∠=∠,∵AB 为O 的直径,∴90ACB ∠=︒,∵DE AB ⊥,∴90DFO ∠=︒,∴ACB OFD ∽ ,∴AC OF AB OD=,设O 的半径为r ,则622r r r -=,解得=5r ,经检验,=5r 是方程的根,∴210AB r ==,∴8BC ==,∴84tan 63BC CAB AC ∠===,∵BPC CAB ∠=∠,∴tan BPC ∠43=;【小问3详解】解:如图,过点B 作BG CP ⊥交CP 于点G ,∴90BGC BGP ∠=∠=︒∵90ACB ∠=︒,CP 是ACB ∠的平分线,∴45ACP BCP ∠=∠=︒∴45CBG ∠=︒∴cos 45CG BG BC ==︒=∵tan BPC ∠43=∴43BG GP =,∴GP =∴CP =+=.【点睛】本题考查了相似三角形的判定与性质,垂径定理,圆周角定理及推论,解直角三角形等知识,熟练掌握以上知识并灵活运用是解题的关键.23.(1)如图1,在矩形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF ⊥,垂足为点G .求证:ADE DCF △∽△.【问题解决】(2)如图2,在正方形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF =,延长BC到点H ,使CH DE =,连接DH .求证:ADFH ∠=∠.【类比迁移】(3)如图3,在菱形ABCD 中,点E ,F 分别在边DC ,BC 上,11AE DF ==,8DE =,60AED ∠=︒,求CF 的长.【答案】(1)见解析(2)见解析(3)3【解析】【分析】(1)由矩形的性质可得90ADE DCF ∠=∠=︒,则90CDF DFC ∠+∠=︒,再由AE DF ⊥,可得90DGE ∠=︒,则90CDF AED ∠+∠=︒,根据等角的余角相等得AED DFC ∠=∠,即可得证;(2)利用“HL ”证明 ≌ADE DCF ,可得DE CF =,由CH DE =,可得CF CH =,利用“SAS ”证明DCF DCH ≌,则DHC DFC ∠=∠,由正方形的性质可得AD BC ∥,根据平行线的性质,即可得证;(3)延长BC 到点G ,使8CG DE ==,连接DG ,由菱形的性质可得AD DC =,AD BC ∥,则ADE DCG ∠=∠,推出()SAS ADE DCG △≌△,由全等的性质可得60DGC AED ∠=∠=︒,DG AE =,进而推出DFG 是等边三角形,再根据线段的和差关系计算求解即可.【详解】(1)证明: 四边形ABCD 是矩形,90ADE DCF ∴∠=∠=︒,90CDF DFC ∴∠+∠=︒,AE DF ⊥,90DGE ∴∠=︒,90CDF AED ∴∠+∠=︒,AED DFC ∴∠=∠,ADE DCF ∴△∽△;(2)证明: 四边形ABCD 是正方形,AD DC ∴=,AD BC ∥,90ADE DCF ∠=∠=︒,AE DF = ,()HL ADE DCF ∴ ≌,DE CF ∴=,又 CH DE =,∴CF CH =,点H 在BC 的延长线上,∴90DCH DCF ∠=∠=︒,DC DC = ,()SAS DCF DCH ∴ ≌,H DFC ∴∠=∠,AD BC ∥,ADF DFC H ∴∠=∠=∠;(3)解:如图,延长BC 到点G ,使8CG DE ==,连接DG ,四边形ABCD 是菱形,AD DC ∴=,AD BC ∥,ADE DCG ∴∠=∠,()SAS ADE DCG ∴ ≌,60DGC AED ∴∠=∠=︒,DG AE =,AE DF = ,DG DF ∴=,DFG ∴ 是等边三角形,11FG FC CG DF ∴=+==,111183FC CG ∴=-=-=.【点睛】本题是四边形综合题,主要考查了矩形的性质,正方形的性质,菱形的性质,相似三角形的判定,全等三角形的判定和性质,等边三角形的判定和性质,熟练掌握这些知识点并灵活运用是解题的关键.24.已知抛物线2y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于点()0,4C ,其对称轴为32x =-.(1)求抛物线的表达式;(2)如图1,点D 是线段OC 上的一动点,连接AD BD ,,将ABD △沿直线AD 翻折,得到AB D 'V ,当点B '恰好落在抛物线的对称轴上时,求点D 的坐标;(3)如图2,动点P 在直线AC 上方的抛物线上,过点P 作直线AC 的垂线,分别交直线AC ,线段BC 于点E ,F ,过点F 作FG x ⊥轴,垂足为G ,求FG 的最大值.【答案】(1)234y x x =--+(2)D ⎛ ⎝(3)496【解析】【分析】(1)由题易得c 的值,再根据对称轴求出b 的值,即可解答;(2)过B '作x 轴的垂线,垂足为H 求出A 和B 的坐标,得到5AB AB '==,52AH =,由52AB AB AH '===,推出1302DAB B AB '∠=∠=︒,解直角三角形得到OD 的长,即可解答;(3)求得BC 所在直线的解析式为144y x =-+,设()2,34P m m m --+,设PE 所在直线的解析式为:22y x b =-+,得2224y x m m =---+,令12y y =,解得223m m x +=,分别表示出FG ,再对FG 进行化简计算,配方成顶点式即可求解.【小问1详解】解:抛物线与y 轴交于点()0,4C,∴4c =,∵对称轴为32x =-,∴322b -=--,3b =-,∴抛物线的解析式为234y x x =--+;【小问2详解】如图,过B '作x 轴的垂线,垂足为H ,令2340x x --+=,解得:121,4x x ==-,∴()4,0A -,()10B ,,∴()145AB =--=,由翻折可得5AB AB '==,∵对称轴为32x =-,∴()35422AH =---=,∵52AB AB AH '===,∴30AB H '∠=︒,60B AB '∠=︒∴1302DAB B AB '∠=∠=︒,在Rt AOD 中,tan 30OD OA =︒=,∴D ⎛ ⎝;【小问3详解】设BC 所在直线的解析式为111y k x b =+,把B 、C 坐标代入得:11104k b b +=⎧⎨=⎩,解得1144k b =-⎧⎨=⎩,∴144y x =-+,∵OA OC =,∴45CAO ∠=︒,∵90AEB ∠=︒,∴直线PE 与x 轴所成夹角为45︒,设()2,34P m m m --+,设PE 所在直线的解析式为:22y x b =-+,把点P 代入得2224b m m =--+,∴2224y x m m =---+,令12y y =,则24424x x m m -+=---+,解得223m m x +=,∴()24243F m m FG y -+==+()()223F P x x m m ==-=-∴()()22422433FG m m m m FG P -++-=+=+22549326m ⎛⎫=-++ ⎪⎝⎭∵点P 在直线AC 上方,∴40m -<<,∴当52m =-时,FG +的最大值为496.【点睛】本题考查了二次函数综合问题,利用数形结合的思想是解题的关键.。
重庆市2024年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧确答案所对应的方框涂黑.1. 下列四个数中,最小的数是( )A 2- B. 0 C. 3D. 12-2. 下列四种化学仪器示意图中,是轴对称图形的是( )A. B.C. D.3. 已知点()3,2-在反比例函数()0ky k x=≠的图象上,则k 的值为( )A. 3- B. 3C. 6- D. 64. 如图,AB CD ∥,165∠=︒,则2∠的度数是( ).的A. 105︒B. 115︒C. 125︒D. 135︒5. 若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是( )A. 1:3B. 1:4C. 1:6D. 1:96. 烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是( )A. 20B. 22C. 24D. 267. 已知m =,则实数m 的范围是( )A. 23m << B. 34m << C. 45m << D. 56m <<8. 如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为( )A. 328π-B. 4π-C. 324π- D. 8π-9. 如图,在正方形ABCD 的边CD 上有一点E ,连接AE ,把AE 绕点E 逆时针旋转90︒,得到FE ,连接CF 并延长与AB 的延长线交于点G .则FGC E的值为( )A.B.C.D.10. 已知整式1110:nn n n M a x a xa x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A. 0B. 1C. 2D. 3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11. 计算:011(3)()2π--+=_____.12. 如果一个多边形的每一个外角都是40︒,那么这个多边形的边数为______.13. 重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A 、B 、C 三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B 的概率为_____.14. 随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是______.15. 如图,在ABC 中,延长AC 至点D ,使CD CA =,过点D 作DE CB ∥,且DE DC =,连接AE 交BC 于点F .若CAB CFA ∠=∠,1CF =,则BF =______.16. 若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为______.17. 如图,以AB 为直径的O 与AC 相切于点A ,以AC 为边作平行四边形ACDE ,点D 、E 均在O 上,DE 与AB 交于点F ,连接CE ,与O 交于点G ,连接DG .若10,8AB DE ==,则AF =______.DG =______.18. 我们规定:若一个正整数A 能写成2m n -,其中m 与n 都是两位数,且m 与n 的十位数字相同,个位数字之和为8,则称A 为“方减数”,并把A 分解成2m n -的过程,称为“方减分解”.例如:因为26022523=-,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成26022523=-的过程就是“方减分解”.按照这个规定,最小的“方减数”是______.把一个“方减数”A 进行“方减分解”,即2A m n =-,将m 放在n 的左边组成一个新的四位数B ,若B 除以19余数为1,且22m n k +=(k 为整数),则满足条件的正整数A 为______.三、解答题:(本大题8个小题,第19题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19. 计算:(1)()()22x x y x y -++;(2)22111a a a a-⎛⎫+÷ ⎪+⎝⎭.20.为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表年级七年级八年级平均数8585中位数86b众数a 79根据以上信息,解答下列问题:(1)上述图表中=a ______,b =______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?21. 在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹)(2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EFAC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想结论:④.22. 为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那的的么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?23. 如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)24. 如图,甲、乙两艘货轮同时从A 港出发,分别向B ,D 两港运送物资,最后到达A 港正东方向的C 港装运新的物资.甲货轮沿A 港的东南方向航行40海里后到达B 港,再沿北偏东60︒方向航行一定距离到达C 港.乙货轮沿A 港的北偏东60︒方向航行一定距离到达D 港,再沿南偏东30︒方向航行一定距离到达C 港.1.41≈1.73≈2.45≈)(1)求A ,C 两港之间距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠B 、D 两港的时间相同),哪艘货轮先到达C 港?请通过计算说明.25. 如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()1,6-,与y 轴交于点C ,与x 轴交于A B ,两点(A 在B 的左侧),连接tan 4AC BC CBA ∠=,,.的(1)求抛物线的表达式;(2)点P 是射线CA 上方抛物线上的一动点,过点P 作PE x ⊥轴,垂足为E ,交AC 于点D .点M 是线段DE 上一动点,MN y ⊥轴,垂足为N ,点F 为线段BC 的中点,连接AM NF ,.当线段PD 长度取得最大值时,求AM MN NF ++的最小值;(3)将该抛物线沿射线CA 方向平移,使得新抛物线经过(2)中线段PD 长度取得最大值时的点D ,且与直线AC 相交于另一点K .点Q 为新抛物线上的一个动点,当QDK ACB ∠∠=时,直接写出所有符合条件的点Q 的坐标.26. 在ABC 中,AB AC =,点D 是BC 边上一点(点D 不与端点重合).点D 关于直线AB 的对称点为点E ,连接,AD DE .在直线AD 上取一点F ,使EFD BAC ∠∠=,直线EF 与直线AC 交于点G .(1)如图1,若60,,BAC BD CD BAD α∠=︒<∠=,求AGE ∠的度数(用含α的代数式表示);(2)如图1,若60,BAC BD CD ∠=︒<,用等式表示线段CG 与DE 之间的数量关系,并证明;(3)如图2,若90BAC ∠=︒,点D 从点B 移动到点C 的过程中,连接AE ,当AEG △为等腰三角形时,请直接写出此时CGAG的值.重庆市2024年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧确答案所对应的方框涂黑.1. 下列四个数中,最小的数是( )A. 2- B. 0C. 3D. 12-【答案】A 【解析】【分析】本题考查了有理数比较大小,解题的关键是掌握比较大小的法则.根据正数大于0,0大于负数,两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵13022>>->-,∴最小的数是2-;故选:A .2. 下列四种化学仪器的示意图中,是轴对称图形的是( )A. B.C. D.【答案】C 【解析】【分析】此题考查了轴对称图形的概念,根据概念逐一判断即可,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,熟练掌握知识点是解题的关键.【详解】A 、不是轴对称图形,故本选项不符合题意;B 、不是轴对称图形,故本选项不符合题意;C 、是轴对称图形,故本选项符合题意;D 、不是轴对称图形,故本选项不符合题意;故选:C .3. 已知点()3,2-在反比例函数()0ky k x=≠的图象上,则k 的值为( )A. 3- B. 3C. 6- D. 6【答案】C 【解析】【分析】本题考查了待定系数法求反比例解析式,把()3,2-代入()0ky k x=≠求解即可.【详解】解:把()3,2-代入()0ky k x=≠,得326k =-⨯=-.故选C .4. 如图,AB CD ∥,165∠=︒,则2∠的度数是( )A. 105︒B. 115︒C. 125︒D. 135︒【答案】B【解析】∠=∠=︒,由邻补角性质得【分析】本题主要考查了平行线的性质,根据平行线的性质得3165∠+∠=︒,然后求解即可,熟练掌握两直线平行,同位角相等是解题的关键.23180【详解】解:如图,∥,∵AB CD∠=∠=︒,∴3165∠+∠=︒,∵23180∠=︒,∴2115故选:B.5. 若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是()A. 1:3B. 1:4C. 1:6D. 1:9【答案】D【解析】【分析】此题考查了相似三角形的性质,根据“相似三角形的面积比等于相似比的平方”解答即可.【详解】解:两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是1:9,故选:D.6. 烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是( )A. 20B. 22C. 24D. 26【答案】B【解析】【分析】本题考查数字的变化类,根据图形,可归纳出规律表达式的特点,再解答即可.【详解】解:由图可得,第1种如图①有4个氢原子,即2214+⨯=第2种如图②有6个氢原子,即2226+⨯=第3种如图③有8个氢原子,即2238+⨯=⋯,∴第10种化合物的分子结构模型中氢原子的个数是:221022+⨯=;故选:B .7. 已知m =,则实数m 的范围是( )A. 23m << B. 34m << C. 45m << D. 56m <<【答案】B【解析】【分析】此题考查的是求无理数的取值范围,二次根式的加减运算,掌握求算术平方根的取值范围的方法是解决此题的关键.先求出m ==,即可求出m 的范围.【详解】解:∵m =-=-==,∵34<<,∴34m <<,故选:B .8. 如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为( )A. 328π- B. 4π-C. 324π- D. 8π-【答案】D【解析】【分析】本题考查扇形面积的计算,勾股定理等知识.根据题意可得28AC AD ==,由勾股定理得出AB =,用矩形的面积减去2个扇形的面积即可得到结论.【详解】解:连接AC ,根据题意可得28AC AD ==,∵矩形ABCD ,∴4AD BC ==,90ABC ∠=︒,在Rt ABC △中,AB ==,∴图中阴影部分的面积2904428360ππ⨯=⨯-⨯=.故选:D .9. 如图,在正方形ABCD 的边CD 上有一点E ,连接AE ,把AE 绕点E 逆时针旋转90︒,得到FE ,连接CF 并延长与AB 的延长线交于点G .则FG C E的值为( )A.B. C. D.【答案】A【解析】【分析】过点F 作DC 延长线的垂线,垂足为点H ,则90H ∠=︒,证明ADE EHF ≌,则1AD EH ==,设DE HF x ==,得到HF CH x ==,则45HCF ∠=︒,故CF =,同理可求CG ==)1FG CG CF x =-=-,因此FGCE ==.【详解】解:过点F 作DC 延长线的垂线,垂足为点H ,则90H ∠=︒,由旋转得,90EA EF AEF =∠=︒,∵四边形ABCD 是正方形,∴90D Ð=°,DC AB ∥,DA DC BC ==,设1DA DC BC ===,∴D H ∠=∠,∵12AEH AEF D ∠=∠+∠=∠+∠,∴12∠=∠,∴ADE EHF ≌,∴DE HF =,1AD EH ==,设DE HF x ==,则1CE DC DE x =-=-,∴()11CH EH EC x x =-=--=,∴HF CH x ==,而90H ∠=︒,∴45HCF ∠=︒,∴sin 45HFCF ==︒,∵DC AB ∥,∴45HCF G ∠=∠=︒,同理可求CG ==∴)1FG CG CF x =-==-,∴FG CE ==,故选:A .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,解直角三角形,旋转的性质,正确添加辅助线,构造“一线三等角全等”是解题的关键.10. 已知整式1110:n n n n M a x a x a x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A. 0B. 1C. 2D. 3【答案】D【解析】【分析】本题考查的是整式的规律探究,分类讨论思想的应用,由条件可得04n ≤≤,再分类讨论得到答案即可.【详解】解:∵10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= ,∴04n ≤≤,当4n =时,则2104345a a a a a +++++=,∴41a =,23100a a a a ====,满足条件的整式有4x ,当3n =时,则210335a a a a ++++=,∴()()3210,,,2,0,0,0a a a a =,()1,1,0,0,()1,0,1,0,()1,0,0,1,满足条件的整式有:32x ,32x x +,3x x +,31x +,当2n =时,则21025a a a +++=,∴()()210,,3,0,0a a a =,()2,1,0,()2,0,1,()1,2,0,()1,0,2,()1,1,1,满足条件的整式有:23x ,22x x +,221x +,22x x +,22x +,21x x ++;当1n =时,则1015a a ++=,∴()()10,4,0a a =,()3,1,()1,3,()2,2,满足条件的整式有:4x ,31x +,3x +,22x +;当0n =时,005a +=,满足条件的整式有:5;∴满足条件的单项式有:4x ,32x ,23x ,4x ,5,故①符合题意;不存在任何一个n ,使得满足条件的整式M 有且只有3个;故②符合题意;满足条件的整式M 共有1464116++++=个.故③符合题意;故选D二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11. 计算:011(3)()2π--+=_____.【答案】3【解析】【分析】根据零指数幂和负指数幂的意义计算.【详解】解:011(3)(1232π--+=+=,故答案为:3.【点睛】本题考查了整数指数幂的运算,熟练掌握零指数幂和负指数幂的意义是解题关键.12. 如果一个多边形的每一个外角都是40︒,那么这个多边形的边数为______.【答案】9【解析】【分析】本题考查了多边形的外角和定理,用外角和360︒除以40︒即可求解,掌握多边形的外角和等于360︒是解题的关键.【详解】解:360409︒÷︒=,∴这个多边形的边数是9,故答案为:9.13. 重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A 、B 、C 三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B 的概率为_____.【答案】19【解析】【分析】本题考查了画树状图法或列表法求概率,根据画树状图法求概率即可,熟练掌握画树状图法或列表法求概率是解题的关键.【详解】解:画树状图如下:由图可知,共有9种等可能的情况,其中甲、乙两人同时选择景点B 的情况有1种,∴甲、乙两人同时选择景点B 的的概率为19,故答案为:19.14. 随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是______.【答案】10%【解析】【分析】本题主要考查一元二次方程的应用.设平均增长率为x ,然后根据题意可列方程进行求解.【详解】解:设平均增长率为x ,由题意得:()240148.4x +=,解得:10.110%x ==,2 2.1x =-(不符合题意,舍去);故答案为:10%.15. 如图,在ABC 中,延长AC 至点D ,使CD CA =,过点D 作DE CB ∥,且DE DC =,连接AE 交BC 于点F .若CAB CFA ∠=∠,1CF =,则BF =______.【答案】3【解析】【分析】先根据平行线分线段成比例证AF EF =,进而得22DE CD AC CF ====,4AD =,再证明CAB DEA ≌,得4BC AD ==,从而即可得解.【详解】解:∵CD CA =,过点D 作DE CB ∥,CD CA =,DE DC =,∴1FA CA FE CD==,CD CA DE ==,∴AF EF =,∴22DE CD AC CF ====,∴4AD AC CD =+=,∵DE CB ∥,∴CFA E ∠∠=,ACB D ∠∠=,∵CAB CFA ∠=∠,∴CAB E ∠∠=,∵CD CA =,DE CD =,∴CA DE =,∴CAB DEA ≌,∴4BC AD ==,∴3BF BC CF =-=,故答案为:3,【点睛】本题主要考查了平行线的性质,三角形的中位线定理,平行线分线段成比例以及全等三角形的判定及性质,熟练掌握三角形的中位线定理,平行线分线段成比例以及全等三角形的判定及性质是解题的关键.16. 若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为______.【答案】16【解析】【分析】本题考查了分式方程的解,以及解一元一次不等式组.先解不等式组,根据关于x 的一元一次不等式组至少有两个整数解,确定a 的取值范围8a ≤,再把分式方程去分母转化为整式方程,解得22a y -=,由分式方程的解为非负整数,确定a 的取值范围2a ≥且4a ≠,进而得到28a ≤≤且4a ≠,根据范围确定出a 的取值,相加即可得到答案.【详解】解:()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩①②,解①得:4x <,解②得:23a x -≥, 关于x 的一元一次不等式组至少有两个整数解,∴223a -≤,解得8a ≤,解方程13211a y y -=---,得22a y -=, 关于y 的分式方程的解为非负整数,∴202a -≥且212a -≠,2a -是偶数,解得2a ≥且4a ≠,a 是偶数,∴28a ≤≤且4a ≠,a 是偶数,则所有满足条件的整数a 的值之和是26816++=,故答案为:16.17. 如图,以AB 为直径的O 与AC 相切于点A ,以AC 为边作平行四边形ACDE ,点D 、E 均在O 上,DE 与AB 交于点F ,连接CE ,与O 交于点G ,连接DG .若10,8AB DE ==,则AF =______.DG =______.【答案】①. 8 ②. 【解析】【分析】连接DO 并延长,交O 于点H ,连接GH ,设CE 、AB 交于点M ,根据四边形ACDE 为平行四边形,得出∥D E A C ,8AC DE ==,证明AB DE ⊥,根据垂径定理得出142DF EF DE ===,根据勾股定理得出3OF ==,求出538AF OA OF =+=+=;证明EFM CAM ∽,得出EF FM AC AM =,求出83FM =,根据勾股定理得出EM ===,证明EFM HGD ∽,得出FM EM DG DH =,求出DG =.【详解】解:连接DO 并延长,交O 于点H ,连接GH ,设CE 、AB 交于点M ,如图所示:∵以AB 为直径的O 与AC 相切于点A ,∴AB AC ⊥,∴90CAB ∠=︒,∵四边形ACDE 为平行四边形,∴∥D E A C ,8AC DE ==,∴90BFD CAB ==︒∠∠,∴AB DE ⊥,∴142DF EF DE ===,∵10AB =,∴152DO BO AO AB ====,∴3OF ==,∴538AF OA OF =+=+=;∵∥D E A C ,∴EFM CAM ∽,∴EF FMAC AM =,∴48FMAF FM =-,即488FMFM =-,解得:83FM =,∴EM ===∵DH 为直径,∴90DGH ∠=︒,∴DGH EFM ∠=∠,∵ DG DG =,∴DEG DHG =∠∠,∴EFM HGD ∽,∴FMEMDG DH =,即83310DG =,解得:DG =.故答案为:8【点睛】本题主要考查了平行四边形的性质,垂径定理,圆周角定理,切线的性质,勾股定理,三角形相似的判定和性质,解题的关键是作出辅助线,熟练掌握三角形相似的判定方法.18. 我们规定:若一个正整数A 能写成2m n -,其中m 与n 都是两位数,且m 与n 的十位数字相同,个位数字之和为8,则称A 为“方减数”,并把A 分解成2m n -的过程,称为“方减分解”.例如:因为26022523=-,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成26022523=-的过程就是“方减分解”.按照这个规定,最小的“方减数”是______.把一个“方减数”A 进行“方减分解”,即2A m n =-,将m 放在n 的左边组成一个新的四位数B ,若B 除以19余数为1,且22m n k +=(k 为整数),则满足条件的正整数A 为______.【答案】①. 82 ②. 4564【解析】【分析】本题考查了新定义,设10m a b =+,则108n a b =+-(19a ≤≤,08b ≤≤)根据最小的“方减数”可得10,18m n ==,代入,即可求解;根据B 除以19余数为1,且22m n k +=(k 为整数),得出34719a b ++为整数,308a b ++是完全平方数,在19a ≤≤,08b ≤≤,逐个检验计算,即可求解.【详解】①设10m a b =+,则108n a b =+-(19a ≤≤,08b ≤≤)由题意得:()()2210108m n a b a b -=+-+-,∵19a ≤≤,“方减数”最小,∴1a =,则10m b =+,18n b =-,∴()()2222101810020188221m n b b b b b b b -=+--=++-+=++,则当0b =时,2m n -最小,为82,故答案为:82;②设10m a b =+,则108n a b =+-(19a ≤≤,08b ≤≤)∴10001001081010998B a b a b a b =+++-=++∵B 除以19余数为1,∴1010997a b ++能被19整除∴134********B a b a b -++=++为整数,又22m n k +=(k 为整数)∴()210108308a b a b a b +++-=++是完全平方数,∵19a ≤≤,08b ≤≤∴308a b ++最小为49,最大为256即716k ≤≤设34719a b t ++=,t 为正整数,则13t ≤≤当1t =时,3412a b +=,则334b a =-,则330830384a b a a ++=+-+是完全平方数,又19a ≤≤,08b ≤≤,无整数解,当2t =时,3431a b +=,则3134a b -=,则3133083084a a b a -++=++是完全平方数,又19a ≤≤,08b ≤≤,无整数解,当3t =时,3450a b +=,则5034a b -=,则5033083084a ab a -++=++是完全平方数,经检验,当6,8a b ==时,3473648757193a b ++=⨯+⨯+==⨯,23068819614⨯++==,3,14t k ==,∴68,60m n ==,∴268604564A =-=故答案为:82,4564.三、解答题:(本大题8个小题,第19题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19 计算:(1)()()22x x y x y -++;(2)22111a a a a -⎛⎫+÷ ⎪+⎝⎭.【答案】(1)222x y +;(2)11a a +-.【解析】【分析】(1)根据单项式乘以多项式和完全平方公式法则分别计算,然后合并同类项即可;(2)先将括号里的异分母分式相减化为同分母分式相减,再算分式的除法运算得以化简;本题考查了单项式乘以多项式,完全平方公式和分式的化简,熟练掌握运算法则是解题的关键.【小问1详解】解:原式22222x xy x xy y =-+++,222x y =+;【小问2详解】解:原式()()()1111a a a a a a +-+=÷+,()()()11·11a a a a a a ++=+-,11a a +=-.20. 为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:.66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表年级七年级八年级平均数8585中位数86b 众数a 79根据以上信息,解答下列问题:(1)上述图表中=a ______,b =______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?【答案】(1)86,87.5,40;(2)八年级学生竞赛成绩较好,理由见解析;(3)该校七、八年级参加此次安全知识竞赛成绩优秀的学生人数是320人.【解析】【分析】(1)根据表格及题意可直接进行求解;(2)根据平均分、中位数及众数分析即可得出结果;(3)由题意可得出参加此次竞赛活动成绩优秀的百分比,然后可进行求解;本题主要考查扇形统计图及中位数、众数、平均数,熟练掌握扇形统计图及中位数、众数、平均数是解题的关键.【小问1详解】根据七年级学生竞赛成绩可知:86出现次数最多,则众数为86,八年级竞赛成绩中A 组:2010%2⨯=(人),B 组:2020%4⨯=(人),C 组:6人,所占百分比为6100%30%20⨯=D 组:202468---=(人)所占百分比为%110%20%30%40%m =---=,则40m =,∴八年级的中位数为第1011、个同学竞赛成绩的平均数,即C 组第45、个同学竞赛成绩的平均数878887.52b +==,故答案为:86,87.5,40;【小问2详解】八年级学生竞赛成绩较好,理由:七、八年级的平均分均为85分,八年级的中位数高于七年级的中位数,整体上看八年级学生竞赛成绩较好;【小问3详解】640040%50032020⨯+⨯=(人),答:该校七、八年级参加此次安全知识竞赛成绩优秀的学生人数是320人.21. 在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹)(2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.【答案】(1)见解析(2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【解析】【分析】本题主要考查了矩形的性质,平行四边形的性质与判定,菱形的判定,垂线的尺规作图:(1)根据垂线的尺规作图方法作图即可;(2)根据矩形或平行四边形的对边平行得到OFC OEA ∠=∠,OCF OAE ∠=∠,进而证明()AAS CFO AEO ≌,得到OF OE =,即可证明四边形AECF 是平行四边形.再由EF AC ⊥,即可证明四边形AECF 是菱形.【小问1详解】解:如图所示,即为所求;【小问2详解】证明:∵四边形ABCD 是矩形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.猜想:过平行四边形的一条对角线的中点作这条对角线的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是菱形;证明:∵四边形ABCD 是平行四边形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.故答案为:①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形.22. 为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条是。
2023年山东济宁中考数学试题及答案一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.实数10 1.53π-,,,中无理数是()A.πB.0C.13- D.1.5【答案】A【解析】【分析】根据无理数的概念求解.【详解】解:实数1,0,,1.53π-中,π是无理数,而10,,1.53-是有理数;故选A.【点睛】本题主要考查无理数,熟练掌握无理数的概念是解题的关键.2.下列图形中,是中心对称图形的是()A.B.C.D.【答案】B【解析】【分析】在一个平面内,把一个图形绕着某个点旋转180︒,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;由此判断即可得出答案.【详解】选项A、C、D中的图形不是中心对称图形,故选项A、C、D不符合题意;选项B中的图形是中心对称图形,故B符合题意.故选:B.【点睛】本题考查了中心对称图形的定义,在一个平面内,把一个图形绕着某个点旋转180︒,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.3.下列各式运算正确的是()A.236x x x ⋅= B.1226x x x ÷= C.222()x y x y +=+ D.()3263x y x y =【答案】D 【解析】【分析】根据同底数幂的乘除、完全平方公式、积的乘方逐个计算即可.【详解】A.235x x x ×=,所以A 选项不符合题意;B.12210x x x ÷=,所以B 选项不符合题意;C.222()2x y x y xy +=++,所以C 选项不符合题意;D.()3263x yx y =,所以D 选项符合题意.故选:D.【点睛】此题主要考查了同底数幂的乘除、完全平方公式、积的乘方,熟记运算法则是解题关键.4.若代数式2x -有意义,则实数x 的取值范围是()A.2x ≠ B.0x ≥ C.2x ≥ D.0x ≥且2x ≠【答案】D 【解析】【分析】根据二次根式有意义的条件和分式有意义的条件得到不等式组,解不等式组即可得到答案.【详解】解:∵代数式2x -有意义,∴020x x ≥⎧⎨-≠⎩,解得0x ≥且2x ≠,故选:D【点睛】此题考查了二次根式有意义的条件和分式有意义的条件,熟练掌握相关知识是解题的关键.5.如图,,a b 是直尺的两边,a b ,把三角板的直角顶点放在直尺的b 边上,若135∠=︒,则2∠的度数是()A.65︒B.55︒C.45︒D.35︒【答案】B 【解析】【分析】根据平行线的性质及平角可进行求解.【详解】解:如图:∵a b ,135∠=︒,∴135,2ACD BCE ∠=∠=︒∠=∠,∵180BCE ACB ACD ∠+∠+∠=︒,90ACB ∠=︒,∴1809035552BCE ∠=︒-︒-︒=︒=∠;故选B.【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质是解题的关键.6.为检测学生体育锻炼效果,从某班随机抽取10名学生进行篮球定时定点投篮检测,投篮进球数统计如图所示.对于这10名学生的定时定点投篮进球数,下列说法中错误的是()A.中位数是5B.众数是5C.平均数是5.2D.方差是2【答案】D 【解析】【分析】根据中位数、众数、平均数、方差定义逐个计算即可.【详解】根据条形统计图可得,从小到大排列第5和第6人投篮进球数都是5,故中位数是5,选项A 不符合题意;投篮进球数是5的人数最多,故众数是5,选项B 不符合题意;平均数3425362725.210+⨯+⨯+⨯+⨯==,故选项C 不符合题意;方差()()()()()222223 5.24 5.225 5.236 5.227 5.221.5610-+-⨯+-⨯+-⨯+-⨯==,故选项D 符合题意;故选:D.【点睛】本题考查了中位数、众数、平均数、方差和条形统计图的知识,解答本题的关键在于读懂题意,从图表中筛选出可用的数据,然后整合数据进行求解即可.7.下列各式从左到右的变形,因式分解正确的是()A.22(3)69+=++a a a B.()24444a a a a -+=-+C.()()22555ax ay a x y x y -=+- D.()()22824a a a a --=-+【答案】C 【解析】【分析】根据因式分解的概念可进行排除选项.【详解】解:A、22(3)69+=++a a a ,属于整式的乘法,故不符合题意;B、()24444a a a a -+=-+,不符合几个整式乘积的形式,不是因式分解;故不符合题意;C、()()22555ax ay a x y x y -=+-,属于因式分解,故符合题意;D、因为()()22242828a a a a a a -+=+-≠--,所以因式分解错误,故不符合题意;故选C.【点睛】本题主要考查因式分解,熟练掌握因式分解的概念是解题的关键.8.一个几何体的三视图如下,则这个几何体的表面积是()A .39πB.45πC.48πD.54π【答案】B 【解析】【分析】先根据三视图还原出几何体,再利用圆锥的侧面积公式和圆柱的侧面积公式计算即可.【详解】根据三视图可知,该几何体上面是底面直径为6,母线为4的圆锥,下面是底面直径为6,高为4的圆柱,该几何体的表面积为:211π646π4π612π24π9π45π22S ⎛⎫=⨯⨯⨯+⨯+⨯⨯=++= ⎪⎝⎭.故选B.【点睛】本题主要考查了简单几何体的三视图以及圆锥的侧面积公式和圆柱的侧面积公式,根据三视图还原出几何体是解决问题的关键.9.如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A B C D E ,,,,均在小正方形方格的顶点上,线段,AB CD 交于点F ,若CFB α∠=,则ABE ∠等于()A.180α︒-B.1802α︒-C.90α︒+ D.902α︒+【答案】C 【解析】【分析】根据三角形外角的性质及平行线的性质可进行求解.【详解】解:如图,由图可知:1,4GD EH CG BH ====,90CGD BHE ∠=∠=︒,∴()SAS CGD BHE ≌,∴GCD HBE ∠=∠,∵CG BD ∥,∴CAB ABD ∠=∠,∵CFB CAB GCD α∠=∠+∠=,∴ABD HBE α=∠+∠,∴90ABE ABD DBH HBE α∠=∠+∠+∠=︒+;故选C.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.10.已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,,34131111nn n a a a a a a +++==-- ,,,若12a =,则2023a 的值是()A.12-B.13C.3- D.2【答案】A 【解析】【分析】根据题意可把12a =代入求解23a =-,则可得312a =-,413a =,52a =……;由此可得规律求解.【详解】解:∵12a =,∴212312a +==--,3131132a -==-+,411121312a -==+,51132113a +==-,…….;由此可得规律为按2、3-、12-、13四个数字一循环,∵20234505.....3÷=,∴2023312a a ==-;故选A.【点睛】本题主要考查数字规律,解题的关键是得到数字的一般规律.二、填空题:本大题共5小题,每小题3分,共15分.11.一个函数过点()1,3,且y 随x 增大而增大,请写出一个符合上述条件的函数解析式_________.【答案】3y x =(答案不唯一)【解析】【分析】根据题意及函数的性质可进行求解.【详解】解:由一个函数过点()1,3,且y 随x 增大而增大,可知该函数可以为3y x =(答案不唯一);故答案为3y x =(答案不唯一).【点睛】本题主要考查正比例函数的性质,熟练掌握正比例函数的性质是解题的关键.12.已知一个多边形的内角和为540°,则这个多边形是______边形.【答案】5【解析】【详解】设这个多边形是n 边形,由题意得,(n -2)×180°=540°,解之得,n =5.13.某数学活动小组要测量一建筑物的高度,如图,他们在建筑物前的平地上选择一点A ,在点A 和建筑物之间选择一点B ,测得30m AB =.用高()1m 1m AC =的测角仪在A 处测得建筑物顶部E 的仰角为30︒,在B 处测得仰角为60︒,则该建筑物的高是_________m .【答案】()1【解析】【分析】结合三角形外角和等腰三角形的判定求得ED CD =,然后根据特殊角的三角函数值解直角三角形.【详解】解:由题意可得:四边形MNBD ,四边形DBAC ,四边形MNAC 均为矩形,∴30AB CD ==,1MN AC ==,在Rt EMC 中,30ECD ∠=︒,在Rt EDM △中,60EDM ∠=︒,∴30DEC EDM ECD ∠=∠-∠=︒,∴DEC ECD ∠=∠,∴30ED CD ==,在Rt EDM △中,sin 60EM ED =︒,即302EM =,解得EM =∴()1m EN EM MN =+=故答案为:()1+.【点睛】本题考查了解直角三角形的应用--仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.14.已知实数m 满足210m m --=,则32239m m m --+=_________.【答案】8【解析】【分析】由题意易得21m m -=,然后整体代入求值即可.【详解】解:∵210m m --=,∴21m m -=,∴32239m m m --+()2229m m m m m --=-+229m m m -=-+29m m =-+()29m m =--+19=-+8=;故答案为8.【点睛】本题主要考查因式分解及整体思想,熟练掌握利用整体思维及因式分解求解整式的值.15.如图,ABC 是边长为6的等边三角形,点D E ,在边BC 上,若30DAE ∠=︒,1tan 3EAC ∠=,则BD =_________.【答案】3【解析】【分析】过点A 作AH BC ⊥于H ,根据等边三角形的性质可得60BAC ∠=︒,再由AH BC ⊥,可得=30BAD DAH ∠+∠︒,再根据=30BAD EAC ∠+∠︒,可得DAH EAC ∠=∠,从而可得1tan =tan =3DAH EAC ∠∠,利用锐角三角函数求得sin 60AH AB =⋅︒=1==3DH AH ,求得DH =【详解】解:过点A 作AH BC ⊥于H ,∵ABC 是等边三角形,∴6AB AC BC ===,60BAC ∠=︒,∵AH BC ⊥,∴1302BAH BAC ∠=∠=︒,∴=30BAD DAH ∠+∠︒,∵30DAE ∠=︒,∴=30BAD EAC ∠+∠︒,∴DAH EAC ∠=∠,∴1tan =tan =3DAH EAC ∠∠,∵132BH AB ==,∵=sin 60=6=2AH AB ⋅︒⨯,∴1==3DH AH ,∴DH =∴==3BD BH DH --,故答案为:3-.【点睛】本题考查等边三角形的性质、锐角三角函数,熟练掌握等边三角形的性质证明DAH EAC ∠=∠是解题的关键.三、解答题:本大题共7小题,共55分.16.12cos3022--︒++.【答案】52【解析】【分析】根据二次根式的运算、特殊三角函数值及负指数幂可进行求解.【详解】解:原式312222=-⨯+-25=-+52=.【点睛】本题主要考查二次根式的运算、特殊三角函数值及负指数幂,熟练掌握各个运算是解题的关键.17.某学校为扎实推进劳动教育,把学生参与劳动教育情况纳入积分考核.学校随机抽取了部分学生的劳动积分(积分用x 表示)进行调查,整理得到如下不完整的统计表和扇形统计图.等级劳动积分人数A 90x ≥4B 8090x ≤<mC 7080x ≤<20D 6070x ≤<8E60x <3请根据以上图表信息,解答下列问题:(1)统计表中m =_________,C 等级对应扇形的圆心角的度数为_________;(2)学校规定劳动积分大于等于80的学生为“劳动之星”.若该学校共有学生2000人,请估计该学校“劳动之星”大约有多少人;(3)A 等级中有两名男同学和两名女同学,学校从A 等级中随机选取2人进行经验分享,请用列表法或画树状图法,求恰好抽取一名男同学和一名女同学的概率.【答案】(1)15,144︒(2)该学校“劳动之星”大约有760人(3)23【解析】【分析】(1)根据统计图可得抽取学生的总人数为50人,然后可得m 的值,进而问题可求解;(2)根据题意易知大于等于80的学生所占比,然后问题可求解;(3)根据列表法可进行求解概率.【小问1详解】解:由统计图可知:D 等级的人数有8人,所占比为16%,∴抽取学生的总人数为81650÷=%(人),∴504208315m =----=,C 等级对应扇形的圆心角的度数为2036014450⨯=︒︒;故答案为15,144︒;【小问2详解】解:由题意得:415200076050+⨯=(人),答:该学校“劳动之星”大约有760人【小问3详解】解:由题意可列表如下:男1男2女1女2男1/男1男2男1女2男1女2男2男1男2/男2女1男2女2女1男1女1男2女1/女1女2女2男1女2男2女2女1女2/从A 等级两名男同学和两名女同学中随机选取2人进行经验分享,共有12种情况,恰好抽取一名男同学和一名女同学共有8种情况,所以抽取一名男同学和一名女同学的概率为82123P ==.【点睛】本题主要考查扇形统计图与统计表、概率,熟练掌握扇形统计图及利用列表法求解概率是解题的关键.18.如图,BD 是矩形ABCD 的对角线.(1)作线段BD 的垂直平分线(要求:尺规作图,保留作图㢃迹,不必写作法和证明);(2)设BD 的垂直平分线交AD 于点E ,交BC 于点F ,连接BE DF ,.①判断四边形BEDF 的形状,并说明理由;②若510AB BC ==,,求四边形BEDF 的周长.【答案】(1)图见详解(2)①四边形BEDF 是菱形,理由见详解;②四边形BEDF 的周长为25【解析】【分析】(1)分别以点B 、D 为圆心,大于12BD 为半径画弧,分别交于点M 、N ,连接MN ,则问题可求解;(2)①由题意易得EDO FBO ∠=∠,易得()ASA EOD FOB ≌,然后可得四边形BEDF 是平行四边形,进而问题可求证;②设BE ED x ==,则10AE x =-,然后根据勾股定理可建立方程进行求解.【小问1详解】解:所作线段BD 的垂直平分线如图所示:【小问2详解】解:①四边形BEDF 是菱形,理由如下:如图,由作图可知:OB OD =,∵四边形ABCD 是矩形,∴AD BC ∥,∴EDO FBO ∠=∠,∵EOD FOB ∠=∠,∴()ASA EOD FOB ≌,∴ED FB =,∴四边形BEDF 是平行四边形,∵EF 是BD 的垂直平分线,∴BE ED =,∴四边形BEDF 是菱形;②∵四边形ABCD 是矩形,10BC =,∴90,10A AD BC ∠=︒==,由①可设BE ED x ==,则10AE x =-,∵5AB =,∴222AB AE BE +=,即()222510x x +-=,解得: 6.25x =,∴四边形BEDF 的周长为6.25425⨯=.【点睛】本题主要考查矩形的性质、菱形的性质与判定、勾股定理及线段垂直平分线的性质,熟练掌握矩形的性质、菱形的性质与判定、勾股定理及线段垂直平分线的性质是解题的关键.19.如图,正比例函数112y x =和反比例函数2(0)ky x x =>的图像交于点(),2A m .(1)求反比例函数的解析式;(2)将直线OA 向上平移3个单位后,与y 轴交于点B ,与2(0)ky x x=>的图像交于点C ,连接AB AC ,,求ABC 的面积.【答案】(1)28y x=(2)3【解析】【分析】(1)待定系数法求函数解析式;(2)根据平移的性质求得平移后函数解析式,确定B 点坐标,然后待定系数法求直线AB 的解析式,从而利用三角形面积公式分析计算.【小问1详解】解:把(),2A m 代入112y x =中,122m =,解得4m =,∴()4,2A ,把()4,2A代入2(0)k y x x =>中,24k=,解得8k =,∴反比例函数的解析式为28y x=;【小问2详解】解:将直线OA 向上平移3个单位后,其函数解析式为132y x =+,当0x =时,3y =,∴点B 的坐标为()0,3,设直线AB 的函数解析式为BC y mx n =+,将()4,2A ,()0,3B 代入可得423m n n +=⎧⎨=⎩,解得143m n ⎧=-⎪⎨⎪=⎩,∴直线AB 的函数解析式为134BC y x =-+,联立方程组1328y xyx⎧=+⎪⎪⎨⎪=⎪⎩,解得1181xy=-⎧⎨=-⎩,2224xy=⎧⎨=⎩∴C点坐标为()2,4,过点C作CM x⊥轴,交AB于点N,在134BCy x=-+中,当2x=时,52y=,∴53422 CN=-=,∴134322ABCS=⨯⨯=△.【点睛】本题考查一次函数和反比例函数的交点问题,掌握待定系数法求函数解析式,运用数形结合思想解题是关键.20.为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少0.3万元,且用15万元购买A型充电桩与用20万元购买B 型充电桩的数量相等.(1)A,B两种型号充电桩的单价各是多少?(2)该停车场计划共购买25个A,B型充电桩,购买总费用不超过26万元,且B型充电桩的购买数量不少于A型充电桩购买数量的12.问:共有哪几种购买方案?哪种方案所需购买总费用最少?【答案】(1)A型充电桩的单价为0.9万元,B型充电桩的单价为1.2万元(2)共有三种方案:方案一:购买A型充电桩14个,购买B型充电桩11个;方案二:购买A型充电桩15个,购买B型充电桩10个;方案三:购买A型充电桩16个,购买B型充电桩9个;方案三总费用最少.【解析】【分析】(1)根据“用15万元购买A 型充电桩与用20万元购买B 型充电桩的数量相等”列分式方程求解;(2)根据“购买总费用不超过26万元,且B 型充电桩的购买数量不少于A 型充电桩购买数量的12”列不等式组确定取值范围,从而分析计算求解【小问1详解】解:设B 型充电桩的单价为x 万元,则A 型充电桩的单价为()0.3x -万元,由题意可得:15200.3x x=-,解得 1.2x =,经检验: 1.2x =是原分式方程的解,0.30.9x -=,答:A 型充电桩的单价为0.9万元,B 型充电桩的单价为1.2万元;【小问2详解】解:设购买A 型充电桩a 个,则购买B 型充电桩()25a -个,由题意可得:()0.9 1.225261252a a a a⎧+-≤⎪⎨-≥⎪⎩,解得405033a ≤≤,∵a 须为非负整数,∴a 可取14,15,16,∴共有三种方案:方案一:购买A 型充电桩14个,购买B 型充电桩11个,购买费用为0.914 1.21125.8⨯+⨯=(万元);方案二:购买A 型充电桩15个,购买B 型充电桩10个,购买费用为0.915 1.21025.5⨯+⨯=(万元);方案三:购买A 型充电桩16个,购买B 型充电桩9个,购买费用为0.916 1.2925.2⨯+⨯=(万元),∵25.225.525.8<<∴方案三总费用最少.【点睛】本题主要考查了分式方程的应用,一元一次不等式组的应用,理解题意,找准等量关系列出分式方程和一元一次不等式组是解决问题的关键.21.如图,已知AB 是O 的直径,CD CB =,BE 切O 于点B ,过点C 作CF OE ⊥交BE 于点F ,若2EFBF =.(1)如图1,连接BD ,求证:ADB OBE △≌△;(2)如图2,N 是AD 上一点,在AB 上取一点M ,使60MCN ∠=︒,连接MN .请问:三条线段MN BM DN ,,有怎样的数量关系?并证明你的结论.【答案】(1)见解析(2)MN BM DN =+,证明见解析【解析】【分析】(1)根据CF OE ⊥,OC 是半径,可得CF 是O 的切线,根据BE 是O 的切线,由切线长定理可得BF CF =,进而根据1sin 2CF E EF ==,得出30E ∠=︒,60EOB ∠=︒,根据CD CB =得出 CDCB =,根据垂径定理的推论得出OC BD ⊥,进而得出90ADB EBO ∠=︒=∠,根据含30度角的直角三角形的性质,得出12AD BO AB ==,即可证明()AAS ABD OEB ≌;(2)延长ND 至H 使得DH BM =,连接CH ,BD ,根据圆内接四边形对角互补得出HDC MBC ∠=∠,证明HDC MBC ≌()SAS ,结合已知条件证明NC NC =,进而证明CNH CNM ≌()SAS ,得出NH MN =,即可得出结论.【小问1详解】证明:∵CF OE ⊥,OC 是半径,∴CF 是O 的切线,∵BE 是O 的切线,∴BF CF =,∵2EF BF=∴2EF CF =,∴1sin 2CF E EF ==∴30E ∠=︒,60EOB ∠=︒,∵CD CB=∴ CDCB =,∴OC BD ⊥,∵AB 是直径,∴90ADB EBO ∠=︒=∠,∵90E EBD ∠+∠=︒,90ABD EBD ∠+∠=︒∴30E ABD ∠=∠=︒,∴12AD BO AB ==,∴()AAS ABD OEB ≌;【小问2详解】MN BM DN =+,理由如下,延长ND 至H 使得DH BM =,连接CH ,BD ,如图所示∵180,180CBM NDC HDC NDC ∠+∠=︒∠+∠=︒∴HDC MBC ∠=∠,∵CD CB =,DH BM =∴HDC MBC≌()SAS ,∴BCM DCH ∠=∠,CM CH=由(1)可得30ABD ∠=︒,又AB 是直径,则90ADB ∠=︒,∴60A ∠=︒,∴180120DCB A ∠=︒-∠=︒,∵60MCN ∠=︒,∴1201206060BCM NCD NCM ∠+∠=︒-∠=︒-︒=︒,∴60DCH NCD NCH ∠+=∠=︒,∴NCH NCM ∠=∠,∵NC NC =,∴CNH CNM≌()SAS ,∴NH MN =,∴MN DN DH DN BM =+=+.即MN BM DN =+.【点睛】本题考查了切线的判定,切线长定理,垂径定理的推论,全等三角形的性质与判定,根据特殊角的三角函数值求角度,圆周角定理,圆内接四边形对角互补,熟练掌握全等三角形的性质与判定是解题的关键.22.如图,直线4y x =-+交x 轴于点B ,交y 轴于点C ,对称轴为32x =的抛物线经过B C ,两点,交x 轴负半轴于点A .P 为抛物线上一动点,点P 的横坐标为m ,过点P 作x 轴的平行线交抛物线于另一点M ,作x 轴的垂线PN ,垂足为N ,直线MN 交y 轴于点D .(1)求抛物线的解析式;(2)若302m <<,当m 为何值时,四边形CDNP 是平行四边形?(3)若32m <,设直线MN 交直线BC 于点E ,是否存在这样的m 值,使2MN ME =?若存在,求出此时m 的值;若不存在,请说明理由.【答案】(1)234y x x =-++(2)6213m =(3)存在,12m =【解析】【分析】(1)利用待定系数法求函数解析式;(2)结合平行四边形的性质,通过求直线MN 的函数解析式,列方程求解;(3)根据2MN ME =,确定E 点坐标,从而利用一次函数图象上点的特征计算求解.【小问1详解】解:在直线4y x =-+中,当0x =时,4y =,当0y =时,4x =,∴点()4,0B ,点()0,4C ,设抛物线的解析式为232y a x k ⎛⎫=-+ ⎪⎝⎭,把点()4,0B ,点()0,4C 代入可得2234023042a k a k ⎧⎛⎫-+=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-+= ⎪⎪⎝⎭⎩,解得1254a k =-⎧⎪⎨=⎪⎩,∴抛物线的解析式为223253424y x x x ⎛⎫=--+=-++ ⎪⎝⎭;【小问2详解】解:由题意,()2,34P m m m -++,∴234PN m m =-++,当四边形CDNP 是平行四边形时,PN CD =,∴223443OD m m m m =-++-=-+,∴()20,3D m m -,(),0N m ,设直线MN 的解析式为213y k x m m =+-,把(),0N m 代入可得2130k m m m +-=,解得13k m =-,∴直线MN 的解析式为()233y m x m m =-+-,又∵过点P 作x 轴的平行线交抛物线于另一点M ,且抛物线对称轴为32x =,∴()23,34M m m m --++∴()2223334m m m m m -+-=-++,解得163m +=(不合题意,舍去),263m =;【小问3详解】解:存在,理由如下:∵2MN ME =,∴点E 为线段MN 的中点,∴点E 的横坐标为3322m m -+=,∵点E 在直线4y x =-+上,∴35,22E ⎛⎫ ⎪⎝⎭,把35,22E ⎛⎫ ⎪⎝⎭代入()233y m x m m =-+-中,可得()2353322m m m -+-=,解得14m =(不合题意,舍去),212m =.【点睛】本题考查一次函数和二次函数的综合应用,掌握待定系数法求函数解析式,利用数形结合思想和方程思想解题是关键.。
2023年北京市中考数学试卷一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.(2分)截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为()A.23.9×107B.2.39×108C.2.39×109D.0.239×109 2.(2分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(2分)如图,∠AOC=∠BOD=90°,∠AOD=126°,则∠BOC的大小为()A.36°B.44°C.54°D.63°4.(2分)已知a﹣1>0,则下列结论正确的是()A.﹣1<﹣a<a<1B.﹣a<﹣1<1<a C.﹣a<﹣1<a<1D.﹣1<﹣a<1<a 5.(2分)若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则实数m的值为()A.﹣9B.C.D.96.(2分)正十二边形的外角和为()A.30°B.150°C.360°D.1800°7.(2分)先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是()A.B.C.D.8.(2分)如图,点A,B,C在同一条直线上,点B在点A,C之间,点D,E在直线AC 同侧,AB<BC,∠A=∠C=90°,△EAB≌△BCD,连接DE.设AB=a,BC=b,DE =c,给出下面三个结论:①a+b<c;②a+b>;③(a+b)>c.上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③二、填空题(共16分,每题2分)9.(2分)若代数式有意义,则实数x的取值范围是.10.(2分)分解因式:x2y﹣y3=.11.(2分)方程的解为.12.(2分)在平面直角坐标系xOy中,若函数y=(k≠0)的图象经过点A(﹣3,2)和B(m,﹣2),则m的值为.13.(2分)某厂生产了1000只灯泡.为了解这1000只灯泡的使用寿命,从中随机抽取了50只灯泡进行检测,获得了它们的使用寿命(单位:小时),数据整理如下:使用寿命x<10001000≤x<16001600≤x<22002200≤x<2800x≥2800灯泡只数51012176根据以上数据,估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为_____只.14.(2分)如图,直线AD,BC交于点O,AB∥EF∥CD,若AO=2,OF=1,FD=2,则的值为.15.(2分)如图,OA是⊙O的半径,BC是⊙O的弦,OA⊥BC于点D,AE是⊙O的切线,AE交OC的延长线于点E.若∠AOC=45°,BC=2,则线段AE的长为.16.(2分)学校组织学生参加木艺艺术品加工劳动实践活动.已知某木艺艺术品加工完成共需A,B、C,D、E,F、G七道工序,加工要求如下:①工序C,D须在工序A完成后进行,工序E须在工序B,D都完成后进行,工序F须在工序C,D都完成后进行;②一道工序只能由一名学生完成,此工序完成后该学生才能进行其他工序;③各道工序所需时间如下表所示:工序A B C D E F G所需时间/分钟99797102在不考虑其他因素的前提下,若由一名学生单独完成此木艺艺术品的加工,则需要______分钟;若由两名学生合作完成此木艺艺术品的加工,则最少需要分钟.三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)17.(5分)计算:4sin60°+()﹣1+|﹣2|﹣.18.(5分)解不等式组:.19.(5分)已知x+2y﹣1=0,求代数式的值.20.(6分)如图,在▱ABCD中,点E,F分别在BC,AD上,BE=DF,AC=EF.(1)求证:四边形AECF是矩形;(2)若AE=BE,AB=2,tan∠ACB=,求BC的长.21.(6分)对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6:4,左、右边的宽相等,均为天头长与地头长的和的.某人要装裱一副对联,对联的长为100cm,宽为27cm.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.(书法作品选自《启功法书》)22.(5分)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点A(0,1)和B (1,2),与过点(0,4)且平行于x轴的直线交于点C.(1)求该函数的解析式及点C的坐标;(2)当x<3时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值且小于4,直接写出n的值.23.(5分)某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:cm),数据整理如下:a.16名学生的身高:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175;b.16名学生的身高的平均数、中位数、众数:平均数中位数众数166.75m n(1)写出表中m,n的值;(2)对于不同组的学生,如果一组学生的身高的方差越小,则认为该组舞台呈现效果越好,据此推断:在下列两组学生中,舞台呈现效果更好的是(填“甲组”或“乙组”);甲组学生的身高162165165166166乙组学生的身高161162164165175(3)该舞蹈队要选五名学生参加比赛,已确定三名学生参赛,他们的身高分别为168,168,172,他们的身高的方差为.在选另外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于,其次要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的平均数尽可能大,则选出的另外两名学生的身高分别为和.24.(6分)如图,圆内接四边形ABCD的对角线AC,BD交于点E,BD平分∠ABC,∠BAC =∠ADB.(1)求证DB平分∠ADC,并求∠BAD的大小;(2)过点C作CF∥AD交AB的延长线于点F,若AC=AD,BF=2,求此圆半径的长.25.(5分)某小组研究了清洗某种含污物品的节约用水策略,部分内容如下.每次清洗1个单位质量的该种含污物品,清洗前的清洁度均为0.800,要求清洗后的清洁度为0.990.方案一:采用一次清洗的方式:结果:当用水量为19个单位质量时,清洗后测得的清洁度为0.990.方案二:采用两次清洗的方式:记第一次用水量为x1个单位质量,第二次用水量为x2个单位质量,总用水量为(x1+x2)个单位质量,两次清洗后测得的清洁度为C.记录的部分实验数据如下:x111.09.09.07.0 5.5 4.5 3.5 3.0 3.0 2.0 1.0 x20.8 1.0 1.3 1.9 2.6 3.2 4.3 4.0 5.07.111.5 x1+x211.810.010.38.98.17.77.87.08.09.112.5 C0.9900.9890.9900.9900.9900.9900.9900.9880.9900.9900.990对以上实验数据进行分析,补充完成以下内容.(Ⅰ)选出C是0.990的所有数据组,并划“√”;(Ⅱ)通过分析(Ⅰ)中选出的数据,发现可以用函数刻画第一次用水量x1和总用水量x1+x2之间的关系,在平面直角坐标系xOy中画出此函数的图象;结果:结合实验数据,利用所画的函数图象可以推断,当第一次用水量约为个单位质量(精确到个位)时,总用水量最小.根据以上实验数据和结果,解决下列问题:(1)当采用两次清洗的方式并使总用水量最小时,与采用一次清洗的方式相比、可节水约个单位质量(结果保留小数点后一位);(2)当采用两次清洗的方式时,若第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度C0.990(填“>”“=”或”<”).26.(6分)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)是抛物线y=ax2+bx+c(a >0)上任意两点,设抛物线的对称轴为x=t.(1)若对于x1=1,x2=2,有y1=y2,求t的值;(2)若对于0<x1<1,1<x2<2,都有y1<y2,求t的取值范围.27.(7分)在△ABC中,∠B=∠C=α(0°<α<45°),AM⊥BC于点M,D是线段MC 上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图1,当点E在线段AC上时,求证:D是MC的中点;(2)如图2,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AE,EF,直接写出∠AEF的大小,并证明.28.(7分)在平面直角坐标系xOy中,⊙O的半径为1.对于⊙O的弦AB和⊙O外一点C 给出如下定义:若直线CA,CB中一条经过点O,另一条是⊙O的切线,则称点C是弦AB的“关联点”.(1)如图,点A(﹣1,0),B1(,),B2(,).①在点C1(﹣1,1),C2(,0),C3(0,)中,弦AB1的“关联点”是;②若点C是弦AB2的“关联点”,直接写出OC的长;(2)已知点M(0,3),N(,0),对于线段MN上一点S,存在⊙O的弦PQ,使得点S是弦PQ的“关联点”.记PQ的长为t,当点S在线段MN上运动时,直接写出t 的取值范围.2023年北京市中考数学试卷参考答案与试题解析一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.【分析】用科学记数法表示绝对值较大的数时,一般形式为a×10n,其中1≤|a|<10,n 为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:239000000=2.39×108,故选:B.【点评】本题考查了科学记数法的表示方法,用科学记数法表示绝对值较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,解题的关键是要正确确定a和n的值.2.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A、原图既是中心对称图形,又是轴对称图形,故此选项符合题意;B、原图是中心对称图形,不是轴对称图形,故此选项不合题意;C、原图是轴对称图形,不是中心对称图形,故此选项不合题意;D、原图是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.3.【分析】先求出∠COD的度数,然后根据∠BOC=∠BOD﹣∠COD,即可得出答案.【解答】解:∵∠AOC=90°,∠AOD=126°,∴∠COD=∠AOD﹣∠AOC=36°,∵∠BOD=90°,∴∠BOC=∠BOD﹣∠COD=90°﹣36°=54°.故选:C.【点评】本题考查了余角和补角的知识,解答本题的关键是仔细观察图形,根据角的和差首先求出∠COD的度数.4.【分析】根据不等式的性质,进行计算即可解答.【解答】解:∵a﹣1>0,∴a>1,∴﹣a<﹣1,∴﹣a<﹣1<1<a,故选:B.【点评】本题考查了不等式的性质,熟练掌握不等式的性质是解题的关键.5.【分析】若一元二次方程有两个相等的实数根,则根的判别式Δ=b2﹣4ac,建立关于m 的等式,即可求解.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,∴Δ=b2﹣4ac=(﹣3)2﹣4m=0,解得m=.故选:C.【点评】此题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.6.【分析】本题考查多边形的外角和问题,多边形外角和定理:任意多边形的外角和都等于360°.【解答】解:因为多边形的外角和为360°,所以正十二边形的外角和为:360°.故选:C.【点评】本题考查多边形的外角和定理,解题的关键是指出定理即可求出正十二边行的外角和度数.7.【分析】根据概率的意义,即可解答.【解答】解:先后两次抛掷同一枚质地均匀的硬币,总共有四种等可能结果,分别是:(正,正)、(正,反)、(反,正)、(反,反),则第一次正面向上、第二次反面向上的概率是,故选:A.【点评】本题考查了概率的意义,本题考查了概率的意义是解题的关键.8.【分析】①根据直角三角形的斜边大于任一直角边即可;②在三角形中,两边之和大于第三边,据此可解答;③将c用a和b表示出来,再进行比较.【解答】解:①过点D作DF∥AC,交AE于点F;过点B作BG⊥FD,交FD于点G.∵DF∥AC,AC⊥AE,∴DF⊥AE.又∵BG⊥FD,∴BG∥AE,∴四边形ABGF为矩形.同理可得,四边形BCDG也为矩形.∴FD=FG+GD=a+b.∴在Rt△EFD中,斜边c>直角边a+b.故①正确.②∵△EAB≌△BCD,∴AE=BC=b,∴在Rt△EAB中,BE==.∵AB+AE>BE,∴a+b>.故②正确.③∵△EAB≌△BCD,∴∠AEB=∠CBD,又∵∠AEB+∠ABE=90°,∴∠CBD+∠ABE=90°,∴∠EBD=90°.∵BE=BD,∴∠BED=∠BDE=45°,∴BE==c•sin45°=c.∴c=.∵=2(a2+2ab+b2)=2(a2+b2)+4ab>2(a2+b2),∴>,∴>c.故③正确.故选:D.【点评】本题考查全等三角形的性质.虽然是选择题,但计算量不小,比较繁琐,需要细心、耐心.二、填空题(共16分,每题2分)9.【分析】根据分式的分母不为零列出不等式,解不等式得到答案.【解答】解:由题意得:x﹣2≠0,解得:x≠2,故答案为:x≠2.【点评】本题考查的是分式有意义的条件,熟记分式的分母不为零是解题的关键.10.【分析】先提取公因式y,再利用平方差公式进行二次分解.【解答】解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故答案为:y(x+y)(x﹣y).【点评】本题考查了提公因式法与公式法分解因式,提取公因式后利用平方差公式进行二次因式分解是解题的关键,分解要彻底.11.【分析】依据题意,由分式方程的解法即可得解.【解答】解:方程两边同时乘以2x(5x+1)得,3×2x=5x+1,∴x=1.检验:把x=1代入2x(5x+1)=12≠0,且方程左边=右边.∴原分式方程的解为x=1.【点评】本题主要考查了分式方程的解法,解题时要熟练掌握并灵活运用.12.【分析】将点A(﹣3,2)代入反比例函数y=可求出k的值,进而确定反比例函数关系式,再把点B(m,﹣2)代入计算即可.【解答】解:∵函数y=(k≠0)的图象经过点A(﹣3,2),∴k=﹣3×2=﹣6,∴反比例函数的关系式为y=﹣,又∵B(m,﹣2)在反比例函数的关系式为y=﹣的图象上,∴m==3,故答案为:3.【点评】本题考查反比例函数图象上点的坐标特征,把点的坐标代入函数关系式是常用的方法.13.【分析】用1000乘以使用寿命不小于2200小时的百分比即可.【解答】解:估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为1000×=460(只).故答案为:460.【点评】本题考查了频数(率)分布表和用样本估计总体,解题的关键是利用样本估计总体思想的运用.14.【分析】根据题意求出AF,再根据平行线分线段成比例定理计算即可.【解答】解:∵AO=2,OF=1,∴AF=AO+OF=2+1=3,∵AB∥EF∥CD,∴==,故答案为:.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.15.【分析】根据切线的性质得到∠A=90°,根据等腰直角三角形的性质得到OD=CD,OA=AE,根据垂径定理得到CD=,于是得到结论.【解答】解:∵OA是⊙O的半径,AE是⊙O的切线,∴∠A=90°,∵∠AOC=45°,OA⊥BC,∴△CDO和△EAO是等腰直角三角形,∴OD=CD,OA=AE,∴CD=,∴OD=CD=1,∴OC=OD=,∴AE=OA=OC=,故答案为:.【点评】本题考查了切线的性质,垂径定理,等腰直角三角形的判定和性质,熟练掌握等腰直角三角形的判定和性质定理是解题的关键.16.【分析】将所有工序需要的时间相加即可得出由一名学生单独完成需要的时间;假设这两名学生为甲、乙,根据加工要求可知甲学生做工序A,乙学生同时做工序B;然后甲学生做工序D,乙学生同时做工序C,乙学生工序C完成后接着做工序G;最后甲学生做工序E,乙学生同时做工序F,然后可得答案.【解答】解:由题意得:9+9+7+9+7+10+2=53(分钟),即由一名学生单独完成此木艺艺术品的加工,需要53分钟;假设这两名学生为甲、乙,∵工序C,D须在工序A完成后进行,工序E须在工序B,D都完成后进行,且工序A,B都需要9分钟完成,∴甲学生做工序A,乙学生同时做工序B,需要9分钟,然后甲学生做工序D,乙学生同时做工序C,乙学生工序C完成后接着做工序G,需要9分钟,最后甲学生做工序E,乙学生同时做工序F,需要10分钟,∴若由两名学生合作完成此木艺艺术品的加工,最少需要9+9+10=28(分钟),故答案为:53,28.【点评】本题考查了逻辑推理与时间统筹,根据加工要求得出加工顺序是解题的关键.三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)17.【分析】根据特殊角的三角函数值、负整数指数幂的运算法则、绝对值的性质、二次根式的性质计算.【解答】解:原式=4×+3+2﹣2=5.【点评】本题考查的是实数的运算,熟记特殊角的三角函数值、负整数指数幂的运算法则、绝对值的性质、二次根式的性质是解题的关键.18.【分析】按照解一元一次不等式组的步骤,进行计算即可解答.【解答】解:,解不等式①得:x>1,解不等式②得:x<2,∴原不等式组的解集为:1<x<2.【点评】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的步骤是解题的关键.19.【分析】根据已知可得x+2y=1,然后利用分式的基本性质化简分式,再把x+2y=1代入化简后的式子进行计算即可解答.【解答】解:∵x+2y﹣1=0,∴x+2y=1,∴====2,∴的值为2.【点评】本题考查了分式的值,熟练掌握因式分解是解题的关键.20.【分析】(1)先证四边形AECF是平行四边形,再由矩形的判定即可得出结论;(2)由矩形的性质得∠AEC=∠AEB=90°,再证△ABE是等腰直角三角形,得AE=BE=,然后由锐角三角函数定义得EC=2AE=2,即可解决问题.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE=DF,∴AD﹣DF=BC﹣BE,即AF=EC,∴四边形AECF是平行四边形,∵AC=EF,∴平行四边形AECF是矩形;(2)解:∵四边形AECF是矩形,∴∠AEC=∠AEB=90°,∵AE=BE,AB=2,∴△ABE是等腰直角三角形,∴AE=BE=AB=,∵tan∠ACB==,∴EC=2AE=2,∴BC=BE+EC=+2=3,即BC的长为3.【点评】本题考查了矩形的判定与性质、平行四边形的判定与性质、等腰直角三角形的判定与性质以及锐角三角函数定义等知识,熟练掌握矩形的判定与性质是解题的关键.21.【分析】若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.【解答】解:设天头长为6x,地头长为4x,则左、右边的宽为x,根据题意得,100+10x=4×(27+2x),解得x=4,答:边的宽为4cm,天头长为24cm.【点评】本题考查了一元一次方程的应用,正确地理解题意列出方程是解题的关键.22.【分析】(1)利用待定系数法可求出函数解析式,由题意知点C的纵坐标为4,代入函数解析式求出点C的横坐标即可;(2)根据函数图象得出当y=x+n过点(3,4)时满足题意,代入(3,4)求出n的值即可.【解答】解:(1)把点A(0,1),B(1,2)代入y=kx+b(k≠0)得:b=1,k+b=2,解得:k=1,b=1,∴该函数的解析式为y=x+1,由题意知点C的纵坐标为4,当y=x+1=4时,解得:x=3,∴C(3,4);(2)由(1)知:当x=3时,y=x+1=4,因为当x<3时,函数y=x+n的值大于函数y=x+1的值且小于4,所以当y=x+n过点(3,4)时满足题意,代入(3,4)得:4=×3+n,解得:n=2.【点评】本题考查了一次函数的图象和性质,待定系数法的应用,一次函数图象上点的坐标特征,熟练掌握数形结合思想的应用是解题的关键.23.【分析】(1)根据众数和中位数的定义进行计算;(2)根据方差的计算式计算方差,然后根据方差的意义进行比较;(3)根据方差进行比较.【解答】解:(1)数据按由小到大的顺序排序:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175,则舞蹈队16名学生的中位数为m==166,众数为n=165;(2)甲组学生身高的平均值是:=164.8,甲组学生身高的方差是:×[(164.8﹣162)2+(164.8﹣165)2+(164.8﹣165)2+(164.8﹣166)2+(164.8﹣166)2]=2.16,乙组学生身高的平均值是:=165.4,乙组学生身高的方差是:×[(165.4﹣161)2+(165.4﹣162)2+(165.4﹣164)2+(165.4﹣165)2+(165.4﹣175)2]=25.04,∵25.04>2.6,∴甲组舞台呈现效果更好.故答案为:甲组;(3)∵168,168,172的平均数为(168+168+172)=169,且所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于,∴数据的差别较小,可供选择的有170,172,平均数为:(168+168+170+172+172)=170,方差为:[(168﹣170)2+(168﹣170)2+(170﹣170)2+(172﹣170)2+(172﹣170)2]=3.2<,∴选出的另外两名学生的身高分别为170和172.故答案为:170,172.【点评】本题考查了平均数、众数、中位数和方差,熟记方差的计算公式以及方差的意义是解题的关键.24.【分析】(1)由圆周角定理得到∠BAC=∠CDB,而∠BAC=∠ADB,因此∠ADB=∠CDB,得到BD平分∠ADC,由圆内接四边形的性质得到∠ABD+∠ADB=90°,即可求出∠BAD=90°;(2)由垂径定理推出△ACD是等边三角形,得到∠ADC=60°由BD⊥AC,得到∠BDC =∠ADC=30°,由平行线的性质求出∠F=90°,由圆内接四边形的性质求出∠FBC =∠ADC=60°,得到BC=2BF=4,由直角三角形的性质得到BC=BD,因为BD是圆的直径,即可得到圆半径的长是4.【解答】(1)证明:∵∠BAC=∠ADB,∠BAC=∠CDB,∴∠ADB=∠CDB,∴BD平分∠ADC,∵BD平分∠ABC,∴∠ABD=∠CBD,∵四边形ABCD是圆内接四边形,∴∠ABC+∠ADC=180°,∴∠ABD+∠CBD+∠ADB+∠CDB=180°,∴2(∠ABD+∠ADB)=180°,∴∠ABD+∠ADB=90°,∴∠BAD=180°﹣90°=90°;(2)解:∵∠BAE+∠DAE=90°,∠BAE=∠ADE,∴∠ADE+∠DAE=90°,∴∠AED=90°,∵∠BAD=90°,∴BD是圆的直径,∴BD垂直平分AC,∴AD=CD,∵AC=AD,∴△ACD是等边三角形,∴∠ADC=60°∵BD⊥AC,∴∠BDC=∠ADC=30°,∵CF∥AD,∴∠F+∠BAD=90°,∴∠F=90°,∵四边形ABCD是圆内接四边形,∴∠ADC+∠ABC=180°,∵∠FBC+∠ABC=180°,∴∠FBC=∠ADC=60°,∴BC=2BF=4,∵∠BCD=90°,∠BDC=30°,∴BC=BD,∵BD是圆的直径,∴圆的半径长是4.【点评】本题考查圆内接四边形的性质,圆周角定理,平行线的性质,等边三角形的判定和性质,关键是由圆内接四边形的性质得到∠ABD+∠ADB=90°,由垂径定理推出△ACD是等边三角形.25.【分析】(Ⅰ)直接在表格中标记即可;(Ⅱ)根据表格中数据描点连线即可做出函数图象,再结合函数图象找到最低点,可得第一次用水量约为4个单位质量时,总用水量最小;(1)根据表格可得,用两次清洗的方式并使总用水量最小时,用水量为7.7个单位质量,计算即可;(2)根据表格可得当第一次用水量为6个单位质量,总用水量超过8个单位质量,则清洗后的清洁度能达到0.990,若总用水量为7.5个单位质量,则清洁度达不到0.990.【解答】解:(Ⅰ)表格如下:x111.09.09.07.0 5.5 4.5 3.5 3.0 3.0 2.0 1.0x20.8 1.0 1.3 1.9 2.6 3.2 4.3 4.0 5.07.111.5 x1+x211.810.010.38.98.17.77.87.08.09.112.5C0.990√0.9890.990√0.990√0.990√0.990√0.990√0.9880.990√0.990√0.990√(Ⅱ)函数图象如下:由图象可得,当第一次用水量约为4个单位质量(精确到个位)时,总用水量最小.故答案为:4;(1)当采用两次清洗的方式并使总用水量最小时,用水量为7.7个单位质量,19﹣7.7=11.3,即可节水约11.3个单位质量.故答案为:11.3;(2)由图可得,当第一次用水量为6个单位质量,总用水量超过8个单位质量,则清洗后的清洁度能达到C<0.990,第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度,故答案为:<.【点评】本题考查了函数图象,根据数据描绘函数图象、从函数图象获取信息是解题的关键.26.【分析】(1)根据二次函数的性质求得对称轴即可,(2)根据题意判断出离对称轴更近的点,从而得出(x1,y1)与(x2,y2)的中点在对称轴的右侧,再根据对称性即可解答.【解答】解:(1)∵对于x1=1,x2=2,有y1=y2,∴a+b+c=4a+2b+c,∴3a+b=0,∴=﹣3.∵对称轴为x=﹣=,∴t=.(2)∵0<x1<1,1<x2<2,∴,x1<x2,∵y1<y2,a>0,∴(x1,y1)离对称轴更近,x1<x2,则(x1,y1)与(x2,y2)的中点在对称轴的右侧,∴>t,即t≤.【点评】本题考查二次函数的性质,熟练掌握二次函数的对称性是解题关键.27.【分析】(1)由旋转的性质得DM=DE,∠MDE=2a,利用三角形外角的性质求出∠DEC =a=∠C,可得DE=DC,等量代换得到DM=DC即可;(2)延长FE到H使FE=EH,连接CH,AH,可得DE是△FCH的中位线,然后求出∠B=∠ACH,设DM=DE=m,CD=n,求出BF=2m=CH,证明△ABF≌ACH(SAS),得到AF=AH,再根据等腰三角形三线合一证明AE⊥FH即可.【解答】(1)证明:由旋转的性质得:DM=DE,∠MDE=2a,∵∠C=a,∴∠DEC=∠MDE﹣∠C=a,∴∠C=∠DEC,∴DE=DC,∴DM=DC,即D是MC的中点;(2)∠AEF=90°,证明:如图,延长FE到H使FE=EH,连接CH,AH,∵DF=DC,∴DE是FCH的中位线,∴DE∥CH,CH=2DE,由旋转的性质得:DM=DE,∠MDE=2a,∴∠FCH=2a,∵∠B=∠C=a,∴∠ACH=a,△ABC是等腰三角形,∴∠B=∠ACH,AB=AC设DM=DE=m,CD=n,则CH=2m,CM=m+n,.DF=CD=n,∴FM=DF﹣DM=n﹣m,∵AM⊥BC,∴BM=CM=m+n,∴BF=BM﹣FM=m+n﹣(n﹣m)=2m,∴CH=BF,在△ABF和△ACH中,,∴△ABF≌△ACH(SAS),∴AF=AH,∵FE=EH,∴AE⊥FH,即∠AEF=90°,【点评】本题考查了等腰三角形的判定和性质,旋转的性质,三角形外角的性质,三角形中位线定理以及全等三角形的判定和性质等知识,作出合适的辅助线,构造出全等三角形是解题的关键.28.【分析】(1)根据题目中关联点的定义分情况讨论即可;(2)根据M(0,3),N(,0)两点来求最值情况,共有两种情况,分别位于点M 和经过点O的MN的垂直平分线上,根据相似三角形的判定和性质即可得到结论.【解答】解:(1)①由关联定义可知,若直线CA、CB中一条经过点O,另一条是⊙O 的切线,则称点C是弦AB的“关联点”,∵点A(﹣1,0),B1(,),点C1(﹣1,1),C2(,0),C3(0,),∴直线AC2经过点O,且B1C2与⊙O相切,∴C2是弦AB1的“关联点”,∵C1(﹣1,1),A(﹣1,0)的横坐标相同,与B1(,)都位于直线y=﹣x 上,∴AC1与⊙O相切,B1C1经过点O,∴C1是弦AB1的“关联点”;故答案为:C1,C2;②∵A(﹣1,0),B2(,),设C(a,b),如图所示,共有两种情况,a、若C1B2与⊙O相切,AC经过点O,则C1B2,AC1所在直线为,解得,∴C1(,0),∴OC1=,b、若AC2与⊙O相切,C2B2经过点O,则直线C2B2,AC2所在直线为,解得,∴C2(﹣1,1),∴OC2=,综上所述,OC=;(2)∵线段MN上一点S,存在⊙O的弦PQ,使得点S是弦PQ的“关联点”,∵弦PQ随着S的变动在一定范围内变动,且M(0,3),N(,0),OM>ON,∴S共有2种情况,分别位于点M和经过点O的MN的垂直平分线上,如图所示,①当S位于点M(0,3)时,MP为⊙O的切线,作PJ⊥OM,∵M(0,3),⊙O的半径为1,且MP是⊙O的切线,∴OP⊥MP,∵PJ⊥OM,∴△MPO∽△POJ,∴,即,解得OJ=,∴PJ==,Q1J=,∴PQ1==,同理PQ2==,∴当S位于M(0,3)时,PQ1的临界值为和;②当S位于经过点O的MN的垂直平分线上的点K时,∵M(0,3),N(,0),∴MN=,∴=2,∵⊙O的半径为1,∴∠OKZ=30°,∴△OPQ为等边三角形,∴PQ=1或,∴当S位于经过点O且垂直于MN的直线上即点K时,PQ1的临界点为1和,∴在两种情况下,PQ的最小值在1≤t≤内,最大值在,综上所述,t的取值范围为1≤t≤,.【点评】本题是圆的综合题,考查了最值问题,切线的性质,等边三角形的判定和性质,勾股定理,相似三角形的判定和性质,熟练掌握心概念“关联点”是解题的关键。
重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框黑。
1.8的相反数是()A.-8B.8C.18D.-182.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B. C.D.3.反比例函数y =-4x的图象一定经过的点是()A.1,4B.-1,-4C.-2,2D.2,24.若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:165.如图,AB ∥CD ,AD ⊥AC ,若∠1=55°,则∠2的度数为()A.35°B.45°C.50°D.55°6.估计28+10 的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间7.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,⋯⋯,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.548.如图,AC是⊙O的切线,B为切点,连接OA,OC。
若∠A=30°,AB=23,BC=3,则OC的长度是()A.3B.23C.13D.69.如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°。
若∠BAE=α,则∠FEC一定等于()A.2αB.90°-2αC.45°-αD.90°-α10.在多项式x-y-z-m-n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”。
2023年临沂市初中学业水平考试试题数学一、选择题1.【答案】C【解析】解:2(7)(5)()57=----+=-;故选C .2.【答案】C【解析】解:由题意,可得130ABC ∠=︒,故选:C .3.【答案】B【解析】解:最符合视图特点的建筑物的图片是选项B 所示图片.故选:B .4.【答案】A【解析】解:由题意,得:点B 的坐标为(6,2);故选A .5.【答案】C【解析】解:∵在同一平面内,过直线l 外一点P 作l 的垂线m ,即l m ⊥,又∵过P 作m 的垂线n ,即n m ⊥,∴l n ∥,∴直线l 与n 的位置关系是平行,故选:C .6.【答案】D【解析】解:A 选项,32a a a -=,故选项错误,不符合题意;B 选项,222()2a b a ab b -=-+,故选项错误,不符合题意;C 选项,()2510a a =,故选项错误,不符合题意;D 选项,325326a a a ⋅=,故选项正确,符合题意;故选D .7.【答案】B【解析】解:正六边形的中心角的度数为:360606︒=︒,∴正六边形绕其中心旋转60︒或60︒的整数倍时,仍与原图形重合,∴旋转角的大小不可能是90︒;故选B .8.【答案】B【解析】解:m ====-∵=<<∴54-<-<-,即54m -<<-,故选:B .9.【答案】D【解析】解:设两名男生分别记为A ,B ,两名女生分别记为C ,D ,画树状图如下:共有12种等可能的结果,其中抽取的两名同学恰好是一名男生和一名女生的结果有8种,∴抽取的两名同学恰好是一名男生和一名女生的概率为82123=,故选:D .10.【答案】A【解析】解:由题意,得:105V t=,∴V 与t 满足反比例函数关系.故选A .11.【答案】C【解析】解:∵一次函数y kx b =+的图象不经过第二象限,∴00k b ><,,故选项A 正确,不符合题意;∴0kb <,故选项B 正确,不符合题意;∵一次函数y kx b =+的图象经过点()20,,∴20k b +=,则2b k =-,∴20k b k k k +=-=-<,故选项C 错误,符合题意;∵2b k =-,∴12k b =-,故选项D 正确,不符合题意;故选:C .12.【答案】A【解析】解:∵0a b +=∴a b =,故①错误,∵0,0a b b c c a +=->->∴b c a >>,又0a b +=∴0,0a b <>,故②③错误,∵0a b +=∴=-b a∵0b c c a ->->∴a c c a -->-∴c c->∴0c <,故④正确或借助数轴,如图所示,故选:A .二、填空题13.【答案】24【解析】解:根据菱形面积等于两条对角线乘积的一半可得:面积168242=⨯⨯=,故答案为:24.14.【答案】()()111n n -++【解析】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++15.【答案】14【解析】解:如图,由题意得13AD AB =,四边形DECF 是平行四边形,∴DF BC ∥,DE AC ∥,∴ ∽ADF ABC ,BDE BAC ∽△△,∴13DF AD BC AB ==,23DE BD AC AB ==,∵69AC BC ==,,∴3DF =,4DE =,∵四边形DECF 平行四边形,∴平行四边形DECF 纸片的周长是()23414+=,故答案为:14.16.【答案】②③④【解析】解:列表,x L 2.5-2-1-0.5-0.512L yL5.4531- 3.75- 4.2535L描点、连线,图象如下,根据图象知:①当1x <-时,x 越小,函数值越大,错误;②当10x -<<时,x 越大,函数值越小,正确;③当01x <<时,x 越小,函数值越大,正确;④当1x >时,x 越大,函数值越大,正确.故答案为:②③④.三、解答题17.【答案】(1)3x >(2)从第①步开始出错,过程见解析【解析】解:(1)1522xx --<,去分母,得:1041x x -<-,移项,合并,得:39x -<-,系数化1,得:3x >;(2)从第①步开始出错,正确的解题过程如下:()()22111111a a a a a a a a +---=----22111a a a a -=---11a =-.18.【答案】(1)见解析(2)①90.5;②测试成绩分布在9195 的较多(不唯一);(3)估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.【解析】(1)解:数据从小到大排列:81、82、83、85、86、87、87、88、89、90、91、92、92、92、93、94、95、96、99、100最大值是100,最小值为81,极差为1008119-=,若组距为5,则分为4组,频数分布表成绩分组8185 8690 9195 96100划记正一频数4673频数分布直方图,如图;;(2)解:①中位数是909190.52+=;故答案为90.5;②测试成绩分布在9195 的较多(不唯一);(3)解:67360048020++⨯=(人),答:估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.19.【答案】渔船没有触礁的危险【解析】解:过点A 作AD BC ⊥,由题意,得:905832ABC ∠=︒-︒=︒,45ACD ∠=︒,6BC =,设AD x =,在Rt ADC 中,45ACD ∠=︒,∴AD CD x ==,∴6BD x =+,在Rt ADB 中,tan 0.6256AD xABD BD x ∠==≈+,∴10x =,∴10AD =,∵109>,∴渔船没有触礁的危险.20.【答案】(1)这台M 型平板电脑的价值为2100元(2)她应获得120m 元的报酬【解析】(1)解:设这台M 型平板电脑的价值为x 元,由题意,得:15003003020x x ++=,解得:2100x =;∴这台M 型平板电脑的价值为2100元;(2)解:由题意,得:2100150012030m m +⋅=;答:她应获得120m 元的报酬.21.【答案】(1)见解析(2)43π【解析】(1)证明:连接AO 并延长交BC 于点F ,∵O 是ABC 的外接圆,∴点O 是ABC 三边中垂线的交点,∵AB AC =,∴AO BC ⊥,∵AE BC ∥,∴AO AE ⊥,∵AO 是O 的半径,∴AE 是O 的切线;(2)解:连接OC ,∵AB AC =,∴75ABC ACB ∠=∠=︒,∴18027530BAC ∠=︒-⨯︒=︒,∴260BOC BAC ∠=∠=︒,∵OB OC =,∴BOC 为等边三角形,∴2===OC OB BC ,∴180120COD BOC ∠=︒-∠=︒,∴ CD的长为120241803ππ⨯=.22.【答案】(1))21AB BD =,(2)见解析(3)见解析【解析】(1)解:∵90,A AB AC ∠=︒=∴2BC =,∵BC AB BD =+2AB BD =+即)21AB BD =;(2)证明:如图所示,∴90,A AB AC ∠=︒=∴=45ABC ∠︒,∵BD AB ⊥,∴45DBC ∠=︒∵CE BC =,12∠=∠,CF DC =∴CBD CEF ≌∴=45E DBC ∠=∠︒∴EF BD ∥∴AB EF⊥(3)证明:如图所示,延长,BA EF 交于点M ,延长CH 交ME 于点G ,∵EF AB ⊥,AC AB ⊥,∴ME AC ∥,∴CGE ACG∠=∠∵CH 是ACE ∠的角平分线,∴ACG ECG ∠=∠,∴CGE ECG ∠=∠∴EG EC =∵CBD CEF ≌,∴EF BD =,CE CB =,∴EG CB =,又∵BC AB BD =+,∴EG AB BD AC EF =+=+,即FG EF AC EF +=+,∴AC EG =,又AC FG ∥,则HAG HFG ∠=∠,在,AHC FHG 中,HAG HFG AHG FHG AC FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AHC FHG ≌,∴AHHF=23.【答案】(1)见解析(2)售价每涨价2元,日销售量少卖4盆(3)①定价为每盆25元或每盆35元时,每天获得400元的利润;②售价定为30元时,每天能够获得最大利润【解析】(1)解:按照售价从低到高排列列出表格如下:售价(元/盆)1820222630日销售量(盆)5450463830【小问2详解】由表格可知,售价每涨价2元,日销售量少卖4盆;(3)①设:定价应为x 元,由题意,得:()()181********x x -⎡⎤--⨯=⎢⎥⎣⎦,整理得:2212017500x x -+-=,解得:1225,35x x ==,∴定价为每盆25元或每盆35元时,每天获得400元的利润;②设每天的利润为w ,由题意,得:()()22120135018155442x w x x x -⎡⎤=--⨯+⎣--=⎢⎥⎦,∴()2221201350230450w x x x -+---+==,∵20-<,∴当30x =时,w 有最大值为450元.答:售价定为30元时,每天能够获得最大利润.。
2023年四川省自贡市中考数学试卷一、选择题(共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.(4分)如图,数轴上点A表示的数是2023,OA=OB,则点B表示的数是()A.2023B.﹣2023C.D.﹣2.(4分)自贡恐龙博物馆今年“五一”期间接待游客约110000人.人数110000用科学记数法表示为()A.1.1×104B.11×104C.1.1×105D.1.1×106 3.(4分)如图中六棱柱的左视图是()A.B.C.D.4.(4分)如图,某人沿路线A→B→C→D行走,AB与CD方向相同,∠1=128°,则∠2=()A.52°B.118°C.128°D.138°5.(4分)如图,边长为3的正方形OBCD两边与坐标轴正半轴重合,点C的坐标是()A.(3,﹣3)B.(﹣3,3)C.(3,3)D.(﹣3,﹣3)6.(4分)下列交通标志图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.7.(4分)下列说法正确的是()A.甲、乙两人10次测试成绩的方差分别是S甲2=4,S乙2=14,则乙的成绩更稳定B.某奖券的中奖率为,买100张奖券,一定会中奖1次C.要了解神舟飞船零件质量情况,适合采用抽样调查D.x=3是不等式2(x﹣1)>3的解,这是一个必然事件8.(4分)如图,△ABC内接于⊙O,CD是⊙O的直径,连接BD,∠DCA=41°,则∠ABC 的度数是()A.41°B.45°C.49°D.59°9.(4分)第29届自贡国际恐龙灯会“辉煌新时代”主题灯组上有一幅不完整的正多边形图案,小华量得图中一边与对角线的夹角∠ACB=15°,算出这个正多边形的边数是()A.9B.10C.11D.1210.(4分)如图1,小亮家、报亭、羽毛球馆在一条直线上.小亮从家跑步到羽毛球馆打羽毛球,再去报亭看报,最后散步回家.小亮离家距离y与时间x之间的关系如图2所示.下列结论错误的是()A.小亮从家到羽毛球馆用了7分钟B.小亮从羽毛球馆到报亭平均每分钟走75米C.报亭到小亮家的距离是400米D.小亮打羽毛球的时间是37分钟11.(4分)经过A(2﹣3b,m),B(4b+c﹣1,m)两点的抛物线y=﹣x2+bx﹣b2+2c(x 为自变量)与x轴有交点,则线段AB长为()A.10B.12C.13D.1512.(4分)如图,分别经过原点O和点A(4,0)的动直线a,b夹角∠OBA=30°,点M 是OB中点,连接AM,则sin∠OAM的最大值是()A.B.C.D.二、填空题(共6个小题,每小题4分,共24分)13.(4分)计算:7a2﹣4a2=.14.(4分)请写出一个比小的整数.15.(4分)化简:=.16.(4分)端午节早上,小颖为全家人蒸了2个蛋黄粽,3个鲜肉粽,她从中随机挑选了两个孝敬爷爷奶奶,请问爷爷奶奶吃到同类粽子的概率是.17.(4分)如图,小珍同学用半径为8cm,圆心角为100°的扇形纸片,制作一个底面半径为2cm的圆锥侧面,则圆锥上粘贴部分的面积是cm2.18.(4分)如图,直线y=﹣x+2与x轴,y轴分别交于A,B两点,点D是线段AB上一动点,点H是直线y=﹣x+2上的一动点,动点E(m,0),F(m+3,0),连接BE,DF,HD.当BE+DF取最小值时,3BH+5DH的最小值是.三、解答题(共8个题,共78分)19.(8分)计算:|﹣3|﹣(+1)0﹣22.20.(8分)如图,在平行四边形ABCD中,点M,N分别在边AB,CD上,且AM=CN.求证:DM=BN.21.(8分)某校组织七年级学生到江姐故里研学旅行,租用同型号客车4辆,还剩30人没有座位;租用5辆,还空10个座位.求该客车的载客量.22.(8分)某校为了解“世界读书日”主题活动开展情况,对本学期开学以来学生课外读书情况进行了随机抽样调查,所抽取的12名学生课外读书数量(单位:本)数据如下:2,4,5,4,3,5,3,4,1,3,2,4.(1)补全学生课外读书数量条形统计图;(2)请直接写出本次所抽取学生课外读书数量的众数、中位数和平均数;(3)该校有600名学生,请根据抽样调查的结果,估计本学期开学以来课外读书数量不少于3本的学生人数.23.(10分)如图1,一大一小两个等腰直角三角形叠放在一起,M,N分别是斜边DE,AB 的中点,DE=2,AB=4.(1)将△CDE绕顶点C旋转一周,请直接写出点M,N距离的最大值和最小值;(2)将△CDE绕顶点C逆时针旋转120°(如图2),求MN的长.24.(10分)如图,点A(2,4)在反比例函数y1=图象上.一次函数y2=kx+b的图象经过点A,分别交x轴,y轴于点B,C,且△OAC与△OBC的面积比为2:1.(1)求反比例函数和一次函数的解析式;(2)请直接写出y1≥y2时,x的取值范围.25.(12分)为测量学校后山高度,数学兴趣小组活动过程如下:如图1,后山一侧有三段相对平直的山坡AB,BC,CD,山的高度即为三段坡面的铅直高度BH,CQ,DR之和,坡面的长度可以直接测量得到,要求山坡高度还需要知道坡角大小.如图2,同学们将两根直杆MN,MP的一端放在坡面起始端A处,直杆MP沿坡面AB 方向放置,在直杆MN另一端N用细线系小重物G,当直杆MN与铅垂线NG重合时,测得两杆夹角α的度数,由此可得山坡AB坡角β的度数.请直接写出α,β之间的数量关系.(2)测量山高同学们测得山坡AB,BC,CD的坡长依次为40米,50米,40米,坡角依次为24°,30°,45°;为求BH,小熠同学在作业本上画了一个含24°角的Rt△TKS(如图3),量得KT ≈5cm,TS≈2cm.求山高DF.(≈1.41,结果精确到1米)(3)测量改进由于测量工作量较大,同学们围绕如何优化测量进行了深入探究,有了以下新的测量方法.如图4,5,在学校操场上,将直杆NP置于MN的顶端,当MN与铅垂线NG重合时,转动直杆NP,使点N,P,D共线,测得∠MNP的度数,从而得到山顶仰角β1,向后山方向前进40米,采用相同方式,测得山顶仰角β2;画一个含β1的直角三角形,量得该角对边和另一直角边分别为a1厘米,b1厘米,再画一个含β2的直角三角形,量得该角对边和另一直角边分别为a2厘米,b2厘米.已知杆高MN为1.6米,求山高DF.(结果用不含β1,β2的字母表示)26.(14分)如图,抛物线y=﹣x2+bx+4与x轴交于A(﹣3,0),B两点,与y轴交于点C.(1)求抛物线解析式及B,C两点坐标;(2)以A,B,C,D为顶点的四边形是平行四边形,求点D坐标;(3)该抛物线对称轴上是否存在点E,使得∠ACE=45°,若存在,求出点E的坐标;若不存在,请说明理由.2023年四川省自贡市中考数学试卷参考答案与试题解析一、选择题(共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.(4分)如图,数轴上点A表示的数是2023,OA=OB,则点B表示的数是()A.2023B.﹣2023C.D.﹣【解答】解:∵OA=OB,点A表示的数是2023,∴OB=2023,∵点B在O点左侧,∴点B表示的数为:0﹣2023=﹣2023,故选:B.2.(4分)自贡恐龙博物馆今年“五一”期间接待游客约110000人.人数110000用科学记数法表示为()A.1.1×104B.11×104C.1.1×105D.1.1×106【解答】解:110000=1.1×105.故选:C.3.(4分)如图中六棱柱的左视图是()A.B.C.D.【解答】解:由题可得,六棱柱的左视图是两个相邻的长相等的长方形,如图:.故选:A.4.(4分)如图,某人沿路线A→B→C→D行走,AB与CD方向相同,∠1=128°,则∠2=()A.52°B.118°C.128°D.138°【解答】解:由题意得,AB∥CD,∴∠2=∠1=128°.故选:C.5.(4分)如图,边长为3的正方形OBCD两边与坐标轴正半轴重合,点C的坐标是()A.(3,﹣3)B.(﹣3,3)C.(3,3)D.(﹣3,﹣3)【解答】解:∵正方形的边长为3,∴DC=BC=3,∵点C在第一象限,∴C的坐标为(3,3).故选:C.6.(4分)下列交通标志图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【解答】解:图形既是中心对称图形又是轴对称图形,故选:B.7.(4分)下列说法正确的是()A.甲、乙两人10次测试成绩的方差分别是S甲2=4,S乙2=14,则乙的成绩更稳定B.某奖券的中奖率为,买100张奖券,一定会中奖1次C.要了解神舟飞船零件质量情况,适合采用抽样调查D.x=3是不等式2(x﹣1)>3的解,这是一个必然事件【解答】解:A、∵4<14,∴,∴甲的成绩更稳定,故本选项不符合题意;B、某奖券的中奖率为,则买100张奖券,不一定会中奖,是随机事件,故本选项不符合题意;C、要了解神舟飞船零件质量情况,适合采用全面调查,故本选项不符合题意;D、不等式2(x﹣1)>3的解集是x>2.5,∴x=3是这个不等式的解,是必然事件,故本选项符合题意;故选:D.8.(4分)如图,△ABC内接于⊙O,CD是⊙O的直径,连接BD,∠DCA=41°,则∠ABC 的度数是()A.41°B.45°C.49°D.59°【解答】解:∵CD是⊙O的直径,∴∠DBC=90°,∵∠DBA=∠DCA=41°,∴∠ABC=90°﹣∠DBA=49°,故选:C.9.(4分)第29届自贡国际恐龙灯会“辉煌新时代”主题灯组上有一幅不完整的正多边形图案,小华量得图中一边与对角线的夹角∠ACB=15°,算出这个正多边形的边数是()A.9B.10C.11D.12【解答】解:∵AB=CB,∠ACB=15°,∴∠ABC=180°﹣15°﹣15°=150°,设这个正多边形为正n边形,则=150°,解得n=12,经检验n=12是原方程的解,即这个正多边形是正十二边形,故选:D.10.(4分)如图1,小亮家、报亭、羽毛球馆在一条直线上.小亮从家跑步到羽毛球馆打羽毛球,再去报亭看报,最后散步回家.小亮离家距离y与时间x之间的关系如图2所示.下列结论错误的是()A.小亮从家到羽毛球馆用了7分钟B.小亮从羽毛球馆到报亭平均每分钟走75米C.报亭到小亮家的距离是400米D.小亮打羽毛球的时间是37分钟【解答】解:A、由图象得:小亮从家到羽毛球馆用了7分钟,故A选项不符合题意;B、由图象可知:小亮从羽毛球馆到报亭的平均速度为:(1.0﹣0.4)÷(45﹣37)=0.075(千米/分)=75(米/分),故B选项不符合题意;C、由图象知报亭到小亮家的距离是0.4千米,即400米,故C选项不符合题意;D、由图象知小亮打羽毛球的时间是37﹣7=30(分钟),故D选项符合题意;故选:D.11.(4分)经过A(2﹣3b,m),B(4b+c﹣1,m)两点的抛物线y=﹣x2+bx﹣b2+2c(x 为自变量)与x轴有交点,则线段AB长为()A.10B.12C.13D.15【解答】解:∵经过A(2﹣3b,m),B(4b+c﹣1,m)两点的抛物线y=﹣x2+bx﹣b2+2c (x为自变量)与x轴有交点,∴=﹣,Δ=b2﹣4×(﹣)×(﹣b2+2c)≥0,∴b=c+1,b2≤4c,∴(c+1)2≤4c,∴(c﹣1)2≤0,∴c﹣1=0,解得c=1,∴b=c+1=2,∴AB=|(4b+c﹣1)﹣(2﹣3b)|=|4b+c﹣1﹣2+3b|=|7b+c﹣3|=|7×2+1﹣3||14+1﹣3|=12,故选:B.12.(4分)如图,分别经过原点O和点A(4,0)的动直线a,b夹角∠OBA=30°,点M 是OB中点,连接AM,则sin∠OAM的最大值是()A.B.C.D.【解答】解:作△AOB的外接圆⊙T,连接OT,TA,TB,取OT的中点K,连接KM.∵∠ATO=2∠ABO=60°,TO=TA,∴△OAT是等边三角形,∵A(4,0),∴TO=TA=TB=4,∵OK=KT,OM=MB,∴点M在以K为圆心,2为半径的圆上运动,当AM与⊙K相切时,∠OAM的值最大,此时sin∠OAM的值最大,∵△OTA是等边三角形,OK=KT,∴AK⊥OT,∴AK===2,∵AM是切线,KM是半径,∴AM⊥KM,∴AM===2,过点M作ML⊥OA于点L,KR⊥OA于点R,MP⊥RK于点P.∵∠PML=∠AMK=90°,∴∠PMK=∠LMA,∵∠P=∠MLA=90°,∴△MPK∽△MLA,∴====,设PK=x,PM=y,则有ML=y,AL=x,∴y=+x①,y=3﹣x,解得,x=,y=,∴ML=y=,∴sin∠OAM===.故选:A.二、填空题(共6个小题,每小题4分,共24分)13.(4分)计算:7a2﹣4a2=3a2.【解答】解:7a2﹣4a2=(7﹣4)a2=3a2,故答案为:3a2.14.(4分)请写出一个比小的整数4(答案不唯一).【解答】解:∵42=16,52=25,而16<23<25,∴比小的整数有4(答案不唯一),故答案为:4(答案不唯一).15.(4分)化简:=x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.16.(4分)端午节早上,小颖为全家人蒸了2个蛋黄粽,3个鲜肉粽,她从中随机挑选了两个孝敬爷爷奶奶,请问爷爷奶奶吃到同类粽子的概率是.【解答】解:把2个蛋黄粽分别记为A、B,3个鲜肉粽分别记为C、D、E,画树状图如下:共有20种等可能的结果,其中爷爷奶奶吃到同类粽子的结果有8种,即AB、BA、CD、CE、DC、DE、EC、ED,∴爷爷奶奶吃到同类粽子的概率是=,故答案为:.17.(4分)如图,小珍同学用半径为8cm,圆心角为100°的扇形纸片,制作一个底面半径为2cm的圆锥侧面,则圆锥上粘贴部分的面积是cm2.【解答】解:如图,由题意得弧AC的长为2π×2=4π(cm),设弧AC所对的圆心角为n°,则即=4π,解得n=90,∴粘贴部分所对应的圆心角为100°﹣90°=10°,∴圆锥上粘贴部分的面积是=(cm2),故答案为:.18.(4分)如图,直线y=﹣x+2与x轴,y轴分别交于A,B两点,点D是线段AB上一动点,点H是直线y=﹣x+2上的一动点,动点E(m,0),F(m+3,0),连接BE,DF,HD.当BE+DF取最小值时,3BH+5DH的最小值是.【解答】解:∵直线与x轴,y轴分别交于A,B两点,∴B(0,2),A(6,0),作点B关于x轴的对称点B'(0,﹣2),把点B'向右平移3个单位得到C(3,﹣2),作CD⊥AB于点D,交x轴于点F,过点B'作B'E∥CD交x轴于点E,则四边形EFCB 是平行四边形,此时,B'E=BE=CF,∴BE+DF=CF+DF=CD有最小值,作CP⊥x轴于点P,则CP=2,OP=3,∵∠CFP=∠AFD,∴∠FCP=∠FAD,∴tan∠FCP=tan∠FAD,∴,即,则,设直线CD的解析式为y=kx+b,则,,解得,∴直线CD的解析式为y=3x﹣11,联立,解得,即D(,),过点D作DG⊥y轴于点G,直线与x轴的交点为,则,∴sin∠OBQ===,∴,∴3BH+5DH=5(HG+DH)=5(HG+DH)=5DG,即3BH+5DH的最小值是5DG=5×=,故答案为:.三、解答题(共8个题,共78分)19.(8分)计算:|﹣3|﹣(+1)0﹣22.【解答】解:原式=3﹣1﹣4=﹣2.20.(8分)如图,在平行四边形ABCD中,点M,N分别在边AB,CD上,且AM=CN.求证:DM=BN.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AM=CN,∴AB﹣AM=CD﹣CN,即BM=DN,又∵BM∥DN,∴四边形MBND是平行四边形,∴DM=BN.21.(8分)某校组织七年级学生到江姐故里研学旅行,租用同型号客车4辆,还剩30人没有座位;租用5辆,还空10个座位.求该客车的载客量.【解答】解:设该客车的载客量为x人,根据题意得:4x+30=5x﹣10,解得:x=40.答:该客车的载客量为40人.22.(8分)某校为了解“世界读书日”主题活动开展情况,对本学期开学以来学生课外读书情况进行了随机抽样调查,所抽取的12名学生课外读书数量(单位:本)数据如下:2,4,5,4,3,5,3,4,1,3,2,4.(1)补全学生课外读书数量条形统计图;(2)请直接写出本次所抽取学生课外读书数量的众数、中位数和平均数;(3)该校有600名学生,请根据抽样调查的结果,估计本学期开学以来课外读书数量不少于3本的学生人数.【解答】解:(1),(2)本次所抽取学生课外读书数量的众数为4本,中位数为(本),平均数为=(本),(3)(名),答:本学期开学以来课外读书数量不少于3本的学生人数为450名.23.(10分)如图1,一大一小两个等腰直角三角形叠放在一起,M,N分别是斜边DE,AB 的中点,DE=2,AB=4.(1)将△CDE绕顶点C旋转一周,请直接写出点M,N距离的最大值和最小值;(2)将△CDE绕顶点C逆时针旋转120°(如图2),求MN的长.【解答】解:(1)以C为圆心,CM长为半径画圆,连接CN交DE于M1,延长NC交圆于M2,∵△ACB是等腰直角三角形,N是AB中点,∴CN平分∠ACB,CN=AB=×4=2,∵△DCE是等腰直角三角形,∴M1是DE中点,∴CM1=DE=×2=1,∴M、N距离的最小值是NM1=CN﹣CM1=2﹣1=1,M、N距离的最大值是NM2=CN+CM2=2+1=3.(2)连接CM,CN,作NH⊥MC交MC延长线于H,∵△ACB是等腰直角三角形,N是AB中点,∴CN=AB=2,同理:CM=DE=1,∵△CDE绕顶点C逆时针旋转120°,∴∠MCN=120°,∴∠NCH=180°﹣∠MCN=60°,∴CH=CN=1,∴NH=CH=,∵MH=MC+CH=2,∴MN==.24.(10分)如图,点A(2,4)在反比例函数y1=图象上.一次函数y2=kx+b的图象经过点A,分别交x轴,y轴于点B,C,且△OAC与△OBC的面积比为2:1.(1)求反比例函数和一次函数的解析式;(2)请直接写出y1≥y2时,x的取值范围.【解答】解:(1)∵点A(2,4)在反比例函数y1=图象上,∴m=2×4=8,∴反比例函数为y1=,∵△OAC与△OBC的面积比为2:1,A(2,4),∴B(1,0)或B(﹣1,0),把A(2,4),B(1,0)代入y2=kx+b得,解得,∴一次函数为y2=4x﹣4,把A(2,4),B(﹣1,0)代入y2=kx+b得,解得,∴一次函数为y2=x+,综上,一次函数的解析式为y2=4x﹣4或y2=x+;(2)当y2=4x﹣4时,联立,解得或,由图象可知,y1≥y2时,x的取值范围x≤﹣1或0<x≤2;当y2=x+时,联立,解得或,由图象可知,y1≥y2时,x的取值范围x≤﹣3或0<x≤2;综上,当y2=4x﹣4时,x的取值范围x≤﹣1或0<x≤2;当y2=x+时,x的取值范围x≤﹣3或0<x≤2.25.(12分)为测量学校后山高度,数学兴趣小组活动过程如下:(1)测量坡角如图1,后山一侧有三段相对平直的山坡AB,BC,CD,山的高度即为三段坡面的铅直高度BH,CQ,DR之和,坡面的长度可以直接测量得到,要求山坡高度还需要知道坡角大小.如图2,同学们将两根直杆MN,MP的一端放在坡面起始端A处,直杆MP沿坡面AB 方向放置,在直杆MN另一端N用细线系小重物G,当直杆MN与铅垂线NG重合时,测得两杆夹角α的度数,由此可得山坡AB坡角β的度数.请直接写出α,β之间的数量关系.(2)测量山高同学们测得山坡AB,BC,CD的坡长依次为40米,50米,40米,坡角依次为24°,30°,45°;为求BH,小熠同学在作业本上画了一个含24°角的Rt△TKS(如图3),量得KT ≈5cm,TS≈2cm.求山高DF.(≈1.41,结果精确到1米)(3)测量改进由于测量工作量较大,同学们围绕如何优化测量进行了深入探究,有了以下新的测量方法.如图4,5,在学校操场上,将直杆NP置于MN的顶端,当MN与铅垂线NG重合时,转动直杆NP,使点N,P,D共线,测得∠MNP的度数,从而得到山顶仰角β1,向后山方向前进40米,采用相同方式,测得山顶仰角β2;画一个含β1的直角三角形,量得该角对边和另一直角边分别为a1厘米,b1厘米,再画一个含β2的直角三角形,量得该角对边和另一直角边分别为a2厘米,b2厘米.已知杆高MN为1.6米,求山高DF.(结果用不含β1,β2的字母表示)【解答】解:(1)∵铅直线与水平线垂直,∴α+β=90°,故α,β之间的数量关系为:α+β=90°;(2)在Rt△ABH中,∵AB=40米,∠BAH=24°,sin∠BAH=,∴sin24°=,在Rt△TKS中,∵KT≈5cm,TS≈2cm,∠TKS=24°,sin∠TKS=,∴sin24°=,∴=,解得BH=16米,在Rt△CBQ中,∵BC=50米,∠CBQ=30°,∴CQ=CB=25米,在Rt△DCR中,∵CD=40米,∠DCR=45°,sin∠DCR=,∴DR=CD•sin∠DCR=40•sin45°=(米),∴DF=BH+CQ+DR=16+25+≈69(米),答:山高DF约为69米;(3)由题意,得tanβ1=,tanβ2=,在Rt△DNL中,∵tanβ1=,∴,∴NL=,在Rt△DCR中,∵tanβ2=,∴,∴N'L=,∵NL﹣N'L=NN'=40(米),∴=﹣=40,解得DL=,∴山高DF=DL+LF=+1.6(米),答:山高DF为(+1.6)米.26.(14分)如图,抛物线y=﹣x2+bx+4与x轴交于A(﹣3,0),B两点,与y轴交于点C.(1)求抛物线解析式及B,C两点坐标;(2)以A,B,C,D为顶点的四边形是平行四边形,求点D坐标;(3)该抛物线对称轴上是否存在点E,使得∠ACE=45°,若存在,求出点E的坐标;若不存在,请说明理由.【解答】解:(1)把点A的坐标代入解析式得b=,∴抛物线的解析式为y=﹣x2﹣x+4,∴点C的坐标为(0,4),点B的坐标为(1,0).(2)以A,B,C,D为顶点的四边形是平行四边形,分三种情况:①若AC为对角线,设AC的中点为F,则根据中点坐标公式可得F的坐标为(﹣,2),设点D的坐标为(a,b),则有解得a=﹣4,b=4,此时点D的坐标为(﹣4,4),②若以AB为对角线,设AB的中点为F,则F的坐标为(﹣1,0),设点D的坐标为(a,b),则有,解得a=﹣2,b=﹣4,此时点D的坐标为(﹣2,﹣4),③若以BC为对角线,设BC的中点为F,则点F的坐标为(,2),设点D的坐标为(a,b),则有,解得a=4,b=4,此时点D的坐标为(4,4),综上所述,点D的坐标为(﹣4,4)或(﹣2,﹣4)或(4,4),(3)存在,理由如下:∵tan∠ACO==<1,∴∠ACO<45°,∴E不可能出现在直线AC下方,也不可能在直线AC上,当点E在直线AC上方时,∠ACE=45°,过点E作EM⊥AC,如图:根据点A(﹣3,0)和点C(0,4)可得直线AC的解析式为y=,设直线AC与对称轴交于点H,∴点H(﹣1,),HC=,∵EH∥y轴,∴∠EHM=∠HCO,∴tan∠EHM=∠HCO==,∴EM=HM,∵∠ACE=45°,∴EM=CM,∴HC=HM+CM,即=HM+HM,解得HM=,∴EM=,在Rt△EMH中,EH=,解得EH=,∴E的纵坐标为=,∴点E的坐标为(﹣1,).。
2023中考数学试题及答案解析一、选择题1. 判断题(A) 正确(B) 错误2. 选择题(A) 选项A(B) 选项B(C) 选项C(D) 选项D3. 问答题(请根据题目要求回答问题,并写下你的答案)二、解答题题目1: 请计算以下表达式的值。
4 + 2 × 3解答:首先执行乘法运算: 2 × 3 = 6然后执行加法运算: 4 + 6 = 10因此,表达式的值为10。
题目2: 请计算以下表达式的值。
(8 - 2) ÷ (5 - 3)解答:首先执行括号内的减法运算: 8 - 2 = 6, 5 - 3 = 2然后执行除法运算: 6 ÷ 2 = 3因此,表达式的值为3。
题目3: 一辆汽车以每小时60公里的速度行驶,行驶4小时后行程为多少?解答:由速度等于位移除以时间的公式可知:位移 = 速度 ×时间行程 = 60公里/小时 × 4小时 = 240公里因此,行驶4小时后的行程为240公里。
题目4: 小明购买了一些苹果, 单价为2元/个。
如果他共花费了10元, 则他买了多少个苹果?解答:设购买的苹果个数为 x,由题目可知2x = 10解方程得到:x = 10 / 2 = 5因此,小明买了5个苹果。
题目5: 请计算正方形的面积,已知边长为6厘米。
解答:正方形的面积 = 边长 ×边长 = 6厘米 × 6厘米 = 36平方厘米因此,正方形的面积为36平方厘米。
三、综合题请根据题目提供的信息进行计算和解答。
题目: 甲、乙、丙三个人一起完成一项工作所需的时间比例分别为:甲:乙:丙 = 1:2:3。
如果乙一个人独立完成该工作需要5天,那么甲、乙、丙三个人一起完成该工作需要多少天?解答:设甲、乙、丙三个人一起完成工作需要的时间为x天由题目可知,甲一个人完成工作需要2x天,丙一个人完成工作需要3x天根据题意,乙一个人完成工作需要5天,则有 5 × 2 = x (即乙一个人完成了2x天的工作量)因此,x = 10所以,甲、乙、丙三个人一起完成该工作需要10天。
2024年吉林省中考数学试题及答案数学试卷共7页,包括六道大题,共26道小题,全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、单项选择题(每小题2分,共12分)1.若()3-´W 的运算结果为正数,则W 内的数字可以为( )A .2B .1C .0D .1-2.长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A .102.0410´B .92.0410´C .820.410´D .100.20410´3.葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是( )A .主视图与左视图相同B .主视图与俯视图相同C .左视图与俯视图相同D .主视图、左视图与俯视图都相同4.下列方程中,有两个相等实数根的是( )A .()221x -=-B .()220x -=C .()221x -=D .()222x -=5.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90°,得到矩形OA B C ¢¢¢,则点B ¢的坐标为( )A .()4,2--B .()4,2-C .()2,4D .()4,26.如图,四边形ABCD 内接于O e ,过点B 作BE AD ∥,交CD 于点E .若50BEC Ð=°,则ABC Ð的度数是( )A .50°B .100°C .130°D .150°二、填空题:本题共4小题,每小题5分,共20分.7.当分式11x +的值为正数时,写出一个满足条件的x 的值为 .8.因式分解:a 2﹣3a= .9.不等式组2030x x ->ìí-<î的解集为 .10.如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .11.正六边形的每个内角等于 °.12.如图,正方形ABCD 的对角线AC BD ,相交于点O ,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO Ð=°,则EF BC的值为 .13.图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图②,其中AB AB ¢=,AB B C ¢^于点C ,0.5BC =尺,2B C ¢=尺.设AC 的长度为x 尺,可列方程为 .14.某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O e 和扇形OBC 组成,,OB OC 分别与O e 交于点A ,D .1m OA =,10m OB =,40AOD Ð=°,则阴影部分的面积为 2m (结果保留π).三、解答题(每小题5分,共20分)15.先化简,再求值:()()2111a a a +-++,其中a =16.吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率.Y中,点O是AB的中点,连接CO并延长,交DA的延长线于点E,求17.如图,在ABCD证:AE BC=.18.钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.四、解答题(每小题7分,共28分)19.图①、图②均是44´的正方形网格,每个小正方形的顶点称为格点.点A,B,C,D,e,只用无E,O均在格点上.图①中已画出四边形ABCD,图②中已画出以OE为半径的O刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD的一条对称轴.e的切线.(2)在图②中,画出经过点E的O20.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3W时,求此时的电流I.21.中华人民共和国20192023-年全国居民人均可支配收入及其增长速度情况如图所示.根据以上信息回答下列问题:(1)20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多少元?(2)直接写出20192023-年全国居民人均可支配收入的中位数.(3)下列判断合理的是______(填序号).①20192023-年全国居民人均可支配收入里逐年上升趋势.②20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5年中,2020年全国居民人均可支配收入最低.22.图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC Ð=°,看塔底D 的俯角45EAD Ð=°,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin 370.60°=,cos370.80°=,tan 370.75°=)五、解答题(每小题8分,共16分)23.综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题.【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.【收集数据】小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x,凳面的y,记录如下:宽度为mmx16.519.823.126.429.7以对称轴为基准向两边各取相同的长度/mmy115.5132148.5165181.5凳面的宽度/mm【分析数据】如图③,小组根据表中x,y的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度是多少?24.小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC V 中,AB BC =,BD AC ^,垂足为点D .若2CD =,1BD =,则ABC S =V ______.(2)如图②,在菱形A B C D ¢¢¢¢中,4¢¢=A C ,2B D ¢¢=,则A B C D S ¢¢¢¢=菱形______.(3)如图③,在四边形EFGH 中,EG FH ^,垂足为点O .若5EG =,3FH =,则EFGH S =四边形______;若EG a =,FH b =,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想.【理解运用】(4)如图④,在MNK △中,3MN =,4KN =,5MK =,点P 为边MN 上一点.小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ;(ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ¢;(ⅲ)以点I ¢为圆心,IR 长为半径画弧,交前一条弧于点R ¢,点R ¢,K 在MN 同侧;(ⅳ)过点P 画射线PR ¢,在射线PR ¢上截取PQ KN =,连接KP ,KQ ,MQ .请你直接写出MPKQ S 四边形的值.六、解答题(每小题10分,共20分)25.如图,在ABC V 中,90C Ð=°,30B Ð=°,3cm AC =,AD 是ABC V 的角平分线.动点P 从点A 出发,/s 的速度沿折线AD DB -向终点B 运动.过点P 作PQ AB ∥,交AC 于点Q ,以PQ 为边作等边三角形PQE ,且点C ,E 在PQ 同侧,设点P 的运动时间为()()s 0t t >,PQE V 与ABC V 重合部分图形的面积为()2cm S .(1)当点P 在线段AD 上运动时,判断APQ △的形状(不必证明),并直接写出AQ 的长(用含t 的代数式表示).(2)当点E 与点C 重合时,求t 的值.(3)求S 关于t 的函数解析式,并写出自变量t 的取值范围.26.小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围.Ⅲ.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.1.D【分析】本题主要考查了有理数的乘法计算,根据有理数的乘法计算法则,分别计算出3-与四个选项中的数的乘积即可得到答案.【详解】解:()326-´=-,()313-´=-,()300-´=,()()313-´-=,四个算式的运算结果中,只有3是正数,故选:D .2.B【分析】本题主要考查了科学记数法,科学记数法的表现形式为10n a ´的形式,其中110a £<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:92040000000 2.0410´=故选B .3.A【分析】本题主要考查了简单几何体的三视图,根据三视图的定义找到葫芦的三视图即可得到答案.【详解】解:葫芦的俯视图是两个同心圆,且带有圆心,主视图和俯视图都是下面一个较大的圆,中间一个较小的圆,上面是一条线段,故选:A .4.B【分析】本题考查了一元二次方程的根,解一元二次方程,熟练掌握开平方法解方程是解题的关键.分别对每一个选项运用直接开平方法进行解方程即可判断.【详解】解:A 、()2210x -=-<,故该方程无实数解,故本选项不符合题意;B 、()220x -=,解得:122x x ==,故本选项符合题意;C 、()221x -=,21x -=±,解得123,1x x ==,故本选项不符合题意;D 、()222x -=,2x -=,解得1222x x ==故选:B .5.C【分析】本题主要考查了坐标与图形变化—旋转,矩形的性质等等,先根据题意得到42OA OC ==,,再由矩形的性质可得290AB OC ABC ===°,∠,由旋转的性质可得42OA OA A B AB ¢¢¢====,,90OA B ¢¢Ð=°,据此可得答案.【详解】解:∵点A 的坐标为()4,0-,点C 的坐标为()0,2,∴42OA OC ==,,∵四边形OABC 是矩形,∴290AB OC ABC ===°,∠,∵将矩形OABC 绕点O 顺时针旋转90°,得到矩形OA B C ¢¢¢,∴42OA OA A B AB ¢¢¢====,,90OA B ¢¢Ð=°,∴A B y ¢¢^轴,∴点B ¢的坐标为()2,4,故选:C .6.C【分析】本题考查了平行线的性质,圆的内接四边形的性质,熟练掌握知识点是解题的关键.先根据BE AD ∥得到50D BEC Ð=Ð=°,再由四边形ABCD 内接于O e 得到180ABC D Ð+Ð=°,即可求解.【详解】解:∵BE AD ∥,50BEC Ð=°,∴50D BEC Ð=Ð=°,∵四边形ABCD 内接于O e ,∴180ABC D Ð+Ð=°,∴18050130ABC Ð=°-°=°,故选:C .7.0(答案不唯一)【分析】本题主要考查了根据分式的值的情况求参数,根据题意可得10x +>,则1x >-,据此可得答案.【详解】解:∵分式11x +的值为正数,∴10x +>,∴1x >-,∴满足题意的x 的值可以为0,故答案为:0(答案不唯一).8.a (a﹣3)【分析】直接把公因式a 提出来即可.【详解】解:a 2﹣3a=a(a﹣3).故答案为a (a﹣3).9.23x <<##32x >>【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:2030x x ->ìí-<î①②解不等式①得:2x >,解不等式②得:3x <,∴原不等式组的解集为23x <<,故答案为:23x <<.10.两点之间,线段最短【分析】本题考查了两点之间线段最短,熟记相关结论即可.【详解】从长春站去往胜利公园,走人民大街路程最近,其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.11.120【详解】解:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:7201206°=°,故答案为:12012.12【分析】本题主要考查了相似三角形的性质与判定,正方形的性质,先由正方形的性质得到45OAD Ð=°,AD BC =,再证明EF AD ∥,进而可证明OEF OAD △∽△,由相似三角形的性质可得12EF OE AD OA ==,即12EF BC =.【详解】解:∵正方形ABCD 的对角线AC BD ,相交于点O ,∴45OAD Ð=°,AD BC =,∵点E 是OA 的中点,∴12OE OA =,∵45FEO Ð=°,∴EF AD ∥,∴OEF OAD △∽△,∴12EF OE AD OA ==,即12EF BC =,故答案为:12.13.()22220.5x x +=+【分析】本题考查了勾股定理的实际应用,正确理解题意,运用勾股定理建立方程是解题的关键.设AC 的长度为x 尺,则0.5AB AB x ¢==+,在Rt AB C ¢△中,由勾股定理即可建立方程.【详解】解:设AC 的长度为x 尺,则0.5AB AB x ¢==+,∵AB B C ¢^,由勾股定理得:222AC B C AB ¢¢+=,∴()22220.5x x +=+,故答案为:()22220.5x x +=+.14.11p【分析】本题考查了扇形面积公式,熟练掌握扇形面积公式是解题的关键.利用阴影部分面积等于大扇形减去小扇形面积,结合扇形面积公式即可求解.【详解】解:由题意得:()224010111360S p p -==阴影,故答案为:11p .15.22a ,6【分析】本题考查了整式的化简求值,平方差公式,先利用平方差公式化简,再进行合并同类项,最后代入求值即可.【详解】解:原式2211a a =-++22a =,当a =原式22=´6=.16.13【分析】本题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.画出树状图,可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种,再由概率公式求解即可.【详解】解:将“滑雪”“滑雪圈”“雪地摩托”三个项目分别记为事件A 、B 、C ,可画树状图为:由树状图可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种,∴幸运游客小明与小亮恰好抽中同一个项目的概率3193P ==.17.证明见解析【分析】本题主要考查了全等三角形的性质与判定,平行四边形的性质,先根据平行四边形对边平行推出OAE OBC OCB E ==∠∠,∠∠,再由线段中点的定义得到OA OB =,据此可证明()AAS AOE BOC △≌△,进而可证明AE BC =.【详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,∴OAE OBC OCB E ==∠∠,∠∠,∵点O 是AB 的中点,∴OA OB =,∴()AAS AOE BOC △≌△,∴AE BC =.18.白色琴键52个,黑色琴键36个【分析】本题考查了列一元一次方程解应用题,正确理解题意是解题的关键.设黑色琴键x 个,则白色琴键()16x +个,可得方程()1688x x ++=,再解方程即可.【详解】解:设黑色琴键x 个,则白色琴键()16x +个,由题意得:()1688x x ++=,解得:36x =,∴白色琴键:361652+=(个),答:白色琴键52个,黑色琴键36个.19.(1)见解析(2)见解析【分析】本题主要考查了正方形的性质与判定,矩形的性质与判定,切线的判定,画对称轴等等:(1)如图所示,取格点E 、F ,作直线EF ,则直线EF 即为所求;(2)如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求.【详解】(1)解:如图所示,取格点E 、F ,作直线EF ,则直线EF 即为所求;易证明四边形ABCD 是矩形,且E 、F 分别为AB CD ,的中点;(2)解:如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求;易证明四边形OGTH 是正方形,点E 为正方形OGTH 的中心,则OE GH ^.20.(1)36I R=(2)12A 【分析】本题主要考查了反比例函数的实际应用:(1)直接利用待定系数法求解即可;(2)根据(1)所求求出当3R =W 时I 的值即可得到答案.【详解】(1)解:设这个反比例函数的解析式为()0U I U R=¹,把()94,代入()0U I U R=¹中得:()409U U =¹,解得36U =,∴这个反比例函数的解析式为36I R =;(2)解:在36I R =中,当3R =W 时,3612A 3I ==,∴此时的电流I 为12A .21.(1)8485元(2)35128元(3)①【分析】本题主要考查了频数分布直方图,频数分布折线图,中位数:(1)用2023年的全国居民人均可支配收入减去2019年全国居民人均可支配收入即可得到答案;(2)根据中位数的定义求解即可;(3)根据统计图的数据即可得到答案.【详解】(1)解:39218307338485-=元,答:20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多8485元.(2)解:20192023-年这五年的全国居民人均可支配收入分别为30733元,32189元,35128元,36883元,39218元,∴20192023-年全国居民人均可支配收入的中位数为35128元;(3)解:由统计图可知20192023-年全国居民人均可支配收入里逐年上升趋势,故①正确;由统计图可知20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.但这5年中,2019年全国居民人均可支配收入最低,故②错误;故答案为:①.22.218.3m【分析】本题考查了解直角三角形的应用,正确理解题意和添加辅助线是解题的关键.先解Rt GAD V 得到873tan DG AG DG EAD===Ð,再解Rt GAC △,tan 8730.75654.75CG AG EAC =×Ð=´=,即可求解CD .【详解】解:延长DC 交AE 于点G ,由题意得873m AB DG ==,90DGA Ð=°在Rt GAD V 中,45EAD Ð=°,∴873tan DG AG DG EAD===Ð,在Rt GAC △中,37EAC Ð=°,∴tan 8730.75654.75CG AG EAC =×Ð=´=,∴873654.75218.3m CD DG CG =-=-»,答:吉塔的高度CD 约为218.3m .23.(1)在同一条直线上,函数解析式为:533y x =+(2)36mm【分析】本题考查了一次函数的实际应用,待定系数法求函数解析式,已知函数值求自变量,熟练掌握知识点,正确理解题意是解题的关键.(1)用待定系数法求解即可;(2)将213y =代入函数解析式,解方程即可.【详解】(1),解:设函数解析式为:()0y kx b k =+¹,∵当16.5,115.5x y ==,23.1,148.5x y ==,∴16.5115.523.1148.5k b k b +=ìí+=î,解得:533k b =ìí=î,∴函数解析式为:533y x =+,经检验其余点均在直线533y x =+上,∴函数解析式为533y x =+,这些点在同一条直线上;(2)解:把213y =代入533y x =+得:533213x +=,解得:36x =,∴当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度为36mm .24.(1)2,(2)4,(3)152,12EFGH ab S =四边形,证明见详解,(4)10【分析】(1)根据三角形的面积公式计算即可;(2)根据菱形的面积公式计算即可;(3)结合图形有,EFG EHG EFGH S S S =+V V 四边形,即可得()111222EFGH S EG FO EG HO EG FO HO =´´+´´=´´+四边形,问题随之得解;(4)先证明MNK △是直角三角形,由作图可知:MKN MPQ Ð=Ð,即可证明KM PQ ^,再结合(3)的结论直接计算即可.【详解】(1)∵在ABC V 中,AB BC =,BD AC ^,2CD =,∴2AD CD ==,∴4AC =,∴122ABC S AC BD =´´=V ,故答案为:2;(2)∵在菱形A B C D ¢¢¢¢中,4¢¢=A C ,2B D ¢¢=,∴142A B C D S B D A C ¢¢¢¢¢¢¢¢=´´=菱形,故答案为:4;(3)∵EG FH ^,∴12EFG S EG FO =´´V ,12EHG S EG HO =´´V ,∵EFG EHG EFGH S S S =+V V 四边形,∴()111222EFGH S EG FO EG HO EG FO HO =´´+´´=´´+四边形,∴()1122EFGH S EG FO HO EG FH =´´+=´´四边形,∵5EG =,3FH =,∴11522EFGH S EG FH =´´=四边形,故答案为:152,猜想:12EFGH ab S =四边形,证明:∵EG FH ^,∴12EFG S EG FO =´´V ,12EHG S EG HO =´´V ,∵EFG EHG EFGH S S S =+V V 四边形,∴()111222EFGH S EG FO EG HO EG FO HO =´´+´´=´´+四边形,∴()1122EFGH S EG FO HO EG FH =´´+=´´四边形,∵EG a =,FH b =,∴12EFGH ab S =四边形;(4)根据尺规作图可知:QPM MKN Ð=Ð,∵在MNK △中,3MN =,4KN =,5MK =,∴222MK KN MN =+,∴MNK △是直角三角形,且90MNK Ð=°,∴90NMK MKN Ð+Ð=°,∵QPM MKN Ð=Ð,∴90NMK QPM Ð+Ð=°,∴MK PQ ^,∵4PQ KN ==,5MK =,∴根据(3)的结论有:1102MPKQ S MK PQ =´´=四边形.【点睛】本题考查了等腰三角形的性质,菱形的性质,作一个角等于已知角的尺规作图,勾股定理的逆定理等知识,难度不大,掌握作一个角等于已知角的尺规作图方法,是解答本题的关键.25.(1)等腰三角形,AQ t=(2)32t =(3))223221,24S t S t S t ì=<ïïïï=+<<íïï=£<ïïî【分析】(1)过点Q 作QH AD ^于点H ,根据“平行线+角平分线”即可得到QA QP =,由QH AP ^,得到12HA AP ==,解Rt AHQ △得到AQ t =;(2)由PQE V 为等边三角形得到QE QP =,而QA QP =,则QE QA =,故223AE AQ t ===,解得32t =;(3)当点P 在AD 上,点E 在AC 上,重合部分为PQE V ,过点P 作PG QE ^于点G,12PG AP ==,则212S QE PG =×=,此时302t <£;当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F ,此时重合部分为四边形FPQC,此时)tan 23CF CE E t =×Ð=-,因此)21232FCE S CE CF t =×=-V,故可得2PQE FCE S S S =-=+△△322t <<;当点P 在DB 上,重合部分为PQC △,此时PD =-)1PC CD PD t =+==-,解直角三角形得1tan PC QC t PQC ===-Ð,故)2112S QC PC t =×=-,此时24t £<,再综上即可求解.【详解】(1)解:过点Q 作QH AD ^于点H ,由题意得:AP =∵90C Ð=°,30B Ð=°,∴60BAC Ð=°,∵AD 平分BAC Ð,∴30PAQ BAD Ð=Ð=°,∵PQ AB ∥,∴30APQ BAD Ð=Ð=°,∴PAQ APQ =∠∠,∴QA QP =,∴APQ △为等腰三角形,∵QH AP ^,∴12HA AP ==,∴在Rt AHQ △中,cos AH AQ t PAQ==Ð;(2)解:如图,∵PQE V 为等边三角形,∴QE QP =,由(1)得QA QP =,∴QE QA =,即223AE AQ t ===,∴32t =;(3)解:当点P 在AD 上,点E 在AC 上,重合部分为PQE V ,过点P 作PG QE ^于点G ,∵30PAQ Ð=°,∴12PG AP ==,∵PQE V 是等边三角形,∴QE PQ AQ t ===,∴212S QE PG =×=,由(2)知当点E 与点C 重合时,32t =,∴2302S t æö=<£ç÷èø;当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F ,此时重合部分为四边形FPQC ,如图,∵PQE V 是等边三角形,∴60E Ð=°,而23CE AE AC t =-=-,∴)tan 23CF CE E t =×Ð=-,∴)))21323232FCE S CE CF t t t =×---V ,∴)22223PQE FCE S S S t =-=-=+V V当点P 与点D 重合时,在Rt ADC V 中,cos AC AD AP DAC ====Ð,∴2t =,∴2322S t ö=+<<÷ø;当点P 在DB 上,重合部分为PQC △,如图,∵30DAC Ð=°90DCA Ð=°,由上知DC =∴AD =∴此时PD =-,∴)1PC CD PD t =+==-,∵PQE V 是等边三角形,∴60PQE Ð=°,∴1tan PC QC t PQC ===-Ð,∴)2112S QC PC t =×=-,∵30B BAD Ð=Ð=°,∴DA DB ==∴当点P 与点BAD DB =+=解得:4t =,∴)()2124S t t =-£<,综上所述:)223221,24S t S t S t ì=<ïïïï=+<<íïï=£<ïïî.【点睛】本题考查了直角三角形的性质,解直角三角形的相关计算,等腰三角形的判定与性质,等边三角形的性质,平行线的性质,熟练掌握知识点,正确添加辅助线是解决本题的关键.26.(1)1,1,2k a b ===-(2)Ⅰ:0x £或1x ³;Ⅱ:2t <或11t ³;Ⅲ:10m -££或12m ££【分析】本题考查了二次函数与一次函数的图像与性质,待定系数法求函数解析式,一元二次方程的解,正确理解题意,利用数形结合的思想是解决本题的额关键.(1)先确定输入x 值的范围,确定好之后将x ,y 的值代入所给的y 关于x 的函数解析式种解方程或方程组即可;(2)Ⅰ:可知一次函数解析式为:3y x =+,二次函数解析式为:223y x x =-+,当0x >时,223y x x =-+,对称为直线1x =,开口向上,故1x ³时,y 随着x 的增大而增大;当0x £时,3y x =+,10k =>,故0x £时,y 随着x 的增大而增大;Ⅱ:问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点,考虑两个临界状态,当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点,因此当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点;当4x =,11y =,故当11t =时,抛物线223y x x =-+与直线y t =在04x <£时正好一个交点,因此当11t ³时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,当2t <或11t ³时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,即方程230ax bx t ++-=无解;Ⅲ: 可求点P 、Q 关于直线12x =对称,当1x =,2y =最小值,当0x =时,3y =最大值,当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时,3y =,=1x -时,2y =,故①当12m >,由题意得:11012m m -£-+£ìí££î,则12m ££;②当12m <,由题意得:10112m m -££ìí£-+£î,则10m -££,综上:10m -££或12m ££.【详解】(1)解:∵20x =-<,∴将2x =-,1y =代入3y kx =+,得:231k -+=,解得:1k =,∵20,30x x =>=>,∴将2,3x y ==,3,6x y ==代入23y ax bx =++得:42339336a b a b ++=ìí++=î,解得:12a b =ìí=-î;(2)解:Ⅰ,∵1,1,2k a b ===-,∴一次函数解析式为:3y x =+,二次函数解析式为:223y x x =-+当0x >时,223y x x =-+,对称为直线1x =,开口向上,∴1x ³时,y 随着x 的增大而增大;当0x £时,3y x =+,10k =>,∴0x £时,y 随着x 的增大而增大,综上,x 的取值范围:0x £或1x ³;Ⅱ,∵230ax bx t ++-=,∴23ax bx t ++=,在04x <<时无解,∴问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点,∵对于223y x x =-+,当1x =时,2y =∴顶点为()1,2,如图:∴当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点,∴当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点;当4x =,168311y =-+=,∴当11t =时,抛物线223y x x =-+与直线y t =在04x <£时正好一个交点,∴当11t ³时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,∴当2t <或11t ³时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,即:当2t <或11t ³时,关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解;Ⅲ:∵,1P Q x m x m ==-+,∴()1122m m +-+=,∴点P 、Q 关于直线12x =对称,当1x =,1232y =-+=最小值,当0x =时,3y =最大值,∵当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时,3y =,=1x -时,2y =,∴①当12m >,如图:由题意得:11012m m -£-+£ìí££î,∴12m ££;②当12m <,如图:由题意得:10112m m -££ìí£-+£î,∴10m -££,综上:10m -££或12m ££.。
中考数学试卷姓名 准考证号 考场号 座位号一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1. 下列几何体中,是圆柱的为( )2. 实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )(A )>4a (B )>0b c - (C )>0ac (D )>0c a +3. 方程式⎩⎨⎧=-=-14833y x y x 的解为( )(A )⎩⎨⎧=-=21y x (B )⎩⎨⎧-==21y x (C )⎩⎨⎧=-=12y x (D )⎩⎨⎧-==12y x4. 被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m 2,则FAST 的反射面总面积约为( )(A )231014.7m ⨯ (B )241014.7m ⨯ (C )25105.2m ⨯ (D )26105.2m ⨯ 5. 若正多边形的一个外角是o60,则该正多边形的内角和为( )(A )o360 (B )o540 (C )o720 (D )o9006. 如果32=-b a ,那么代数式b a ab a b a -⋅⎪⎪⎭⎫ ⎝⎛-+222的值为( )(A )3 (B )32 (C )33 (D )347. 跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系()02≠=+=a c bx ax y .下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为( )(A )10m(B )15m (C )20m (D )22.5m8. 上图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()3,6--时,表示左安门的点的坐标为()6,5-; ②当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()6,12--时,表示左安门的点的坐标为()12,10-;③当表示天安门的点的坐标为()1,1,表示广安门的点的坐标为()5,11--时,表示左安门的点的坐标为()11,11-;④当表示天安门的点的坐标为()5.1,5.1,表示广安门的点的坐标为()5.7,5.16--时,表示左安门的点的坐标为(),5.16,5.16-.上述结论中,所有正确结论的序号是( )(A )①②③ (B )②③④ (C )①④ (D )①②③④ 二、填空题(本题共16分,每小题2分)9. 右图所示的网络是正方形网格,BAC ∠ DAE ∠.(填“>”,“=”或“<”)10. 若x 在实数范围内有意义,则实数x 的取值范围是 .11. 用一组a ,b ,c 的值说明命题“若<b a ,则<bc ac ”是错误的,这组值可以是=a ,=b ,=c .12. 如图,点A ,B ,C ,D 在⊙O 上,CB CD =,︒=∠30CAD ,︒=∠50ACD ,则=∠ADB .13. 如图,在矩形ABCD 中,E 是边AB 的中点,连接DE 交对角线AC 于点F ,若4=AB ,3=AD ,则CF 的长为 .14. 从甲地到乙地有A ,B ,C 三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:早高峰期间,乘坐 (填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15. 某公园划船项目收费标准如下:某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为 元.16. 2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第 .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17. 下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l 及直线l 外一点P .求作:直线PQ ,使得PQ ∥l . 作法:如图,①在直线l 上取一点A ,作射线PA ,以点A 为圆心,AP 长为半径画弧,交PA 的延长线于点B ;②在直线l 上取一点C (不与点A 重合),作射线BC ,以点C 为圆心,CB 长为半径画弧,交BC 的延长线于点Q ;③作直线PQ .所以直线PQ 就是所求作的直线. 根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵=AB ,=CB ,∴PQ ∥l ( )(填推理的依据).18.计算:4sin45°+(π-2)0- +∣-1∣19.解不等式组:20.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.21.如图,在四边形ABCD 中,AB//DC ,AB=AD ,对角线AC ,BD 交于点O ,AC 平分∠BAD ,过点C 作CE ⊥AB 交AB 的延长线于点E ,连接OE. (1)求证:四边形ABCD 是菱形; (2)若BD=2,求OE 的长 .22. 如图,AB 是⊙O 的直径,过⊙O 外一点P 作⊙O 的两条切线PC ,PD ,切点分别为C ,D ,连接OP ,CD. (1)求证:OP ⊥CD;(2)连接AD ,BC ,若∠DAB=50°,∠CBA = 70°,OA=2,求OP 的长.23.在平面直角坐标系xOy 中,函数y=(x>0)的图象G 经过点A(4,1),直线L :y =+b 与图象G 交于点B ,与y 轴交于点C (1)求k 的值;(2)横、纵坐标都是整数的点叫做整点.记图象G 在点A ,B 之间的部分与线段OA ,OC ,BC 围成的区域(不含边界)为w.①当b=-1时,直接写出区域W 内的整点个数;②若区域W 内恰有4个整点,结合函数图象,求b 的取值范围.24.如图,Q 是AB 与弦AB 所围成的图形的内部的一定点,P 是弦AB 上一动点,连接PQ 并延长交于点C ,连接AC.已知AB=6cm ,设A ,P 两点间的距离为xcm ,P ,C 两点间的距离为y 1cm ,A ,C 两点间的距离为y 2cm.小腾根据学习函数的经验,分别对函数y 1,y 2,随自变量x 的变化而变化的规律进行了探究. 下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了y 1,y 2与x 的几组对应值;(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 1)并画出(x ,y 2)函数 y 1,y 2的图象;(3)结合函数图象,解决问题:当△APC 为等腰三角形时,AP 的长度约为 cm.25.某年级共有300名学生.为了解该年级学生A ,B 两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A 课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A 课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A ,B 两门课程成绩的平均数、中位数、众数如下:根据以上信息,回答下列问题: (1)写出表中m 的值;(2)在此次测试中,某学生的A 课程成绩为76分,B 课程成绩为71分,这名学生成绩排名更靠前的课程是 (填"A"或"B"),理由是 ,(3)假设该年级学生都参加此次测试,估计A 课程成绩跑过75.8分的人数.26.在平面直角坐标系xOy中,直线y=4X+4与x轴y轴分别交于点A,B,抛物线y=ax2+bx-3a经过点A将点B 向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围27.如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.28.对于平面直角坐标系元xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的"闭距离",记作d(M,N) . 已知点A(-2,6),B(-2,-2),C(6,-2).(1)求d(点0,△ABC);(2)记函数y=kx(-1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.参考答案一、选择题1-5:ABDCC6-8:ABD二、填空题9、>10、x≥011、1;2;012、7013、10314、C15、38016、3三、解答题。