最新中考数学考前复习第22课时 矩形、菱形、正方形(5年真题)
- 格式:doc
- 大小:298.00 KB
- 文档页数:25
矩形菱形正方形(39题)一、单选题1(2023·湖南·统考中考真题)如图,菱形ABCD中,连接AC,BD,若∠1=20°,则∠2的度数为()A.20°B.60°C.70°D.80°【答案】C【分析】根据菱形的性质可得BD⊥AC,AB∥CD,则∠1=∠ACD,∠ACD+∠2=90°,进而即可求解.【详解】解:∵四边形ABCD是菱形∴BD⊥AC,AB∥CD,∴∠1=∠ACD,∠ACD+∠2=90°,∵∠1=20°,∴∠2=90°-20°=70°,故选:C.【点睛】本题考查了菱形的性质,熟练掌握是菱形的性质解题的关键.2(2023·湖南常德·统考中考真题)如图1,在正方形ABCD中,对角线AC、BD相交于点O,E,F分别为AO,DO上的一点,且EF∥AD,连接AF,DE.若∠FAC=15°,则∠AED的度数为()A.80°B.90°C.105°D.115°【答案】C【分析】首先根据正方形的性质得到∠OAD=∠ODA=45°,AO=DO,然后结合EF∥AD得到OE= OF,然后证明出△AOF≌△DOE SAS,最后利用三角形内角和定理求解即可.【详解】∵四边形ABCD是正方形∴∠OAD=∠ODA=45°,AO=DO∵EF∥AD∴∠OEF=∠OAD=45°,∠OFE=∠ODA=45°∴∠OEF=∠OFE∴OE=OF又∵∠AOF=∠DOE=90°,AO=DO∴△AOF ≌△DOE SAS∴∠ODE =∠FAC =15°∴∠ADE =∠ODA -∠ODE =30°∴∠AED =180°-∠OAD -∠ADE =105°故选:C .【点睛】此题考查了正方形的性质,全等三角形的性质和判定,等腰直角三角形三角形的性质等知识,解题的关键是熟练掌握以上知识点.3(2023·湖南常德·统考中考真题)下列命题正确的是()A.正方形的对角线相等且互相平分B.对角互补的四边形是平行四边形C.矩形的对角线互相垂直D.一组邻边相等的四边形是菱形【答案】A 【分析】根据正方形、平行四边形、矩形、菱形的各自性质和构成条件进行判断即可.【详解】A 、正方形的对角线相等且互相垂直平分,描述正确;B 、对角互补的四边形不一定是平行四边形,只是内接于圆,描述错误;C 、矩形的对角线不一定垂直,但相等,描述错误;D 、一组邻边相等的平行四边形才构成菱形,描述错误.故选:A .【点睛】本题考查平行四边形、矩形、菱形、正方形的性质和判定,解题的关键是熟悉掌握各类特殊四边形的判定和性质.4(2023·浙江·统考中考真题)如图,在菱形ABCD 中,AB =1,∠DAB =60°,则AC 的长为()A.12B.1C.32D.3【答案】D 【分析】连接BD 与AC 交于O .先证明△ABD 是等边三角形,由AC ⊥BD ,得到∠OAB =12∠BAD =30°,∠AOB =90°,即可得到OB =12AB =12,利用勾股定理求出AO 的长度,即可求得AC 的长度.【详解】解:连接BD 与AC 交于O .∵四边形ABCD是菱形,∴AB∥CD,AB=AD,AC⊥BD,AO=OC=12AC,∵∠DAB=60°,且AB=AD,∴△ABD是等边三角形,∵AC⊥BD,∴∠OAB=12∠BAD=30°,∠AOB=90°,∴OB=12AB=12,∴AO=AB2-OB2=12-12 2=123,∴AC=2AO=3,故选:D.【点睛】此题主要考查了菱形的性质、勾股定理、等边三角形的判定和性质、30°角所对直角边等于斜边的一半,关键是熟练掌握菱形的性质.5(2023·上海·统考中考真题)在四边形ABCD中,AD∥BC,AB=CD.下列说法能使四边形ABCD 为矩形的是()A.AB∥CDB.AD=BCC.∠A=∠BD.∠A=∠D【答案】C【分析】结合平行四边形的判定和性质及矩形的判定逐一分析即可.【详解】A:∵AB∥CD,AD∥BC,AB=CD∴ABCD为平行四边形而非矩形故A不符合题意B:∵AD=BC,AD∥BC,AB=CD∴ABCD为平行四边形而非矩形故B不符合题意C:∵AD∥BC∴∠A+∠B=180°∵∠A=∠B∴∠A=∠B=90°∵AB=CD∴ABCD为矩形故C符合题意D:∵AD∥BC∴∠A+∠B=180°∵∠A=∠D∴∠D+∠B=180°∴ABCD不是平行四边形也不是矩形故D不符合题意故选:C.【点睛】本题主要考查平行线的性质,平行四边形的判定和性质及矩形的判定等知识,熟练掌握以上知识并灵活运用是解题的关键.6(2023·浙江宁波·统考中考真题)如图,以钝角三角形ABC 的最长边BC 为边向外作矩形BCDE ,连结AE ,AD ,设△AED ,△ABE ,△ACD 的面积分别为S ,S 1,S 2,若要求出S -S 1-S 2的值,只需知道()A.△ABE 的面积B.△ACD 的面积C.△ABC 的面积D.矩形BCDE 的面积【答案】C【分析】过点A 作FG ∥BC ,交EB 的延长线于点F ,DC 的延长线于点G ,易得:FG =BC ,AF ⊥BE ,AG⊥CD ,利用矩形的性质和三角形的面积公式,可得S 1+S 2=12S 矩形BCDE ,再根据S =S △ABC +S 矩形BCDE -S 1-S 2=S △ABC +12S 矩形BCDE ,得到S -S 1-S 2=S △ABC ,即可得出结论.【详解】解:过点A 作FG ∥BC ,交EB 的延长线于点F ,DC 的延长线于点G ,∵矩形BCDE ,∴BC ⊥BE ,BC ⊥CD ,BE =CD ,∴FG ⊥BE ,FG ⊥CD ,∴四边形BFGC 为矩形,∴FG =BC ,AF ⊥BE ,AG ⊥CD ,∴S 1=12BE ⋅AF ,S 2=12CD ⋅AG ,∴S 1+S 2=12BE AF +AG =12BE ⋅BC =12S 矩形BCDE ,又S =S △ABC +S 矩形BCDE -S 1-S 2=S △ABC +12S 矩形BCDE ,∴S -S 1-S 2=S △ABC +12S 矩形BCDE -12S 矩形BCDE =S △ABC ,∴只需要知道△ABC 的面积即可求出S -S 1-S 2的值;故选C .【点睛】本题考查矩形的性质,求三角形的面积.解题的关键是得到S 1+S 2=12S 矩形BCDE 7(2023·湖南·统考中考真题)如图所示,在矩形ABCD 中,AB >AD ,AC 与BD 相交于点O ,下列说法正确的是()A.点O 为矩形ABCD 的对称中心B.点O 为线段AB 的对称中心C.直线BD 为矩形ABCD 的对称轴D.直线AC 为线段BD 的对称轴【答案】A【分析】由矩形ABCD是中心对称图形,对称中心是对角线的交点,线段AB的对称中心是线段AB的中点,矩形ABCD是轴对称图形,对称轴是过一组对边中点的直线,从而可得答案.【详解】解:矩形ABCD是中心对称图形,对称中心是对角线的交点,故A符合题意;线段AB的对称中心是线段AB的中点,故B不符合题意;矩形ABCD是轴对称图形,对称轴是过一组对边中点的直线,故C,D不符合题意;故选A【点睛】本题考查的是轴对称图形与中心对称图形的含义,矩形的性质,熟记矩形既是中心对称图形也是轴对称图形是解本题的关键.8(2023·四川宜宾·统考中考真题)如图,边长为6的正方形ABCD中,M为对角线BD上的一点,连接AM并延长交CD于点P.若PM=PC,则AM的长为()A.33-1B.333-2C.63-1D.633-2【答案】C【分析】先根据正方形的性质、三角形全等的判定证出△ADM≅△CDM,根据全等三角形的性质可得∠DAM=∠DCM,再根据等腰三角形的性质可得∠CMP=∠DCM,从而可得∠DAM=30°,然后利用勾股定理、含30度角的直角三角形的性质求解即可得.【详解】解:∵四边形ABCD是边长为6的正方形,∴AD=CD=6,∠ADC=90°,∠ADM=∠CDM=45°,在△ADM和△CDM中,DM=DM∠ADM=∠CDM=45°AD=CD,∴△ADM≅△CDM SAS,∴∠DAM=∠DCM,∵PM=PC,∴∠CMP=∠DCM,∴∠APD=∠CMP+∠DCM=2∠DCM=2∠DAM,又∵∠APD+∠DAM=180°-∠ADC=90°,∴∠DAM=30°,设PD=x,则AP=2PD=2x,PM=PC=CD-PD=6-x,∴AD=AP2-PD2=3x=6,解得x=23,∴PM=6-x=6-23,AP=2x=43,∴AM=AP-PM=43-6-23=63-1,故选:C.【点睛】本题考查了正方形的性质、勾股定理、含30度角的直角三角形的性质、等腰三角形的性质等知识点,熟练掌握正方形的性质是解题关键.9(2023·四川乐山·统考中考真题)如图,菱形ABCD 的对角线AC 与BD 相交于点O ,E 为边BC 的中点,连结OE .若AC =6,BD =8,则OE =()A.2B.52C.3D.4【答案】B【分析】先由菱形的性质得AC ⊥BD ,OC =12AC =12×6=3,OB =12BD =12×8=4,再由勾股定理求出BC =5,然后由直角三角形斜边的中线等于斜边的一半求解.【详解】解:∵菱形ABCD ,∴AC ⊥BD ,OC =12AC =12×6=3,OB =12BD =128=4,∴由勾股定理,得BC =OB 2+OC 2=5,∵E 为边BC 的中点,∴OE =12BC =12×5=52故选:B .【点睛】本考查菱形的性质,勾股定理,直角三角形的性质,熟练掌握菱形的性质,直角三角形的性质是解题的关键.10(2023·甘肃武威·统考中考真题)如图,将矩形ABCD 对折,使边AB 与DC ,BC 与AD 分别重合,展开后得到四边形EFGH .若AB =2,BC =4,则四边形EFGH 的面积为()A.2B.4C.5D.6【答案】B【分析】由题意可得四边形EFGH 是菱形,FH =AB =2,GE =BC =4,由菱形的面积等于对角线乘积的一半即可得到答案.【详解】解:∵将矩形ABCD 对折,使边AB 与DC ,BC 与AD 分别重合,展开后得到四边形EFGH ,∴EF ⊥GH ,EF 与GH 互相平分,∴四边形EFGH 是菱形,∵FH =AB =2,GE =BC =4,∴菱形EFGH的面积为12FH⋅GE=12×2×4=4.故选:B【点睛】此题考查了矩形的折叠、菱形的判定和性质等知识,熟练掌握菱形的面积等于对角线乘积的一半是解题的关键.11(2023·浙江绍兴·统考中考真题)如图,在矩形ABCD中,O为对角线BD的中点,∠ABD=60°.动点E在线段OB上,动点F在线段OD上,点E,F同时从点O出发,分别向终点B,D运动,且始终保持OE =OF.点E关于AD,AB的对称点为E1,E2;点F关于BC,CD的对称点为F1,F2.在整个过程中,四边形E1E2F1F2形状的变化依次是()A.菱形→平行四边形→矩形→平行四边形→菱形B.菱形→正方形→平行四边形→菱形→平行四边形C.平行四边形→矩形→平行四边形→菱形→平行四边形D.平行四边形→菱形→正方形→平行四边形→菱形【答案】A【分析】根据题意,分别证明四边形E1E2F1F2是菱形,平行四边形,矩形,即可求解.【详解】∵四边形ABCD是矩形,∴AB∥CD,∠BAD=∠ABC=90°,∴∠BDC=∠ABD=60°,∠ADB=∠CBD=90°-60°=30°,∵OE=OF、OB=OD,∴DF=EB∵对称,∴DF=DF2,BF=BF1,BE=BE2,DE=DE1∴E1F2=E2F1∵对称,∴∠F2DC=∠CDF=60°,∠EDA=∠E1DA=30°∴∠E1DB=60°,同理∠F1BD=60°,∴DE1∥BF1∴E1F2∥E2F1∴四边形E1E2F1F2是平行四边形,如图所示,当E,F,O三点重合时,DO=BO,∴DE1=DF2=AE1=AE2即E1E2=E1F2∴四边形E1E2F1F2是菱形,如图所示,当E,F分别为OD,OB的中点时,设DB=4,则DF2=DF=1,DE1=DE=3,在Rt△ABD中,AB=2,AD=23,连接AE,AO,∵∠ABO=60°,BO=2=AB,∴△ABO是等边三角形,∵E为OB中点,∴AE⊥OB,BE=1,∴AE=22-12=3,根据对称性可得AE1=AE=3,∴AD2=12,DE21=9,AE21=3,∴AD2=AE21+DE21,∴△DE1A是直角三角形,且∠E1=90°,∴四边形E1E2F1F2是矩形,当F,E分别与D,B重合时,△BE1D,△BDF1都是等边三角形,则四边形E1E2F1F2是菱形∴在整个过程中,四边形E1E2F1F2形状的变化依次是菱形→平行四边形→矩形→平行四边形→菱形,故选:A.【点睛】本题考查了菱形的性质与判定,平行四边形的性质与判定,矩形的性质与判定,勾股定理与勾股定理的逆定理,轴对称的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键.12(2023·重庆·统考中考真题)如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF的长度为()A.2B.3C.1D.2【答案】D【分析】连接AF ,根据正方形ABCD 得到AB =BC =BE ,∠ABC =90°,根据角平分线的性质和等腰三角形的性质,求得∠BFE =45°,再证明△ABF ≌△EBF ,求得∠AFC =90°,最后根据直角三角形斜边上的中点等于斜边的一半,即可求出OF 的长度.【详解】解:如图,连接AF ,∵四边形ABCD 是正方形,∴AB =BE =BC ,∠ABC =90°,AC =2AB =22,∴∠BEC =∠BCE ,∴∠EBC =180°-2∠BEC ,∴∠ABE =∠ABC -∠EBC =2∠BEC -90°,∵BF 平分∠ABE ,∴∠ABF =∠EBF =12∠ABE =∠BEC -45°,∴∠BFE =∠BEC -∠EBF =45°,在△BAF 与△BEF ,AB =EB∠ABF =∠EBF BF =BF,∴△BAF ≌△BEF SAS ,∴∠BFE =∠BFA =45°,∴∠AFC =∠BAF +∠BFE =90°,∵O 为对角线AC 的中点,∴OF =12AC =2,故选:D .【点睛】本题考查了等腰三角形的判定和性质,三角形内角和定理,正方形的性质,直角三角形特征,作出正确的辅助线,求得∠BFE =45°是解题的关键.二、解答题13(2023·湖南怀化·统考中考真题)如图,矩形ABCD 中,过对角线BD 的中点O 作BD 的垂线EF ,分别交AD ,BC 于点E ,F .(1)证明:△BOF ≌△DOE ;(2)连接BE 、DF ,证明:四边形EBFD 是菱形.【答案】(1)见解析;(2)见解析【分析】(1)根据矩形的性质得出AD ∥BC ,则∠1=∠2,∠3=∠4,根据O 是BD 的中点,可得BO =DO ,即可证明△BOF ≌△DOE AAS ;(2)根据△BOF ≌△DOE 可得ED =BF ,进而可得四边形EBFD 是平行四边形,根据对角线互相垂直的四边形是菱形,即可得证.【详解】(1)证明:如图所示,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠1=∠2,∠3=∠4,∵O 是BD 的中点,∴BO =DO ,在△BOF 与△DOE 中∠1=∠2∠3=∠4BO =DO,∴△BOF ≌△DOE AAS ;(2)∵△BOF ≌△DOE∴ED =BF ,又∵ED ∥BF∴四边形EBFD 是平行四边形,∵EF ⊥BD∴四边形EBFD 是菱形.【点睛】本题考查了矩形的性质,全等三角形的性质与判定,菱形的判定,熟练掌握特殊四边形的性质与判定是解题的关键.14(2023·湖北随州·统考中考真题)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 是菱形;(2)若BC =3,DC =2,求四边形OCED 的面积.【答案】(1)见解析;(2)3【分析】(1)先根据矩形的性质求得OC =OD ,然后根据有一组邻边相等的平行四边形是菱形分析推理;(2)根据矩形的性质求得△OCD 的面积,然后结合菱形的性质求解.【详解】(1)解:∵ DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形,又∵矩形ABCD 中,OC =OD ,∴平行四边形OCED 是菱形;(2)解:矩形ABCD 的面积为BC ⋅DC =3×2=6,∴△OCD 的面积为14×6=32,∴菱形OCED 的面积为2×32=3.【点睛】本题考查矩形的性质、菱形的判定,属于中考基础题,掌握矩形的性质和菱形的判定方法,正确推理论证是解题关键.15(2023·湖南永州·统考中考真题)如图,已知四边形ABCD 是平行四边形,其对角线相交于点O ,OA =3,BD =8,AB =5.(1)△AOB 是直角三角形吗?请说明理由;(2)求证:四边形ABCD 是菱形.【答案】(1)△AOB 是直角三角形,理由见解析.(2)见解析【分析】(1)根据平行四边形对角线互相平分可得BO =12BD =4,再根据勾股定理的逆定理,即可得出结论;(2)根据对角线互相垂直的平行四边形是菱形,即可求证.【详解】(1)解:△AOB 是直角三角形,理由如下:∵四边形ABCD 是平行四边形,∴BO =12BD =4,∵OA 2+OB 2=32+42=52=AB 2,∴△AOB 是直角三角形.(2)证明:由(1)可得:△AOB 是直角三角形,∴∠AOB =90°,即AC ⊥BD ,∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形.【点睛】本题主要考查了平行四边形的性质,勾股定理的逆定理,菱形的判定,解题的关键是掌握平行四边形对角线互相平分,对角线互相垂直的平行四边形是菱形.16(2023·新疆·统考中考真题)如图,AD 和BC 相交于点O ,∠ABO =∠DCO =90°,OB =OC .点E 、F 分别是AO 、DO的中点.(1)求证:OE =OF ;(2)当∠A =30°时,求证:四边形BECF 是矩形.【答案】(1)见解析;(2)见解析【分析】(1)直接证明△AOB ≌△DOC ASA ,得出OA =OD ,根据E 、F 分别是AO 、DO 的中点,即可得证;(2)证明四边形BECF 是平行四边形,进而根据∠A =30°,推导出△BOE 是等边三角形,进而可得BC =EF ,即可证明四边形BECF 是矩形.【详解】(1)证明:在△AOB 与△DOC 中,∠ABO =∠DCO =90°OB =OC∠AOB =∠DOC∴△AOB ≌△DOC ASA ,∴OA =OD ,又∵E 、F 分别是AO 、DO 的中点,∴OE =OF ;(2)∵OB =OC ,OF =OE ,∴四边形BECF 是平行四边形,BC =2OB ,EF =2OE ,∵E 为AO 的中点,∠ABO =90°,∴EB =EO =EA ,∵∠A =30°,∴∠BOE =60°,∴△BOE 是等边三角形,∴OB =OE ,∴BC =EF ,∴四边形BECF 是矩形.【点睛】本题考查了全等三角形的性质与判定,等边三角形的性质与判定,矩形判定,熟练掌握以上知识是解题的关键.17(2023·云南·统考中考真题)如图,平行四边形ABCD 中,AE 、CF 分别是∠BAD 、∠BCD 的平分线,且E 、F 分别在边BC 、AD 上,AE =AF .(1)求证:四边形AECF 是菱形;(2)若∠ABC =60°,△ABE 的面积等于43,求平行线AB 与DC 间的距离.【答案】(1)证明见解析;(2)43【分析】(1)先证AD ∥BC ,再证AE ∥FC ,从而四边形AECF 是平行四边形,又AE =AF ,于是四边形AECF 是菱形;(2)连接AC ,先求得∠BAE =∠DAE =∠ABC =60°,再证AC ⊥AB ,∠ACB =90°-∠ABC =30°=∠EAC ,于是有33=AB AC,得AB =33AC ,再证AE =BE =CE ,从而根据面积公式即可求得AC =43.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∠BAD =∠BCD ,∴∠BEA =∠DAE ,∵AE 、CF 分别是∠BAD 、∠BCD 的平分线,∴∠BAE =∠DAE =12∠BAD ,∠BCF =12∠BCD ,∴∠DAE =∠BCF =∠BEA ,∴AE ∥FC ,∴四边形AECF 是平行四边形,∵AE =AF ,∴四边形AECF 是菱形;(2)解:连接AC ,∵AD ∥BC ,∠ABC =60°,∴∠BAD =180°-∠ABC =120°,∴∠BAE =∠DAE =∠ABC =60°,∵四边形AECF 是菱形,∴∠EAC =12∠DAE =30°,∴∠BAC =∠BAE +∠EAC =90°,∴AC ⊥AB ,∠ACB =90°-∠ABC =30°=∠EAC ,∴AE =CE ,tan30°=tan ∠ACB =AB AC 即33=AB AC,∴AB =33AC ,∵∠BAE =∠ABC ,∴AE =BE =CE ,∵△ABE 的面积等于43,∴S △ABC =12AC ⋅AB =12AC ⋅33AC =36AC 2=83,∴平行线AB 与DC 间的距离AC =43.【点睛】本题考查了平行四边形的判定及性质,菱形的判定,角平分线的定义,等腰三角形的判定,三角函数的应用以及平行线间的距离,熟练掌握平行四边形的判定及性质,菱形的判定,角平分线的定义,等腰三角形的判定,三角函数的应用以及平行线间的距离等知识是解题的关键.18(2023·四川遂宁·统考中考真题)如图,四边形ABCD 中,AD ∥BC ,点O 为对角线BD 的中点,过点O 的直线l 分别与AD 、BC 所在的直线相交于点E 、F .(点E 不与点D 重合)(1)求证:△DOE ≌△BOF ;(2)当直线l ⊥BD 时,连接BE 、DF ,试判断四边形EBFD 的形状,并说明理由.【答案】(1)见解析;(2)四边形EBFD 为菱形;理由见解析【分析】(1)根据AAS 证明△DOE ≌△BOF 即可;(2)连接EB 、FD ,根据△DOE ≌△BOF ,得出ED =BF ,根据ED ∥BF ,证明四边形EBFD 为平行四边形,根据EF ⊥BD ,证明四边形EBFD 为菱形即可.【详解】(1)证明:∵点O 为对角线BD 的中点,∴BO =DO ,∵AD ∥BC ,∴∠ODE =∠OBF ,∠OED =∠OFB ,在△DOE 和△BOF 中,∠ODE =∠OBF∠OED =∠OFB BO =DO,∴△DOE ≌△BOF AAS ;(2)解:四边形EBFD 为菱形,理由如下:连接EB 、FD ,如图所示:根据解析(1)可知,△DOE ≌△BOF ,∴ED =BF ,∵ED ∥BF ,∴四边形EBFD 为平行四边形,∵l ⊥BD ,即EF ⊥BD ,∴四边形EBFD 为菱形.【点睛】本题主要考查了三角形全等的判定和性质,菱形的判定,平行线的性质,解题的关键是熟练掌握三角形全等的判定方法和菱形的判定方法.19(2023·浙江嘉兴·统考中考真题)如图,在菱形ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,连接EF(1)求证:AE =AF ;(2)若∠B =60°,求∠AEF 的度数.【答案】(1)证明见解析;(2)60°【分析】(1)根据菱形的性质的三角形全等即可证明AE =AF .(2)根据菱形的性质和已知条件可推出∠BAD 度数,再根据第一问的三角形全等和直角三角形的性质可求出∠BAE 和∠DAF 度数,从而求出∠EAF 度数,证明了等边三角形AEF ,即可求出∠AEF 的度数.【详解】(1)证明:∵菱形ABCD ,∴AB =AD ,∠B =∠D ,又∵AE ⊥BC ,AF ⊥CD ,∴∠AEB =∠AFD =90°.在△AEB 和△AFD 中,∠AEB =∠AFD∠B =∠D AB =AD,∴△ABE ≌△ADF (AAS ).∴AE =AF .(2)解:∵菱形ABCD ,∴∠B +∠BAD =180°,∵∠B =60°,∴∠BAD =120°.又∵∠AEB =90°,∠B =60°,∴∠BAE =30°.由(1)知△ABE ≌△ADF ,∴∠BAE =∠DAF =30°.∴∠EAF =120°-30°-30°=60°.∵AE =AF ,∴△AEF 等边三角形.∴∠AEF =60°.【点睛】本题考查了三角形全等、菱形的性质、等边三角形的性质,解题的关键在于熟练掌握全等的方法和菱形的性质.20(2023·湖北鄂州·统考中考真题)如图,点E是矩形ABCD的边BC上的一点,且AE=AD.(1)尺规作图(请用2B铅笔):作∠DAE的平分线AF,交BC的延长线于点F,连接DF.(保留作图痕迹,不写作法);(2)试判断四边形AEFD的形状,并说明理由.【答案】(1)见解析;(2)四边形AEFD是菱形,理由见解析【分析】(1)根据题意结合尺规作角平分线的方法作图即可;(2)根据矩形的性质和平行线的性质得出∠DAF=∠AFE,结合角平分线的定义可得∠EFA=∠EAF,则AE=EF,然后根据平行四边形和菱形的判定定理得出结论.【详解】(1)解:如图所示:(2)四边形AEFD是菱形;理由:∵矩形ABCD中,AD∥BC,∴∠DAF=∠AFE,∵AF平分∠DAE,∴∠DAF=∠EAF,∴∠EFA=∠EAF,∴AE=EF,∵AE=AD,∴AD=EF,∵AD∥EF,∴四边形AEFD是平行四边形,又∵AE=AD,∴平行四边形AEFD是菱形.【点睛】本题主要考查了尺规作角平分线,矩形的性质,平行线的性质,等腰三角形的判定,平行四边形的判定以及菱形的判定等知识,熟练掌握相关判定定理和性质定理是解题的关键.21(2023·吉林长春·统考中考真题)将两个完全相同的含有30°角的直角三角板在同一平面内按如图所示位置摆放.点A,E,B,D依次在同一直线上,连结AF、CD.(1)求证:四边形AFDC是平行四边形;(2)己知BC=6cm,当四边形AFDC是菱形时.AD的长为cm.【答案】(1)见解析;(2)18【分析】(1)由题意可知△ACB≌△DFE易得AC=DF,∠CAB=∠FDE=30°即AC∥DF,依据一组对边平行且相等的四边形是平行四边形可证明;(2)如图,在Rt△ACB中,由30°角所对的直角边等于斜边的一半和直角三角形锐角互余易得AB=2BC= 12cm,∠ABC=60°;由菱形得对角线平分对角得∠CDA=∠FDA=30°,再由三角形外角和易证∠BCD=∠CDA即可得BC=BD=6cm,最后由AD=AB+BD求解即可.【详解】(1)证明:由题意可知△ACB≌△DFE,∴AC=DF,∠CAB=∠FDE=30°,∴AC∥DF,∴四边形AFDC地平行四边形;(2)如图,在Rt△ACB中,∠ACB=90°,∠CAB=30°,BC=6cm,∴AB=2BC=12cm,∠ABC=60°,四边形AFDC是菱形,∴AD平分∠CDF,∴∠CDA=∠FDA=30°,∵∠ABC=∠CDA+∠BCD,∴∠BCD=∠ABC-∠CDA=60°-30°=30°,∴∠BCD=∠CDA,∴BC=BD=6cm,∴AD=AB+BD=18cm,故答案为:18.【点睛】本题考查了全等三角形的性质,平行四边形的判定,菱形的性质,30°角所对的直角边等于斜边的一半和直角三角形锐角互余,三角形外角及等角对等边;解题的关键是熟练掌握相关知识综合求解.22(2023·湖南张家界·统考中考真题)如图,已知点A,D,C,B在同一条直线上,且AD=BC,AE= BF,CE=DF.(1)求证:AE∥BF;(2)若DF=FC时,求证:四边形DECF是菱形.【答案】(1)见解析;(2)见解析【分析】(1)根据题意得出AC=BD,再由全等三角形的判定和性质及平行线的判定证明即可;(2)方法一:利用全等三角形的判定和性质得出DE=CF,又EC=DF,再由菱形的判定证明即可;方法二:利用(1)中结论得出∠ECA=∠FDB,结合菱形的判定证明即可.【详解】(1)证明:∵AD=BC,∴AD+DC=BC+DC,即AC=BD在△AEC和△BFD中,AC=BDAE=BFCE=DF,∴△AEC≌△BFD SSS∴∠A=∠B,∴AE∥BF(2)方法一:在△ADE和△BCF中,AE=BF∠A=∠BAD=BC,∴△ADE≌△BCF SAS∴DE=CF,又EC=DF,∴四边形DECF是平行四边形∵DF=FC,∴▱DECF是菱形;方法二:∵△AEC≌△BFD,∴∠ECA=∠FDB∴EC∥DF,又EC=DF,∴四边形DECF是平行四边形∵DF=FC,∴▱DECF是菱形.【点睛】题目主要考查全等三角形的判定和性质,菱形的判定和性质,理解题意,熟练掌握运用这些知识点是解题关键.23(2023·湖南郴州·统考中考真题)如图,四边形ABCD是平行四边形.(1)尺规作图;作对角线AC的垂直平分线MN(保留作图痕迹);(2)若直线MN分别交AD,BC于E,F两点,求证:四边形AFCE是菱形【答案】(1)见解析;(2)见解析【分析】(1)根据垂直平分线的作图方法进行作图即可;(2)设EF与AC交于点O,证明△AOE≌△COF ASA,得到OE=OF,得到四边形AFCE为平行四边形,根据EF⊥AC,即可得证.【详解】(1)解:如图所示,MN 即为所求;(2)∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠CAE =∠ACF ,如图:设EF 与AC 交于点O ,∵EF 是AC 的垂直平分线,∴AO =OC ,EF ⊥AC ,∵∠AOE =∠COF ,∴△AOE ≌△COF ASA ,∴OE =OF ,∴四边形AFCE 为平行四边形,∵EF ⊥AC ,∴四边形AFCE 为菱形.【点睛】本题考查基本作图-作垂线,平行四边形的判定和性质,全等三角形的判定和性质,菱形的判定.熟练掌握菱形的判定定理,是解题的关键.24(2023·湖北十堰·统考中考真题)如图,▱ABCD 的对角线AC ,BD 交于点O ,分别以点B ,C 为圆心,12AC ,12BD 长为半径画弧,两弧交于点P ,连接BP ,CP .(1)试判断四边形BPCO的形状,并说明理由;(2)请说明当▱ABCD的对角线满足什么条件时,四边形BPCO是正方形?【答案】(1)平行四边形,见解析;(2)AC=BD且AC⊥BD【分析】(1)根据平行四边形的性质,得到BP=12AC=OC,CP=12BD=OB,根据两组对边分别相等的四边形是平行四边形判定即可.(2)根据对角线相等、平分且垂直的四边形是正方形判定即可.【详解】(1)四边形BPCO是平行四边形.理由如下:∵▱ABCD的对角线AC,BD交于点O,∴AO=OC,BO=OD,∵以点B,C为圆心,12AC,12BD长为半径画弧,两弧交于点P,∴BP=12AC=OC,CP=12BD=OB∴四边形BPCO是平行四边形.(2)∵对角线相等、平分且垂直的四边形是正方形,∴AC=BD且AC⊥BD时,四边形BPCO是正方形.【点睛】本题考查了平行四边形的判定和性质,正方形的判定和性质,熟练掌握判定和性质是解题的关键.25(2023·四川内江·统考中考真题)如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC交CE的延长线于点F.(1)求证:AF=BD;(2)连接BF,若AB=AC,求证:四边形ADBF是矩形.【答案】(1)见解析;(2)见解析;【分析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明三角形全等,再由全等三角形的性质容易得出结论;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形判定即可.【详解】(1)证明:∵AF∥BC,∴∠AFE=∠DCE,∵点E为AD的中点,∴AE=DE,在△AEF和△EDC中,∠AFE=∠DCE∠AEF=∠DECAE=DE,∴△EAF≌△EDC(AAS);∴AF=CD,∵CD=BD,∴AF=BD;(2)证明:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四边形AFBD是矩形.【点睛】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.26(2023·湖南岳阳·统考中考真题)如图,点M在▱ABCD的边AD上,BM=CM,请从以下三个选项中①∠1=∠2;②AM=DM;③∠3=∠4,选择一个合适的选项作为已知条件,使▱ABCD为矩形.(1)你添加的条件是(填序号);(2)添加条件后,请证明▱ABCD为矩形.【答案】(1)答案不唯一,①或②;(2)见解析【分析】(1)根据有一个角是直角的平行四边形是矩形进行选取;(2)通过证明△ABM≌△DCM可得∠A=∠D,然后结合平行线的性质求得∠A=90°,从而得出▱ABCD 为矩形.【详解】(1)解:①或②(2)添加条件①,▱ABCD为矩形,理由如下:在▱ABCD中AB=CD,AB∥CD,在△ABM和△DCM中AB=CD∠1=∠2 BM=CM ,∴△ABM≌△DCM ∴∠A=∠D,又∵AB∥CD,∴∠A+∠D=180°,∴∠A =∠D =90°,∴▱ABCD 为矩形;添加条件②,▱ABCD 为矩形,理由如下:在▱ABCD 中AB =CD ,AB ∥CD ,在△ABM 和△DCM 中AB =CDAM =DM BM =CM,∴△ABM ≌△DCM ∴∠A =∠D ,又∵AB ∥CD ,∴∠A +∠D =180°,∴∠A =∠D =90°,∴▱ABCD 为矩形【点睛】本题考查矩形的判定,全等三角形的判定和性质,掌握平行四边形的性质和矩形的判定方法(有一个角是直角的平行四边形是矩形)是解题关键.27(2023·四川乐山·统考中考真题)如图,在Rt △ABC 中,∠C =90°,点D 为AB 边上任意一点(不与点A 、B 重合),过点D 作DE ∥BC ,DF ∥AC ,分别交AC 、BC 于点E 、F ,连接EF.(1)求证:四边形ECFD 是矩形;(2)若CF =2,CE =4,求点C 到EF 的距离.【答案】(1)见解析;(2)455【分析】(1)利用平行线的性质证明∠CED =∠CFD =90°,再利用四边形内角和为360°,证明∠EDF =90°,即可由矩形判定定理得出结论;(2)先由勾股定理求出EF =CF 2+CE 2=25,再根据三角形面积公式求解即可.【详解】(1)证明:∵DE ∥BC ,DF ∥AC ,∴四边形ECFD 为平行四边形,∵∠C =90°,∴四边形ECFD 是矩形.(2)解:∵∠C =90°,CF =2,CE =4,∴EF =CF 2+CE 2=25设点C 到EF 的距离为h ,∵S △CEF =12CE ⋅CF =12EF ⋅h ∴2×4=25h∴h=455答:点C到EF的距离为45 5.【点睛】本题考查矩形的判定,平行线的性质,勾股定理.熟练掌握矩形的判定定理和利用面积法求线段长是解题的关键.28(2023·浙江台州·统考中考真题)如图,四边形ABCD中,AD∥BC,∠A=∠C,BD为对角线.(1)证明:四边形ABCD是平行四边形.(2)已知AD>AB,请用无刻度的直尺和圆规作菱形BEDF,顶点E,F分别在边BC,AD上(保留作图痕迹,不要求写作法).【答案】(1)见解析;(2)见解析【分析】(1)先证明∠ADB=∠CBD,再证明180°-∠ADB+∠A=180°-∠CBD+∠C,即∠ABD=∠CDB,从而可得结论;(2)作对角线BD的垂直平分线交AD于F,交BC于E,从而可得菱形BEDF.【详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵∠A=∠C,∴180°-∠ADB+∠A=180°-∠CBD+∠C,即∠ABD=∠CDB.∴AB∥CD.∴四边形ABCD是平行四边形.(2)如图,四边形BEDF就是所求作的菱形.【点睛】本题考查的是平行四边形的判定与性质,作线段的垂直平分线,菱形的判定,熟练的利用菱形的判定进行作图是解本题的关键.三、填空题29(2023·黑龙江齐齐哈尔·统考中考真题)如图,在四边形ABCD中,AD=BC,AC⊥BD于点O.请添加一个条件:,使四边形ABCD成为菱形.【答案】AD∥BC(荅案不唯一)【分析】根据题意,先证明四边形ABCD是平行四边形,根据AC⊥BD,可得四边形ABCD成为菱形.【详解】解:添加条件AD∥BC∵AD=BC,AD∥BC∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD成为菱形.添加条件AB=CD∵AD=BC,AB=CD∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD成为菱形.添加条件OB=OD∵AC⊥BD,∴∠AOD=∠COB=90°∵AD=BC,OB=OD,∴Rt△AOD≌Rt△COB HL∴AD=BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD成为菱形.添加条件∠ADB=∠CBD在△AOD与△COB中,∠ADB=∠CBD ∠AOD=∠COB AD=BC∴△AOD≌△COB∴AD=BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD成为菱形.故答案为:AD∥BC(AB=CD或OB=OD或∠ADB=∠CBD等).【点睛】本题考查了平行四边形的判定,菱形的判定,熟练掌握菱形的判定定理是解题的关键.30(2023·辽宁大连·统考中考真题)如图,在菱形ABCD中,AC、BD为菱形的对角线,∠DBC=60°, BD=10,点F为BC中点,则EF的长为.。
第22课时矩形、菱形、正方形1.★如图Y-49,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOB=60°,AC =16,则图中长度为8的线段有()图Y-49A.2条B.4条C.5条D.6条2.如图Y-50,在▱ABCD中,添加下列条件不能判定▱ABCD是菱形的是()图Y-50A.AB=BC B.AC⊥BD C.BD平分∠ABC D.AC=BD3.★下列命题中,错误..的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等4.★正方形的一条对角线长为4,则这个正方形的面积是()A.8 B.4 2 C.8 2 D.165.★如图Y-51,矩形ABCD沿着对角线BD折叠,使点C落在点C′处,BC′交AD于点E,AD=8,AB=4,则DE的长为________.图Y-516.如图Y-52,在菱形ABCD中,AB=2,∠DAB=60°,E是AD边的中点,M是AB 边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为________时,四边形AMDN是矩形;②当AM的值为________时,四边形AMDN是菱形.图Y-52参考答案1.D[解析] 因为矩形的对角线相等且互相平分,所以AO=OC=BO=OD=8.又因为∠AOB=60°,所以△AOB是等边三角形,所以AB=CD=8,故有AO=OC=BO=OD=CD =AB=8,故选D.此类问题容易出现的错误是不能判断出△AOB是等边三角形,造成解的遗漏.2.D[解析] 一组邻边相等的平行四边形是菱形,故A正确.对角线互相垂直的平行四边形是菱形,故B正确.对角线平分一组对角的平行四边形是菱形,故C正确.对角线相等的平行四边形是矩形,但不一定是菱形,故D错误.故选D.3.C[解析] 矩形的对角线互相平分且相等,不具备互相垂直的性质,C错误.故选C.4.A[解析] ∵正方形的一条对角线长为4,∴这个正方形的面积=12×4×4=8.故选A.此类问题容易出现忽视正方形是特殊的菱形而导致计算繁杂.5.5[解析] ∵∠CBD=∠DBE,∠CBD=∠ADB,∴∠DBE=∠ADB,∴DE=BE.设DE的长为x,则AE=8-x.在Rt△ABE中,AB2+AE2=BE2,即42+(8-x)2=x2,解得x=5.6.解:(1)证明:∵四边形ABCD为菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME.又∵E是AD边的中点,∴DE=AE,∴△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形.(2)①1②2初中数学试卷鼎尚图文**整理制作。
2020年中考数学第一轮复习第二十二讲矩形菱形正方形【基础知识回顾】一、矩形:1、定义:有一个角是角的平行四边形叫做矩形2、矩形的性质:⑴矩形的四个角都⑵矩形的对角线3、矩形的判定:⑴用定义判定⑵有三个角是直角的是矩形⑶对角线相等的是矩形【注意:1、矩形是对称图形,对称中心是,矩形又是对称图形,对称轴有条2、矩形被它的对角线分成四个全等的三角形和两对全等的三角形3、矩形中常见题目是对角线相交成600或1200角时,利用直角三角形、等边三角形等图形的性质解决问题】二、菱形:1、定义:有一组邻边的平行四边形叫做菱形2、菱形的性质:⑴菱形的四条边都⑵菱形的对角线且每条对角线3、菱形的判定:⑴用定义判定⑵对角线互相垂直的是菱形⑶四条边都相等的是菱形【注意:1、菱形既是对称图形,也是对称图形,它有条对称轴,分别是2、菱形被对角线分成四个全等的三角形和两对全等的三角形3、菱形的面积可以用平行四边形面积公式计算,也可以用两对角线积的来计算4、菱形常见题目是内角为1200或600时,利用等边三角形或直角三角形的相关知识解决的题目】三、正方形:1、定义:有一组邻边相等的是正方形,或有一个角是直角的是正方形2、性质:⑴正方形四个角都都是角,⑵正方形四边条都⑶正方形两对角线、且每条对角线平分一组内角3、判定:⑴先证是矩形,再证 ⑵先证是菱形,再证【注意:1、菱形、正方形具有平行四边形的所有性质,正方形具有以上特殊四边形的所有性质。
这四者之间的关系可表示为:2、正方形也既是 对称图形,又是 对称图形,有 条对称轴3、几种特殊四边形的性质和判定都是从 、 、 三个方面来看 的,要注意它们的区别和联系】【中考真题考点例析】考点一:与四边形有关的折叠问题例1(2019潍坊)如图,在矩形ABCD 中,AD =2.将∠A 向内翻折,点A 落在BC 上,记为A ′,折痕为DE .若将∠B 沿EA ′向内翻折,点B 恰好落在DE 上,记为B ′,则AB = .对应练习1-1(泸州)如图,点E 是矩形ABCD 的边CD 上一点,把△ADE 沿AE 对折,点D 的对称点F 恰好落在BC 上,已知折痕AE=105cm ,且tan ∠EFC=34,那么该矩形的周长为( )A .72cmB .36cmC .20cmD .16cm对应练习1-2(湖州)如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE .若DE :AC=3:5,则AD AB的值为( ) A .12 B .33 C .23D .22 考点二:和菱形有关的的问题例2(2019聊城中考)在如图菱形ABCD 中,点P 是BC 边上一点,连接AP ,点,E F 是AP 上的两点,连接DE ,BF ,使得AED ABC ∠=∠,ABF BPF ∠=∠.(1)求证:ABF DAE V V ≌;(2)求证:DE BF EF =+.对应练习2-1(2019潍坊)如图1,菱形ABCD的顶点A,D在直线l上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′.B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.对应练习2-2(泉州)如图,菱形ABCD的周长为85,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO= ,菱形ABCD的面积S= .考点三:和矩形有关的题目例3(2019年山东临沂)如图,在□ABCD中,M,N是BD上两点,BM=DN,连接AM,MC,CN,NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=12AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND对应练习3-1(2019青岛中考)如图,在□ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别为OB ,OD 中点,延长AE 至G ,使EG=AE ,连接CG .(1)求证:△ABE≌△CDF ;(2)当AB 与AC 满足什么数量关系时,四边形EGCF 是矩形?请说明理由.考点四:和正方形有关的试题例4(2019年菏泽)如图,E,F 是正方形ABCD 的对角线AC 上的两点,AC=8,AE=CF=2,则四边形BEDF 的周长是____.对应练习4-1(2019年枣庄)如图,点E 是正方形ABCD 的边DC 上一点,把ADE ∆绕点A 顺时针旋转90︒到ABF ∆的位置.若四边形AECF 的面积为20,DE=2,则AE 的长为( )A. 4B. 25C. 6D. 26对应练习4-2(2019年山东临沂)如图,在正方形ABCD 中,E 是DC 边上一点,(与D 、C 不重合),连接AE ,将△ADE 沿AE 所在的直线折叠得到△AFE ,延长EF 交BC 于点G ,连接AG ,作GH ⊥AG ,与AE 的延长线交于点H ,连接CH .显然AE 是∠DAF 的平分线,EA 是∠DEF 的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角的平分线),并说明理由.考点五:矩形的动点问题例5(2019年泰安)如图,矩形ABCD 中,4AB =,2AD =,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是( )A. 2B. 4C. 2D. 22 考点六:平行四边形、矩形、菱形及正方形综合题例6(2019年泰安)在平面直角坐标系中,直线:1l y x =+与y 轴交于点1A ,如图所示,A BG C M FH DE依次作正方形111OA B C ,正方形1222C A B C ,正方形2333C A B C ,正方形3444C A B C ,…,点1A ,2A ,3A ,4A ,…在直线l 上,点1C ,2C ,3C ,4C ,…⑴x 轴正半轴上,则前n 个正方形对角线的和是_____.对应练习6-1(2019年莱芜)如图在坐标系中放置一菱形OABC ,已知∠ABC=60°,OA=1.先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2019次,点B 的落点依次为B 1,B 2,B 3,…,则B 2019的坐标为 .对应练习6-2(2019年山东滨州)如图,矩形ABCD 中,点E 在边CD 上,将△BCE 沿BE 折叠,点C 落在AD 边上的点F 处,过点F 作FG ∥CD 交BE 于点G ,连接CG .(1)求证:四边形CEFG 是菱形;(2)若AB =6,AD =10,求四边形CEFG 的面积.第二十二讲 矩形 菱形 正方形 参考答案【中考真题考点例析】考点一:与四边形有关的折叠问题例1 答案:3 解:在矩形ABCD 中,∠ADC =∠C =∠B =90°,AB =DC .由翻折可知,∠AED =∠A 'ED =∠A 'EB =60°,∴∠A 'DE =∠ADE =30°,∴∠A 'DC =30°=∠A 'DB ',又∠A 'B 'D =∠B =∠C ,DA '=DA ',∴△DB 'A '≌△DCA '(AAS ),∴DC =DB '.在Rt △ADE 中,tan30°=AD AE,即33=2AE ,解得AE =332.∴DE =334.设AB =DC =DB '=x ,则B 'E =BE =x -332,即有x -332+x =334,解得x =3.对应练习1-1 答案:A对应练习1-2 答案:A解析:∵矩形沿直线AC 折叠,点B 落在点E 处,∴∠BAC=∠EAC ,AE=AB=CD ,∵矩形ABCD 的对边AB ∥CD ,∴∠DCA=∠BAC ,∴∠EAC=∠DCA ,设AE 与CD 相交于F ,则AF=CF ,∴AE -AF=CD -CF ,即DF=EF ,∴AF EFFC DF =,又∵∠AFC=∠EFD ,∴△ACF ∽△EDF ,∴53==AC DE FC DF,设DF=3x ,FC=5x ,则AF=5x ,在Rt △ADF 中,AD=2222(3x)-(5x)DF -AF ==4x ,又∵AB=CD=DF+FC=3x+5x=8x ,∴2184==x x AB AD.故选A .考点二:和菱形有关的的问题例2 答案:证明:(1)∵四边形ABCD 为菱形,∴AB AD =,AD BC ∥,∴BPA DAE ∠=∠.在ABP ∆和DAE ∆中,又∵ABC AED ∠=∠,∴BAF ADE ∠=∠.∵ABF BPF ∠=∠且BPA DAE ∠=∠,∴ABF DAE ∠=∠,又∵AB DA =,∴()ABF DAE ASA ≅V V .(2)∵ABF DAE ≅V V ,∴AE BF =,DE AF =.∵AF AE EF BF EF =+=+, ∴DE BF EF =+.对应练习2-1 答案:解:(1)∵MN ∥B ′D ′,∴D C B C D N B M ''''=''.又∵C ′B ′=C ′D ′,∴MB ′=ND ′.在AB ′M 和△AD ′N 中,∴AB ′=AD ′,∠AB ′M =∠AD ′N , B ′M =D ′N ,∴△AB ′M ≌△AD ′N ,∴∠B ′AM =∠D ′AN .又∵∠D ′AN =α,∴∠B ′AM =α.∴∠B ′AM =∠BAB ′=21∠BAC =41∠BAD =15°.即α=15°.(2)在△AB ′E 和△AD ′G 中,∠AB ′E =∠AD ′G ,∠EAB ′=∠GAD ′,AB ′=AD ′,∴△AB ′E ≌△AD ′G ,∴EB ′=GD ′,AE =AG .在△AHE 和△AHG 中,AE =AG ,∠EAH =∠GAH ,AH =AH ,∴△AHE ≌△AHG ,∴EH =GH .∵△HEB ′的周长为2,∴EH +EB ′+HB ′=2,∴GH +GD ′+B ′H =2,∴B ′D ′=BD =2,∴菱形ABCD 的周长为8.对应练习2-2 答案:1:2,16解析:∵四边形ABCD 是菱形,∴AO=CO ,BO=DO ,∴AC=2AO ,BD=2BO ,∴AO :BO=1:2;∵菱形ABCD 的周长为58,∴AB=52,∵AO :BO=1:2,∴AO=2,BO=4,∴菱形ABCD 的面积S=248⨯=16 故答案为:1:2,16.考点三:和矩形有关的题目例3 答案:A解:在□ABCD 中,OA =OC ,OB =OD ,又∵BM =DN ,∴OM =ON ,∴四边形AMCN 是平行四边形.当OM =12AC 时,则OA =OM =OC ,∴∠OAM =∠OMA ,∠OCM =∠OMC ,∴∠AMC =180°÷2=90°,∴□AMCN 是矩形.对应练习3-1 答案:解:(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,∴∠ABE=∠CDF ,∵点E ,F 分别为OB ,OD 的中点,∴BE=12OB ,DF=12OD , ∴BE=DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴≅V V(2)当AC=2AB 时,四边形EGCF 是矩形;理由如下:∵AC=2OA ,AC=2AB ,∴AB=OA ,∵E 是OB 的中点,∴AG ⊥OB ,∴∠OEG=90°,同理:CF ⊥OD ,∴AG ∥CF ,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.考点四:和正方形有关的试题例4 答案:解:连接BD,如图所示:因此OD=OB=OC=OA=12AC=4,AE=CF=2,因此OE=OF=8222--=2.所以DF=DE=BE=BF=222425+=,所以四边形BEDF的周长是4×25=85.对应练习4-1 答案:D解:ADE∆Q绕点A顺时针旋转90︒到ABF∆的位置.∴四边形AECF的面积等于正方形ABCD的面积等于20,25AD DC∴==,2DE=Q,Rt ADE∴∆中,2226AE AD DE=+=故选:D.对应练习4-2 答案:解:AG是∠BAF的平分线,GA是∠BGF的平分线,GH是∠EGC的平分线,CH是∠DCM 的平分线.证明如下:∵四边形ABCD为正方形,∴∠D=∠B=90°,AB=AD.∵△ADE沿AE翻折至△AFE,∴AD=AF,∠D=∠AFE=90°,∴AB=AF.又∵AG=AG,∴Rt△ABG≌Rt△AFGAB GC NFHDEM(HL ).∴∠BAG =∠FAG ,∠BGA =∠FGA ,即GA 是∠BGF 的平分线,GH 是∠EGC 的平分线.∵GH ⊥AG ,∴∠AGH =90°,∴∠AGE+∠HGE =90°,∠AGB+∠HGC =90°, 又⑴∠AGB =∠AGE ,∴∠HGE =∠HGC , 即GH 是∠EGC 的平分线.如图,过点H 作HN ⊥BC 于点N ,则∠GNH =∠ABG =90°∵∠AGB+∠HGC =90°,∠AGB+∠BAG =90°,∴∠HGC =∠BAG . ∵∠GAE =21∠BAD =45°,∠AGH =90°,∴∠AHG =45°,∴AG =GH , ∴△ABG ≌△GNH (AAS ),∴BG =HN , GN =AB =BC , ∴BG =CN ,∴CN =HN ,∴∠HCN =45°,∴∠ECH =45°, 即CH 是∠DCM 的平分线. 考点五:矩形的动点问题 例5 答案:D解:根据题意要使PB 最小,就必须使得DF 最长,因此可得当C 点和F 点重合时,才能使PB 最小.Q 当C 和F 重合时,P 点是CD 的中点2CP ∴=BP ∴===故选D.考点六:平行四边形、矩形、菱形及正方形综合题例6答案:(21n-解:根据根据题意可得11OA =,212A C =,324A C =,L 112n n n A C --=所以可得正方形111OA B C正方形1222C A B C 的对角线为正方形2333C A B C 的对角线为正方形3444C A B C 的对角线为L正方形1n n n n C A B C -的对角线为2n -所以前n 个正方形对角线的和为12(1248+2n n --++=++++L L (21n-故答案为(21n-对应练习6-1 答案:(1342,0)解:连接AC,如图所示.∠四边形OABC是菱形,∠OA=AB=BC=OC.∠∠ABC=90°,∠∠ABC是等边三角形.∠AC=AB.∠AC=OA.∠OA=1,∠AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∠2019=335×6+4,∠点B4向右平移1340(即335×4)到点B2019.∠B4的坐标为(2,0),∠B2019的坐标为(2+1340,0),∠B2019的坐标为(1342,0).对应练习6-2 答案:解:(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG是平行四边形,又∵CE=FE,∴四边形CEFG是菱形;(2)∵矩形ABCD中,AB=6,AD=10,BC=BF,∴∠BAF=90°,AD=BC=BF=10,∴AF=8,∴DF=2,设EF=x,则CE=x,DE=6﹣x,∵FDE=90°,∴22+(6﹣x)2=x2,解得,x=,∴CE=,∴四边形CEFG的面积是:CE•DF=×2=.【聚焦中考真题】一、选择题1.(威海)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB 于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BFC.BD=DF D.AC=BF2.(枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.3- 1 B.3 -5C.5+ 1 D.5- 13.(凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF 的周长为()A.14B.15C.16 D.174.(铜仁地区)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形5.(宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等6.(随州)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD 的周长是()A.25B.20C.15D.107.(重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.2cm D.1cm8.(南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12B.24C.123D.1639.(巴中)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD 的周长是()A.24B.16C.43D.2310.茂名)如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC的长是()A.2B.4C.2 3D.4311.(成都)如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()A.1B.2C.3D.412.(包头)如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S213.(扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°14.(绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A.2825cm B.2120cm C.2815cm D.2521cm15.(雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.2B.3C.4D.5二、填空题16.(临沂)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是.17.(烟台)如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画⌒AC,连结AF,CF,则图中阴影部分面积为.18.(济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+3.其中正确的序号是(把你认为正确的都填上).19.(宿迁)如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α为------度时,两条对角线长度相等.20.(淮安)若菱形的两条对角线分别为2和3,则此菱形的面积是.21.(无锡)如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于.22.(黔西南州)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.23.(攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=35,BE=4,则tan∠DBE的值是.24.(南充)如图,正方形ABCD的边长为2,过点A作AE⊥AC,AE=1,连接BE,则tanE= .25.(苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若1CGGB k=,则ADAB=用含k的代数式表示).26.(哈尔滨)如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于E,若BC=4,△AOE的面积为5,则sin∠BOE的值为.27.(北京)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.28.(南京)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= cm.29.(舟山)如图,正方形ABCD的边长为3,点E,F分别在边AB、BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程为.30.(桂林)如图,已知线段AB=10,AC=BD=2,点P是CD上一动点,分别以AP、PB 为边向上、向下作正方形APEF和PHKB,设正方形对角线的交点分别为O1、O2,当点P 从点C运动到点D时,线段O1O2中点G的运动路径的长是.31.(荆州)如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②当x=1时,四边形ABC1D1是菱形;③当x=2时,△BDD1为等边三角形;④s=38(x-2)2(0<x<2);其中正确的是(填序号).三、解答题32.(2019潍坊)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=5,求EM的长.33.(2019年泰安)如图,四边形ABCD 是正方形,EFC ∆是等腰直角三角形,点E 在AB 上,且90CEF ∠=︒,FG AD ⊥,垂足为点G . (1)试判断AG 与FG 是否相等?并给出证明.(2)若点H 为CF 的中点,GH 与DH 垂直吗?若垂直,给出证明;若不存在,说明理由. 34.(2019年日照)如图,在矩形ABCD 中,对角线AC 的中点为O ,点G ,H 在对角线AC 上,AG =CH ,直线GH 绕点O 逆时针旋转α角,与边AB 、CD 分别相交于点E 、F (点E 不与点A 、B 重合).(1)求证:四边形EHFG 是平行四边形;(2)若∠α=90°,AB =9,AD =3,求AE 的长.35.(济宁)如图1,在正方形ABCD 中,E 、F 分别是边AD 、DC 上的点,且AF ⊥BE . (1)求证:AF=BE ;(2)如图2,在正方形ABCD 中,M 、N 、P 、Q 分别是边AB 、BC 、CD 、DA 上的点,且MP ⊥NQ .MP 与NQ 是否相等?并说明理由.36.(青岛)已知:如图,在矩形ABCD 中,M ,N 分别是边AD 、BC 的中点,E ,F 分别是线段BM ,CM 的中点.(1)求证:△ABM ≌△DCM ;(2)判断四边形MENF 是什么特殊四边形,并证明你的结论;(3)当AD :AB= 时,四边形MENF 是正方形(只写结论,不需证明) 37. (淄博)矩形纸片ABCD 中,AB=5,AD=4.(1)如图1,四边形MNEF 是在矩形纸片ABCD 中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;(2)请用矩形纸片ABCD剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).38.(济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.39.(资阳)在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.(1)如图1,当点M与点C重合,求证:DF=MN;(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以2cm/s速度沿AC向点C运动,运动时间为t(t>0);①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由.40.(营口)如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=43,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.CF的长.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.43.(南通)如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.44.(广州)如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.45.(厦门)如图所示,在正方形ABCD中,点G是边BC上任意一点,DE⊥AG,垂足为E,延长DE交AB于点F.在线段AG上取点H,使得AG=DE+HG,连接BH.求证:∠ABH=∠CDE.46.(黔东南州)如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME ∥CD交BC于点E,作MF∥BC交CD于点F.求证:AM=EF.47.(铁岭)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.48.(南宁)如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.49.(贵阳)已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD 于点E,连接EC.(1)求证:AE=EC;(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.50.(曲靖)如图,点E在正方形ABCD的边AB上,连接DE,过点C作CF⊥DE于F,过点A作AG∥CF交DE于点G.(1)求证:△DCF≌△ADG.(2)若点E是AB的中点,设∠DCF=α,求sinα的值.51.(绥化)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为22,对角线AE,DF相交于点O,连接OC.求OC的长度.52.(盘锦)如图,正方形ABCD的边长是3,点P是直线BC上一点,连接PA,将线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E 在BC同侧,连接EF,CF.(1)如图 ,当点P在CB延长线上时,求证:四边形PCFE是平行四边形;(2)如图 ,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由;(3)在(2)的条件下,四边形PCFE的面积是否有最大值?若有,请求出面积的最大值及此时BP长;若没有,请说明理由.53.(2019年济南)如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折AD=,痕,连接EF并延长交BM于点P,若8AB=,求线段PE的长.5第二十二讲矩形菱形正方形参考答案【聚焦中考真题】一、选择题1-5 DDCCB5-10 BCDCB11-15 BBBBC二、填空题16.答案:3解析:∵四边形ABCD是菱形,∴BC=CD,∠B=∠D=60°,∵AE⊥BC,AF⊥CD,∴AB•AE=AD•AF,∠BAE=∠DAF=30°,∴AE=AF,∵∠B=60°,∴∠BAD=120°,∴∠EAF=120°-30°-30°=60°,∴△AEF是等边三角形,∴AE=EF,∠AEF=60°,∵AB=4,∴AE=2,∴EF=AE=2,如图,过A作AM⊥EF,∴AM=AE•sin60°=3,23.答案:2解析:∵四边形ABCD是菱形,∴AD=AB。
第五章四边形第22课时矩形、菱形、正方形江苏近5年中考真题精选(2013~2017)命题点1与矩形有关的证明及计算(盐城4考,淮安2考,宿迁3考)1. (2017淮安8题3分)如图,在矩形纸片ABCD中,AB=3,点E 在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A. 33B. 6C. 4D. 5第1题图第2题图2.(2013宿迁12题3分)如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α为____度时,两条对角线长度相等.3. (2017徐州17题3分)如图,矩形ABCD中,AB=4,AD=3,点Q在对角线AC上,且AQ=AD,连接DQ并延长,与边BC交于点P,则线段AP=________.第3题图第4题图4. (2015无锡14题3分)如图,已知矩形ABCD的对角线长为8 cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH 的周长等于________cm.5.(2015淮安21题8分)已知:如图,在矩形ABCD中,点E、F 在边AD上,且AE=DF.求证:BF=CE.第5题图6.(2016南通25题8分)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.第6题图7.(2016扬州23题10分)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.第7题图命题点2菱形的判定(盐城2考,淮安1考)8. (2014徐州7题3分)若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是...()A. 矩形B. 等腰梯形C. 对角线相等的四边形D. 对角线互相垂直的四边形9.(2015南京24(2)题4分)如图,AB∥CD,点E、F分别在AB、CD上,连接EF.∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE 的平分线交于点H.第9题图小明在证明四边形EGFH是矩形后继续进行了探索,过G作MN∥EF,分别交AB、CD于点M、N,过H作PQ∥EF,分别交AB、CD于点P、Q,得到四边形MNQP,此时,他猜想四边形MNQP 是菱形,请在下列框图中补全他的证明思路.小明的证明思路:由AB∥CD,MN∥EF,PQ∥EF,易证四边形MNQP是平行四边形,要证▱MNQP是菱形,只要证NM=NQ.由已知条件________,MN∥EF,可证NG=NF,故只要证GM=FQ,即证△MGE≌△QFH,易证______,______,故只要证∠MGE=∠QFH,易证∠MGE=∠GEF,∠QFH=∠EFH,______,即可得证.)10.(2014淮安21题8分)如图,在三角形纸片ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB、AC于点E、F,连接DE、DF.求证:四边形AEDF是菱形.第10题图11. (2014镇江20题6分)如图,在四边形ABCD中,AB=AD,BC =DC,A C、BD相交于点O,点E在AO上,且OE=OC.(1)求证:∠1=∠2;(2)连接BE、DE,判断四边形BCDE的形状,并说明理由.第11题图12. (2013盐城23题10分)如图,在平行四边形ABCD中,E为BC 边上的一点,连接AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.第12题图13.(2017盐城22题10分)如图,矩形ABCD中,∠ABD、∠CDB 的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF为平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.第13题图命题点3与菱形有关的证明及计算(盐城3考,淮安3考,宿迁2考)14.(2016无锡8题3分)下列性质中,菱形具有而矩形不一定具有的是()A. 对角线相等B. 对角线互相平分C. 对角线互相垂直D. 邻边互相垂直第15题图15. (2013扬州7题3分)如图,在菱形ABCD中,∠BAD=80°,AB 的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF 等于()A. 50°B. 60°C. 70°D. 80°16. (2013淮安17题3分)若菱形的两条对角线长分别为2和3,则此菱形的面积是________.第17题图17. (2016扬州15题3分)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,E 为AD 的中点,若OE =3,则菱形ABCD 的周长为________.18. (2016淮安21题8分)已知:如图,在菱形ABCD 中,点E 、F 分别为边CD 、AD 的中点,连接AE 、CF ,求证:△ADE ≌△CDF .第18题图19. (2014盐城25题10分)如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点O 作一条直线分别交DA 、BC 的延长线于点E 、F ,连接BE 、DF .(1)求证:四边形BFDE 是平行四边形;(2)若EF ⊥AB ,垂足为M ,tan ∠MBO =12,求EM ∶MF 的值.第19题图20. (2015盐城26题10分)如图,把△EFP 按图示方式放置在菱形ABCD 中,使得顶点E 、F 、P 分别在线段AB 、AD 、AC 上.已知EP =FP =4,EF =43,∠BAD =60°,且AB >4 3.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.第20题图命题点4与正方形有关的证明及计算(盐城1考,淮安1考,宿迁3考)21.(2015连云港5题3分)已知四边形ABCD,下列说法正确的是()A. 当AD=BC,AB∥DC时,四边形ABCD是平行四边形B. 当AD=B C,AB=DC时,四边形ABCD是平行四边形C. 当AC=BD,AC平分BD时,四边形ABCD是矩形D. 当AC=BD,AC⊥BD时,四边形ABCD是正方形第22题图22.(2013连云港8题3分)如图,正方形ABCD的边长为4,点E 在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A. 1B. 2C. 4-2 2D. 32-423. (2016南京16题3分)如图,菱形ABCD的面积为120 cm2,正方形AECF的面积为50 cm2,则菱形的边长为________cm.第23题图第24题图24.(2014泰州16题3分)如图,正方形ABCD的边长为3 cm,E 为CD边上一点.∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q,若PQ=AE,则AP等于________cm.25.(2016无锡21题8分)已知:如图,正方形ABCD中,E为BC 边上一点,F为BA延长线上一点,且CE=AF,连接DE、DF.求证:DE=DF.第25题图26. (2013南京19题8分)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M、N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.第26题图27. (2017泰州22题10分)如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.第27题图28. (2015泰州25题12分)如图,正方形ABCD的边长为8 cm,E,F,G,H分别是AB,BC,CD,DA上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过一个定点,并说明理由;(3)求四边形EFGH面积的最小值.第28题图答案1. B【解析】由折叠可知,∠BAE=∠EAC,∵∠EAC=∠ECA,∴∠BAC=2∠BCA,∵四边形ABCD是矩形,∴∠B=90°,∴∠BAC +∠BCA=3∠ACB=90°,∴∠ACB=30°,∵AB=3,∴AC=2AB =6.2. 90【解析】根据对角线相等的平行四边形是矩形,可以得到∠α=90°.3. 17 【解析】∵AC =42+32=5,AQ =AD =3,∴CQ =2,又∵AD =AQ ,∴∠ADQ =∠AQD .∵∠CQP =∠AQD ,∴∠ADQ =∠CQP ,∵AD ∥BC ,∴∠ADQ =∠CPQ ,∴∠CQP =∠CPQ ,∴CP =CQ =2,∴BP =3-2=1,∴AP =22BP AB =42+12=17.4. 16 【解析】如解图,连接AC 、BD ,∵在△ABC 中,E 、F分别为AB 、BC 的中点,∴EF =12AC =4,同理可得,HG =12AC =4,EH =FG =12BD =4,∴四边形EFGH 的周长等于16 cm.第4题解图5. 证明:∵四边形ABCD 是矩形,∴AD =BC ,AB =CD , ∠A =∠D =90°,(3分)∵AE =DF ,∴AF =DE ,(5分)∴△ABF ≌△DCE (SAS),(7分)∴BF =CE .(8分)6. 证明:(1)∵四边形ABCD 为平行四边形,∴AB ∥CD ,∵BE =AB ,BE 在AB 的延长线上,∴BE ∥CD ,∴∠BEF =∠CDF ,∠FBE =∠FCD ,∴△BEF ≌△CDF (ASA);(4分)(2)由(1)证得BE∥CD,∴四边形BECD为平行四边形,∵四边形ABCD为平行四边形,∴∠FCD=∠A,∵∠BFD=∠FCD+∠F D C,∠BFD=2∠A,∴∠FDC=∠A,∴∠FDC=∠FCD,∴FD=FC,(6分)由(1)知,△BEF≌△CDF,∴BF=CF,EF=DF,∴BC=DE,∴四边形BECD是矩形.(8分)7. (1)证明:∵四边形ABCD为矩形,∴AD∥BC,AB∥CD,∴∠BAC=∠DCA,由折叠的性质知,∠EAC=12∠BAC, ∠FCA=12∠DCA,∴∠EAC=∠FCA,∴AE∥CF,又∵AD∥BC,∴四边形AECF为平行四边形;(5分)(2)解:∵四边形ABCD为矩形,∴∠B=∠D=90°,∴在Rt△ABC中,AB=6,AC=10,由勾股定理得BC=102-62=8,由折叠的性质知,∠ABC=∠AME=90°,BE=EM,(6分)在Rt△CEM中,CM=AC-AM=10-6=4,(8分)设CE=x,则B E=EM=8-x,由勾股定理得ME2+CM2=EC2,即(8-x)2+16=x2,解得x=5,∵由(1)得,四边形AECF为平行四边形,∴S四边形AECF=EC·CD=5×6=30.(10分)8. C【解析】如解图,根据题意得四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,∴EF=FG=GH=EH,BD=2EF,AC=2FG,∴BD=AC,∴原四边形一定是对角线相等的四边形.故选C.第8题解图9. FG平分∠CFE; GE=FH;∠GME=∠FQH;∠GEF=∠EFH(答案不唯一).10. 证明:如解图,设EF与AD交于点O,第10题解图∵AD平分∠BAC,∴∠EAO=∠F AO,(2分)由折叠性质可知AO=DO,EF⊥AD,∴∠AOE =∠AOF =90°,(3分) 在△AEO 和△AFO 中,⎪⎩⎪⎨⎧∠=∠=∠=∠AOF AOE AOAO FAO EAO , ∴△AEO ≌△AFO (ASA),(5分) ∴EO =FO ,即EF 、AD 相互平分,∴四边形AEDF 是平行四边形,(7分) 又∵EF ⊥AD ,∴平行四边形AEDF 为菱形.(8分) 11. (1)证明:在△A B C 与△ADC 中,⎪⎩⎪⎨⎧===AC AC DC BC AD AB , ∴△ABC ≌△ADC (SSS), ∴∠1=∠2;(3分)(2)解:如解图,连接BE 、DE , 四边形BCDE 为菱形,理由如下:第11题解图∵BC =DC ,∠1=∠2,OC =OC , ∴△COB ≌△COD (SAS), ∴OD =OB ,OC ⊥BD ,∴四边形BCDE是平行四边形,∵OC⊥BD,∴四边形BCDE是菱形.(6分)12. 证明:(1)在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,(2分)∵AE=AB,∴∠ABE=∠AEB,∴∠ABE=∠EAD;(4分)(2)∵AD∥BC,∴∠ADB=∠DBE,∵∠ABE=∠AE B,∠AEB=2∠ADB,∴∠ABE=2∠ADB,∴∠ABD=∠A B E-∠DBE=2∠ADB-∠ADB=∠ADB,∴AB=AD,(8分)又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.(10分)13. (1)证明:∵四边形ABCD是矩形,∴AB∥D C,AD∥BC,∴∠ABD=∠CDB,(2分)∵BE平分∠ABD,DF平分∠CDB,∴∠EBD=12∠ABD,∠FDB=12∠CDB,∴∠EBD=∠FDB,∴DF∥EB,∴四边形BEDF是平行四边形;(5分)(2)解:当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,(8分)∵四边形AB CD是矩形,∴∠A=90°,∴∠EDB=90°-∠ABD=30°,∴∠EDB=∠EB D=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.(10分)14. C【解析】根据矩形的对角线互相平分且相等和菱形的对角线互相垂直平分、矩形的邻边互相垂直,即可得出答案.15. B【解析】如解图,连接BF,在菱形ABCD中,∠BAC=12∠BAD =12×80°=40°,∠BCF =∠DCF ,BC =CD ,∠ABC =180°-∠BAD =180°-80°=100°,∵EF 是线段AB 的垂直平分线,∴AF =BF ,∠ABF =∠BAC =40°,∴∠CBF =∠A B C -∠ABF =100°-40°=60°,∵在△BCF 和△DCF 中,⎪⎩⎪⎨⎧=∠=∠=CF CF DCF BCF DCBC ,∴△BCF ≌△DCF (SAS),∴∠CDF =∠CBF =60°.第15题解图16. 3 【解析】S 菱形=12×2×3=3.17. 24 【解析】∵四边形ABCD 为菱形,∴OA =OC ,∵E 为AD 边中点,∴OE 是△ACD 的中位线,∵OE =12CD =3,∴CD =6,∴菱形ABCD 的周长为24.18. 证明:∵四边形ABCD 是菱形, ∴AD =CD ,(2分)又∵F 、E 分别为边AD 、CD 中点, ∴DE =DF ,(4分) 在△ADE 和△CDF 中,⎪⎩⎪⎨⎧=∠=∠=DF DE CDF ADE CD AD , ∴△ADE ≌△CDF (SAS).(8分)19. (1)证明:在菱形ABCD 中,AD ∥BC ,OA =OC ,OB =OD , ∴∠AEO =∠CFO , 在△AEO 和△CFO 中, ⎩⎪⎨⎪⎧∠AOE =∠COF OA =OC∠AEO =∠CFO, ∴△AEO ≌△CFO (AAS), ∴OE =OF , 又∵OB =OD ,∴四边形BFDE 是平行四边形;(5分) (2)解:设OM =x , ∵EF ⊥AB ,tan ∠MBO =12, ∴BM =2x , 又∵AC ⊥BD ,∴∠M =∠M ,∠OAM =∠BOM , ∴△AOM ∽△OBM ,(8分) ∴AM OM =OM BM , ∴AM =OM2BM =21x ,∵A D ∥BC , ∴△AEM ∽△BFM ,∴EM ∶FM =AM ∶BM =12x ∶2x =1∶4.(10分) 20. 解:(1)如解图①,过点P 作PG ⊥EF 于点G ,第20题解图①∵EP =FP =4,EF =43,∴在Rt △PGF 中,FG =EG =23,PG =42-(23)2=2, ∴PG =12PF ,∠PEF =∠PFE =30°, ∴∠EPF =180°-2×30°=120°;(3分)【一题多解】如解图①,过点P 作PG ⊥EF 于点G , ∵PE =PF ,∴FG =EG =12EF =23, ∴∠FPG =∠EPG =12∠EPF ,在△FPG 中,sin ∠FPG =FG PF =234=32, ∴∠FPG =60°,∴∠EPF =2∠FPG =120°.(3分)(2)如解图①,作PM ⊥AB 于点M ,PN ⊥AD 于点N , 在菱形ABCD 中,AD =AB ,DC =BC ,AC =AC ,∴△ABC ≌△ADC (SSS), ∴∠DAC =∠BAC ,∴点P 到AB 、AD 两边距离相等, 即PM =PN .(4分)在Rt △PME 和Rt △PNF 中, ∵PM =PN ,PE =PE , ∴Rt △PME ≌Rt △PNF , ∴FN =EM .在Rt △PMA 中,∠PMA =90°,∠P AM =12∠DAB =30°, ∴AM =AP ·cos 30°=3 3 , 同理AN =3 3.∴AE +AF =(AM -EM )+(AN +NF )=AM +AN =63;(6分) (3)如解图②,当EF ⊥AC ,点P 在EF 的右侧时,AP 有最大值,第20题解图②当EF ⊥AC ,点P 在EF 的左侧时,AP 有最小值, 设AC 与EF 交于点O , ∵PE =PF ,∴OF =12EF =23,(8分) ∵∠FP A =60°, ∴OP =2, ∵∠BAD =60°,∴∠F AO =30°,在Rt △AOE 中,OF =23,∠F AO =30°, ∴AO =6,∴AP =AO +PO =8, 同理AP ′=A O -OP ′=4,∴AP 的最大值是8,最小值是4.(10分) 21. B22. C 【解析】在正方形ABCD 中,∠ABD =∠ADB =45°,∵∠BAE =22.5°,∴∠DAE =90°-∠BAE =90°-22.5°=67.5°,在△ADE 中,∠AED =180°-45°-67.5°=67.5°,∴∠DAE =∠AED ,∴AD =DE =4,在Rt △BAD 中,根据勾股定理得BD =22AD AB =42,∴BE =BD -DE =42-4,∵EF ⊥AB ,∠ABD =45°,∴△BEF 是等腰直角三角形,∴EF =BE ·cos45°=22×(42-4)=4-2 2.23. 13 【解析】如解图,连接AC ,BD ,∵菱形的面积等于对角线乘积的一半,∴S 菱形ABCD =12A C ·BD =120,∴AC ·BD =240,又∵菱形对角线互相垂直平分,∴2OA ·2OB =240,∴ OA ·OB =60,∵正方形AECF 的面积等于边长的平方,∴AE 2=50, 又∵OA 2+OE 2=AE 2,OA =OE ,∴O A =5,∴OB =12,∴AB =OA 2+OB 2=122+52=13.第23题解图24. 1或2 【解析】根据题意画出图形,过点P 作PN ⊥BC ,交BC 于点N ,如解图,∵四边形ABCD 为正方形,∴AD =DC =PN ,在Rt △ADE 中,∠DAE =30°,AD =3 cm ,∴tan30°=DE AD ,∴DE = 3 cm ,根据勾股定理得AE =32+(3)2=2 3 cm ,∵M 为AE 的中点,∴AM =12AE = 3 cm ,在Rt △ADE 和Rt △PNQ 中,⎩⎪⎨⎪⎧AD =PN AE =PQ ,∴Rt △ADE ≌Rt △PNQ (HL),∴DE =NQ ,∠DAE =∠NPQ =30°,∵PN ∥D C ,∴∠PF A =∠DEA =60°,∴∠PMF =90°,即PM ⊥AF ,在Rt △AMP 中,∠MAP =30°,cos30°=AM AP ,∴AP =︒30cos AM =332=2 cm ;由对称性得到AP ′=DP =AD -AP =3-2=1 cm ,综上,AP 等于1 cm 或 2 cm.第24题解图25. 证明:∵四边形ABCD 是正方形,∴AD =CD ,∠DAB =∠D C E =90°,∴∠DAF =∠DCE =90°,在△DAF 和△DCE 中,(3分)⎩⎪⎨⎪⎧AF =CE ∠DAF =∠DCE ,AD =CD∴△DAF ≌△DCE (SAS),(6分)∴DE =DF .(8分)26. 证明:(1)∵对角线BD 平分∠ABC ,∴∠ABD =∠CBD ,在△ABD 和△CBD 中,⎪⎩⎪⎨⎧=∠=∠=BD BD CBD ABD CB AB , ∴△ABD ≌△CBD (SAS),(3分)∴∠ADB =∠CDB ;(4分)(2)∵PM ⊥AD ,PN ⊥CD ,∴∠PMD =∠PND =90°,又∵∠ADC =90°,∴四边形MPND 是矩形,(6分)由(1)知,∠AD B =∠CDB ,∴PM =PN ,∴四边形MPND 是正方形.(8分)27. (1)证明:在正方形ABCD 中,AB =AD ,∠BAD =90°,(2分)∴∠BAE +∠DAF =90°,∵BE ⊥AG ,DF ⊥AG ,∴∠AEB =∠AFD =90°,∴∠BAE +∠ABE =90°,∴∠DAF =∠ABE ,(4分)在△ABE 和△DAF 中,⎪⎩⎪⎨⎧=∠=∠∠=∠DA AB DFA AEB ABE DAF , ∴△ABE ≌△DAF (AAS);(5分)(2)解:∵△ABE ≌△DAF ,∴BE =AF =1,AE =DF ,(7分)∵S 四边形ABED =S △ABE +S △ADE =6,即12BE ·AE +12AE ·DF =6,∴12AE +12A E 2=6,(9分)解得AE =3或AE =-4(不合题意,舍去),∴EF =AE -AF =2.(10分)28. (1)证明:∵四边形ABCD 是正方形,∴AD=DC,∵AE=DH=CG,∴AH=DG,∵∠A=∠D,∴△AHE≌△DGH(SAS),(2分)∴EH=GH,∠AHE=∠DGH,∵∠DGH+∠DHG=90°,∴∠AHE+∠DHG=90°,∴∠EHG=90°,同理EH=EF=FG,则EH=GH=GF=FE,∴四边形EFGH是正方形;(4分)(2)解:是,直线EG经过正方形ABCD的中心.理由如下:如解图,连接BD,EG,DE,BG,第28题解图∵BE=DG,BE∥DG,∴四边形BGDE是平行四边形,∴OB=OD,OE=OG,∴点O为正方形ABCD的对角线AC、BD的交点,即O为正方形ABCD的中心,∴直线EG经过正方形ABCD的中心;(8分)(3)解:设四边形EFGH的面积为y,AE=x,则AH=8-x,在Rt△AEH中,由勾股定理得EH2=AE2+AH2,而四边形EFGH 的面积y=EH2,∴y=x2+(8-x)2=2(x-4)2+32,∴当x=4时,y有最小值为32.即四边形EFGH面积的最小值是32 cm2.(12分)。