(完整版)五年级奥数测试卷-盈亏问题-答案
- 格式:doc
- 大小:37.01 KB
- 文档页数:3
奥赛起跑线五年级分册-盈亏问题work Information Technology Company.2020YEAR数学奥赛起跑线五年级分册例题及答案第9讲[盈亏问题思考与练习(一)]单位量=总量的盈亏差距(窍门:同号相减,反号相加)÷单位分得的量的差距盈盈型:单位量=(盈-盈)÷两次分得之差;亏亏型:单位量=(亏-亏)÷两次分得之差;盈亏型:单位量=(盈+亏)÷两次分得之差注意:1.总量和单位量是不变的数(题目中有两个总量或单位量时要转化为一个);2.盈与亏针对的是总量;3.每一次分配方案中要统一.1.小朋友分糖果,若每人分4粒,则多9粒;若每人分5粒,则少6粒.问:有多少个小朋友有多少粒糖果解:(9+6)÷(5-4)=15(个),4×15+9=69(粒).答:有15个小朋友,有69粒糖果.2.老猴子给小猴子分梨.每只小猴子分6个梨,就多出12个梨;每只小猴子分7只梨,就少11个梨.有几只小猴子和多少个梨?解:(12+11)÷(7-6)=23(只),6×23+12=150(个).答:有23只小猴子和150个梨.3.老师级美术活动小组的同学发图画纸.如果每人发3张,则缺2张;如果每人发5张,则缺32张.美术活动小组有多少同学一共有多少张图画纸解:(32-2)÷(5-3)=15(人),3×15-2=43(张).答:美术活动小组有15名同学,一共有43张图画纸.4.学校组织春游,租了几条船让同学们去划船,每条船坐3人,则空出2人的位置;如果每条船坐5人,则空出16人的位置.问:有学生多少人共租了多少条船解:(16-2)÷(5-3)=7(条),3×7-2=19(人).答:有学生19人,共租7条船.5.锅炉房今年冬天计划烧煤供若干天暖气,现存的煤,如果每天用5吨,可余150吨;如果每天用6吨,可余30吨.问:存煤有多少吨计划烧多少天解:(150-30)÷(6-5)=120(天),5×120+150=750(吨).答:存煤有750吨,计划烧120天.6.小明计划用若干天读完一本书.如果每天读18页,还剩下120页;如果每天读22页,还剩下100页.小明计划几天读完这本故事书共有多少页解:(120-100)÷(22-18)=5(天),18×5+120=210(页).答:小明计划5天读完,这本故事书共有210页.7.某校安排新生宿舍,如果每间住12人,就会有34人没有宿舍住;如果每间住14人,宿舍正好住满.这个学校有多少间宿舍要安排多少个新生解:(34+0)÷(14-12)=17(间),12×17+34=238(人).答:这个学校有17间宿舍,要安排238个新生.8.在一次大扫除中,有一些同学被分配擦玻璃.如果每人擦5块,就会多下10块玻璃没有人擦;如果每人擦6块,刚好擦完.擦玻璃的同学有多少人共有多少块玻璃解:(10+0)÷(6-5)=10(人),5×10+10=60(块).答:擦玻璃的同学有10人,共有60块玻璃.9.同学们打羽毛球,每两人一组.每组分6个羽毛球,少10个球;每组分4个羽毛球,少2个球.问:共有多少个同学打羽毛球有多少个羽毛球解:(10-2)÷(6-4)=4(组),2×4=8(人),6×4-10=14(个).答:共有8个同学打羽毛球,有14个羽毛球.10.某小学的师生乘汽车去春游,如果每辆车坐65人,就会有25人不能乘车;如果每辆车多坐5人,恰好坐满.一共有多少辆汽车有多少名师生解:(25-0)÷5=5(辆),(65+5)×5=350(人).答:一共有5辆汽车,有350名师生.第10讲[盈亏问题思考与练习(二)]1.五年级同学去划船.如果每条船坐8人,则有24人还留在岸边;如果每条船坐12人,就多出3条船.问:五年级共有多少人要租多少条船解:(24+3×12)÷(12-8)=15(条),8×15+24=144(人).答:五年级共有144人,要租15条船.2.学校安排学生到会议室听报告.如果每3人坐一条长椅,则剩下48人没有座位;如果每5人坐一条长椅,则空出2条长椅.参加会议的学生有多少人?解:(48+2×5)÷(5-3)=29(条),3×29+48=135(人).答:参加会议的学生有135人.3.同学们给花浇水.如果每人浇8盆,还有7盆花没人浇;如果其中2人各浇4盆,其余的人每人浇9盆,恰好浇完.问:一共有多少名同学共浇花多少盆解:[7+(9-4)×2]÷(9-8)=17(名),8×17+7=143(盆).答:一共有17名同学,共浇花143盆.4.小红买来一篮橘子分给全家人.如果每人分2只则多出8只;如果其中1人分6只,其余每人分4只则缺少12只.小红买了多少只橘子小红家共有多少人解:[8+12-(6-4)]÷(4-2)=9(人),2×9+8=26(只).答:小红买了26只橘子,小红家共有9人.5.一些学生分练习本.其中2人每人分6本,其余每人分4本,就会多4本;如果有1人分10本,其余每人分6本,就会少18本.学生有多少人练习本有多少本解:如果每人都分4本,则多:4+(6-4)×2=8(本),如果每人都分6本,则少:18-(10-6)=14(本),总人数为:(14+8)÷(4-2)=11(人),总本数为:10+6×(11-1)-18=52(本).答:学生有11人,练习本有52本.6.全班同学去划船,如果减少一条船,每条船正好坐9人;如果增加一条船,每条船正好坐6人.问:全班有多少人?解:(9+6)÷(9-6)=5(条),9×(5-1)=36(人).答:全班有36人.7.一个学生从家到学校,先用每分钟50米的速度走了2分钟,如果这样走下去,他会迟到8分钟,于是他改用每分钟60米的速度前进,结果早到校5分钟,从这个学生家到学校的路程是多少米?解:(50×8+60×5)÷(60-50)=70(分钟),70-5=65(分钟),60×65=3900(米),2×50=100(米),3900+100=4000(米).答:从这个学生家到学校的路程是4000米.8.筑路队计划每天筑路720米,实际每天比原计划多筑80米,这样,在规定完成任务时间的3天前,还剩下1160米末筑.这条路有多长?解:3×(720+80)-1160=1240(米),1240÷80=15.5(天),720×15.5=11160(米).答:这条路有11160米.9.某人在桥上测量桥高.把长绳对折后垂到水面,还余4米;把长绳3折后垂到水面,还余1米.桥高多少米绳长多少米解:4+1=5(米),2×5+4×2=18(米).答:桥高5米,绳长18米.10.老师级幼儿园小朋友分苹果.每2人3个苹果,少2个苹果;每4人5个苹果,则多4个苹果.问:有多少个小朋友多少个苹果解:3÷2=1.5(个),5÷4=1.25(个),(2+4)÷(1.5-1.25)=24(人),24÷2=12(组),3×12-2=34(个).答:有24个小朋友,34个苹果.。
【导语】成功根本没有秘诀可⾔,如果有的话,就有两个:第⼀个就是坚持到底,永不⾔弃;第⼆个就是当你想放弃的时候,回过头来看看第⼀个秘诀,坚持到底,永不⾔弃,学习也是⼀样需要多做练习。
以下是⽆忧考为⼤家整理的《⼩学奥数盈亏问题及答案【三篇】》供您查阅。
【第⼀篇】某啤酒⼚为了推销某种新品牌,规定每3个这种品牌的空酒瓶就可以换回1瓶啤酒.雅琦家⼀次买了10瓶啤酒,喝完后就拿空瓶去换酒,再喝再换,直到不能换为⽌.雅琦⼀家⼀共可以喝()瓶这种品牌的啤酒. 分析:⾸先喝了10瓶,拿其中的9个空瓶去换3瓶啤酒,还剰1个空瓶.此时喝了10+3=13瓶啤酒.现在有3+1=4个空瓶,可以拿出3个空瓶换1瓶啤酒.此时喝了13+1=14瓶啤酒.现在还有2个空瓶,那么再借1个空瓶就可以换⼀瓶酒,喝完再退⼀个空瓶即可.因此共喝了15瓶啤酒. 解答:解:10÷3=3…1, (3+1)÷3=1…1, (1+1+1)÷3=1, 10+3+1+1=15(瓶); 答:雅琦⼀家⼀共可以喝15瓶这种品牌的啤酒. 故答案为:15. 点评:本题的关键是借空瓶.【第⼆篇】学校春游,租了⼏条船让学⽣们划船,每条船坐3⼈,则有20⼈没有船坐;如果每条船坐5⼈,恰恰安排好,问共有学⽣多少⼈?共租了多少条船? 分析:根据题意,前后每条船所坐⼈数差为:5-3=2(⼈),前后总⼈数差为20⼈,因此可求出船的数量,即20÷(5-3)=10(条),然后根据“每条船坐3⼈,则有20⼈没有船坐”或根据“每条船坐5⼈,恰恰安排好”求出学⽣⼈数.据此解答. 解答:解:20÷(5-3) =20÷2 =10(条); 3×10+20 =30+20 =50(⼈). 答:共有学⽣50⼈,共租了10条船. 点评:此题属于盈亏问题,运⽤了关系式:亏数÷两次分物数量差=份数(船的条数),再求出学⽣⼈数,解决问题.【第三篇】⼀个学⽣从家到学校上课,先⽤每分80⽶的速度⾛了3分,照这样的速度则要迟到3分钟;如果改为每分⾛ll0⽶,结果提前3分钟到达.这个学⽣家到学校有多少⽶? 分析:“先⽤每分80⽶的速度⾛了3分,照这样的速度则要迟到3分钟”,即如按标准时间⾛则距学校还有80×3=240⽶;“如果改为每分钟⾛110⽶,结果提前3分钟到达”,即如按标准时间⾛,则要多⾛110×3=330⽶,两次的速度差为110-80=30⽶,则到校的标准时间为(80×3+110×3)÷(110-80)分钟,求出标准时间后,即能求得学⽣⾛了3分后剩下学校的路程是多少⽶,进⽽求得这个学⽣家到学校的路程是多少⽶.据此解答. 解答:解:(80×3+110×3)÷(110-80) =(240+330)÷30 =570÷30 =19(分钟); 80×3+80×19+80×3 =240+1520+240 =2000(⽶); 答:这个学⽣家到学校有2000⽶. 点评:本题属于较复杂的盈亏问题,关系是求出标准时间,进⽽去求家到学校的路程.。
五年级奥数盈亏问题奥数盈亏问题讲座及练习答案盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会不足(亏),求物品的数量和分配对象的数量。
例如:把一袋饼干分给小班的小朋友,每人分3块,多12块,;如果每人分4块,8块,小朋友有多少人饼干有多少块这种一盈一亏的情况,就是这们通常说的标准的盈亏问题。
标准盈亏问题的基本数量关系式:(盈+亏)÷两次分配之差=参与分配对象总数;每次分得的数量×份数+盈=总数量;每次分得的数量×份数-亏=总数量还有一些非标准盈亏问题,如:1、两盈:两次分配都有余。
数量关系式为:(大盈-小盈)÷两次分配差=参与分配对象总数2、两亏:两次分配都不够。
数量关系式为:(大亏-小亏)÷两次分配差=参与分配对象总数例1:(一盈一亏问题)一个植树小组,如果每人植5棵,还剩14棵;如果每人植7棵,就缺4棵。
这个植树小组有多少人一共有多少棵树分析:由题意可知,植树的人数和棵数是不会变化的,只是两次分配的方案不一样,结果就差了18棵,即第一种方案的结果比第二种多18棵,这是因为两种分配方案每人植树棵数相差7-5=2(棵),所以根据一盈一亏解答此题就非常简单了。
人数:(14+4)÷(7-5)=2(人)棵数:5×9+14=59(棵)答:这个植树小组一共有9人,一共有59棵树。
【巩固练习1】:幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个。
幼儿园有多少个小朋友一共有多少个积木解:小朋友分积木,每人2个则剩20个,每人3个则少40个,因此这是一亏一盈问题,两种分积木的方案最后相差20+40=60个,两种方案中每人分得的积木数相差3-2=1个,所以小朋友的个数为:60÷1=60人,积木数为:60×2+20=140个或60×3-40=140个综合算式为:幼儿园有多少个小朋友(20+40)÷(3-2)=60÷1=60(个)一共有多少个积木60×2+20=120+20=140个或60×3-40=180-40=140(个)答:幼儿园有60个小朋友,一共有140个积木.例2:(两亏问题)学校将一批铅笔奖给三好学生。
小学奥数盈亏问题练习100题附答案(1)妈妈带了一些钱去逛超市,若要买3条10元钱一条的毛巾,则还剩5元钱。
妈妈带了多少钱?(2)小琴、小英有相同个数的苹果,小琴每天吃的个数一样,3天吃完;小英每天吃的个数一样,2天吃完,他们每人至少有多少个苹果?(3)有一些玻璃球,若平均分成3堆,则每堆有7个还多4个。
若平均分成5堆,则每堆会有多少个?(4)一小组6个人去植树,若每人植3棵,还剩3棵没人植。
那么共有多少棵树?(5)三(1)班全体同学去春游,若每组7人,则可分成5组还多1人。
一共有多少位同学?(6)小英有一本数学练习题,若每天做8题,做了7天后还有32题。
则这本书有多少题?一共需要做多少天?(7)学校图书馆买来一批新书,分给12个班,如果每班分6本,还多8本。
如果每班7本,够不够分?(8)9个小朋友分一些糖果,若每人分4颗,则多了2颗。
共有多少颗糖?(9)给小朋友分梨,如果每人分4个,则多9个;如果每人分5个,则少6个。
有多少个小朋友?有多少个梨?(10)一个植树小组植树。
如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵。
这个植树小组多少人?一共有多少棵树?(11)某校乒乓球队有若干名学生,如果少一名女生,增加一名男生,则男生为总数的一半;如果少一名男生,增加一名女生,则男生为女生人数的一半。
乒乓球队共有多少名学生?(12)5辆玩具汽车与3架飞机玩具的价钱相等,每架飞机玩具比每辆玩具汽车贵8元。
这两种玩具的单价格是多少?(13)幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具;如果每班分10个玩具,则少12个玩具,幼儿园有几个班?这批玩具有多少个?(14)一个小组去山坡植树,如果每人栽4棵,还剩12棵;如果每人栽8棵,则缺4棵,这个小组有几人?一共有多少棵树苗?(15)杨老师将一叠练习本分给第一小组同学。
如果每人分7本还多7本;如果每人分8本则正好分完。
请算一算,每一小组有几个学生?这叠练习本一共有多少本?(16)小玲拿了一些钱去买苹果,如果买3千克,则多出2元;如果买6千克,则少了4元,苹果每千克多少元?小玲带了多少钱?(17)阿姨给14个同学分苹果,如果每位同学分2个,还多3个,如果每个同学分3个,够分吗?(18)甲、乙两组同学做红花,每人做8朵,正好送给五年级每个同学一朵。
五年级奥数盈亏问题讲座及练习答案The document was prepared on January 2, 2021五年级奥数盈亏问题讲座及练习答案盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余盈;按另一种标准分,分配后又会不足亏,求物品的数量和分配对象的数量.例如:把一袋饼干分给小班的小朋友,每人分3块,多12块,;如果每人分4块,少8块,小朋友有多少人饼干有多少块这种一盈一亏的情况,就是这们通常说的标准的盈亏问题.标准盈亏问题的基本数量关系式:盈+亏÷两次分配之差=参与分配对象总数;每次分得的数量×份数+盈=总数量;每次分得的数量×份数-亏=总数量还有一些非标准盈亏问题,如:1、两盈:两次分配都有余.数量关系式为:大盈-小盈÷两次分配差=参与分配对象总数2、两亏:两次分配都不够.数量关系式为:大亏-小亏÷两次分配差=参与分配对象总数例1:一盈一亏问题一个植树小组,如果每人植5棵,还剩14棵;如果每人植7棵,就缺4棵.这个植树小组有多少人一共有多少棵树分析:由题意可知,植树的人数和棵数是不会变化的,只是两次分配的方案不一样,结果就差了18棵,即第一种方案的结果比第二种多18棵,这是因为两种分配方案每人植树棵数相差7-5=2棵,所以根据一盈一亏解答此题就非常简单了.人数:14+4÷7-5=2人棵数:5×9+14=59棵答:这个植树小组一共有9人,一共有59棵树.巩固练习1:幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个.幼儿园有多少个小朋友一共有多少个积木解,小朋友分积木,每人2个则剩20个,每人3个则少40个,因此这是一亏一盈问题,两种分积木的方案最后相差20+40=60个,两种方案中每人分得的积木数相差3-2=1个,所以小朋友的个数为:60÷1=60人,积木数为:60×2+20=140个或60×3-40=140个综合算式为:幼儿园有多少个小朋友一共有多少个积木20+40÷3-2 60×2+20 或 60×3-40=60÷1 =120+20 =180-4060个 =140个 =140个答:幼儿园有60个小朋友,一共有140个积木.例2:两亏问题学校将一批铅笔奖给三好学生.如果每人奖9支,则缺45支;如果每人奖7支,则缺7支.三好学生有多少人铅笔有多少支分析:这是两亏问题,由题意可知,三好学生人数和铅笔支数是不变的.根据两亏关系可知,人数:45-7÷9-7=19人铅笔:9×19-45=126支答:三好学生有19人,铅笔有126支.巩固练习2:将月季花插入一些花瓶中.如果每瓶插8朵,则缺少15朵;如果每瓶改为插6朵,则缺少1朵,求花瓶的只数和月季花的朵数解:将月季花插入一些花瓶中,如果每瓶插8朵,则缺少15朵;如果每瓶改为插6朵,则缺少1朵,因此这是两亏问题,两次插花的方案中,一次少15朵,一次少1朵,则两次少的朵数相差15-1=14朵,一次每瓶插6朵,一次每瓶插8朵,两次每瓶相差2朵,因此花瓶数为14÷2=7个,花的朵数为7×8-15=41朵,或7×6-1=41朵综合算式为:花瓶的个数为:花的朵数为:15-1÷8-2 7×8-15 或 7×6-1=14÷2 =56-15 =42-1=7个=41朵 =41朵答:花瓶有7只,月季花有41朵例3:两盈问题有一些少先队员到山上种一批树.如果每人种16棵,还有24棵没种;如果每人种19棵,还有6棵没有种.问有多少名少先队员有多少棵树根据两盈问题请自己分析解答解:少先队员种树,如果每人种16棵,还有24棵没种;如果每人种19棵,还有6棵没有种,所以这是两盈问题.两个方案中所剩棵数相差24-6=18棵,每人所种棵数相差19-16=3棵,所以种树人数为18÷3=6人,树的总棵数为6×19+6=114+6=120棵,或6×16+24=96+24=120棵综合算式为:种树人数为:花的朵数为:24-6÷19-16 6×19+6 或 6×16+24=18÷3 =114+6 =96+24=6个=120棵 =120棵答:有6名少先队员,120棵树.例4:盈亏转化学校给一批新入学的学生分配宿舍.如果每个房间住12人,则34人没有位置;如果每个房间住14人,则空出4个房间.求学生宿舍有多少间住宿学生有多少人分析:“把每个房间住14人,则空出4个房间”转化为“每个房间住14人,则少14×4=56人后,就得到标准盈亏问题,这样就好解答了.房间数:34+14×4÷14-12=45间人数:12×45+34=574人答:学生宿舍有45间,学生有574人.我也能行1、某班安排宿舍,如果每间6人,则16人没有床位;如果每间8人,则多出10个床位.问有宿舍多少间学生多少人解:如果每间6人,则16人没有床位;如果每间8人,则多出10个床位.此为一亏一盈问题:宿舍间数学生人数16+10÷8-613×6+16 或 13×8-10=26÷2 =78+16 =104-10=13间=94人 =94人答:有宿舍13间学生94人.2、王老师给美术兴趣小组的同学分发图画纸.如果每人发5张,则少32张;如果每人发3张,则少2张.美术兴趣小组有多少名同学王老师一共有多少张图画纸解:如果每人发5张,则少32张;如果每人发3张,则少2张,说明这是两亏问题:32-2÷5-315×5-32 或 15×3-2=30÷2 =75-32 =45-2=15人=43张 =43张答:美术兴趣小组有15名同学,王老师一共有43张图画纸.3、小虎在敌人窗外听里边在分子弹:一人说每人背45发还多260发;另一个说每人背50发还多200发.求有多少敌人有多少发子弹解:每人背45发还多260发;每人背50发还多200发,说明这是两盈问题,所以:敌人人数为子弹颗数为260-200÷50-4512×45+260 或 12×50+200=60÷5 =540+260 =600+200=12人=800颗 =800颗答:有12个敌人有800发子弹4、崔老师给美术兴趣小组的同学分若干支彩色笔.如果每人分5支则多12支;如果每个人分8支还多3支.请问每人分多少支刚好把彩色笔分完解:如果每人分5支则多12支;如果每个人分8支还多3支,说明这是两盈问题.所以:学生人数为:彩笔支数为:12-3÷8-53×5 + 12 或 3×8 + 3=9÷3 =15 + 12 =24 + 3=3人=27支 =27支每人分多少支刚好把彩笔分完:27÷3=9支答:每人分9支刚好把彩色笔分完.5、某校有若干个学生寄宿学校,若每一间宿舍住6人,则多出34人;若每间宿舍住7人,则多出4间宿舍.问宿舍有多少间住宿学生有多少人解:每一间宿舍住6人,则多出34人,每间宿舍住7人,则多出4间宿舍,多出4间宿舍,每间住7人,实际上是多出28人,则这是两盈问题, 所以宿舍间数为:学生人数为:34-28÷7-66×6 + 34 或 6×7 + 28=6÷1 =36 + 34 =42 + 28=6间=70人 =70人答:宿舍有6间,住宿学生有70人6、学校分配学生宿舍.如果每个房间住6人,则少2间宿舍;如果每个房间住9人,则空出2个房间.问学生宿舍有多少间住宿学生有多少人解:每个房间住6人,则少2间宿舍,也就是多6×2=12人;如果每个房间住9人,则空出2个房间,也就是少6×2=12人,所以这是一亏一盈问题,所以宿舍间数为:学生人数为:12+12÷9-68×6 + 12 或 8×9 – 12=24÷3=48 + 12 =72 + 12=8间=60人 =60人答:宿舍有8间,住宿学生有60人7、小强从家到学校,如果每分钟走50米,上课就要迟到3分钟,如果每分钟走60米,就可以比上课时间提前2分钟到校.小强从家到学校的路程是米选自北京市第四届“迎春杯”刊赛解:每分钟走50米,上课就要迟到3分钟,也就是说还要走50×3=150米才能走到学校每分钟走60米,就可以比上课时间提前2分钟到校.也就是说在提前的2分钟里可以多走60×2=120米,所以此题是一盈120米一亏150米,则:走到学校的时间为家到学校的路程为150+120÷60-5050×27 + 150或60×27–120=270÷10 =1350+ 150 =1620–120=27分 =1500米 =1500米答:小强从家到学校的路程是1500米.8、买来一批苹果,分给幼儿园大班的小朋友.如果每人分5个苹果,那么还剩余32个;如果每人分8个苹果,那么还有5个小朋友分不到苹果.这批苹果的个数是_____.选自小学数学奥林匹克预赛A卷解:如果每人分8个苹果,那么还有5个小朋友分不到苹果.也就是说少了8×5=40个苹果,则此题为一盈一亏问题,所以小朋友的人数为:苹果的个数为32+40÷8-524×5 + 32 或 24×8–40=72÷3 =120+ 32 =192 –40=24个 =152个 =152答:这批苹果的个数是152个。
直线型植树问题的应用1.晶晶上楼,从第一层走到第三层需要走36级台阶.如果从第一层走到第六层需要走多少级台阶?(各层楼之间的台阶数相同)【分析】题意的实质反映的是一线段上的点数与间隔数之间的关系.线段示意图如下:①每相邻两层楼之间有多少级台阶?36(31)18÷-=(级)②从第一层走到第六层共多少级台阶?18(61)90⨯-=(级)2.在一根长100厘米的木棍上,从左向右每隔6厘米点一个红点,从右向左每隔5厘米点一个红点,在两个红点之间长为4厘米的间距有几段?【分析】法一:根据题意可知从右向左每隔5厘米点一个红点与从左向右每隔5厘米点一个红点点出来的红点的位置是一样的。
那么从左向右看,每隔6厘米点出来的红点比每隔5厘米点出来的红点间的距离从1厘米依次增加到5厘米,此时间隔为5厘米点出来的红点的第6个点与间隔为6厘米点出来的红点的第5个点重合,之后以间隔为5厘米点出来的红点为基础每6个点为一个周期重复上面的变化规律。
其中每一个周期中的间隔为5厘米点出来的红点的第3个点与间隔为6厘米点出来的红点的第2个点间距为4厘米,间隔为5厘米点出来的红点的第5个点与间隔为6厘米点出来的红点的第5个点间距为4厘米,1005632÷÷=(个),1006164÷=(厘米),由此可知两个红点间距为4厘米的有3217⨯+=(段)。
法二:由于100是5的倍数,所以自右向左每隔5厘米染一个红点相当于自左向右每隔5厘米染一个红点.而每隔30厘米可得到2个4厘米的短木棍.最后10030310-⨯=(厘米)也可以得一个短木棍,故共有2317⨯+=(根)4厘米的短棍.6.有一路电车的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站出发开往乙站,全程要15分钟.有一个人从乙站出发沿电车路线骑车前往甲站,他出发的时候,恰好有一辆电车到达乙站,在路上,他又遇到了10辆迎面开来的电车才到达甲站,这时候,恰好又有一辆车从甲站开出,问:他从乙站到甲站用了多少分钟?【解析】这个人前后一共看见了12辆电车,每两辆车的间隔是5分钟,开出12辆电车共有-=(个)间隔,这样可以计算出从第1辆电车开出到第12辆电车开出所用的时12111间,共经了51155⨯=(分钟),由于他出发的时候,第1辆电车巳到达乙站,所以这个人从乙站到甲站用了551540-=(分钟).封闭型植树问题1.一个街心花园如右图所示.它由四个大小相等的等边三角形组成.已知从每个小三角形的顶点开始,到下一个顶点均匀栽有9棵花.问大三角形边上栽有多少棵花?整个花园中共栽多少棵花?【分析】大三角形三条边上共栽花:(9×2-1-1)×3=48(棵),中间画斜线小三角形三条边上栽花:(9-2)×3=21(棵),整个花坛共栽花:48+21=69(棵).2.正方形操场四周栽了一圈树,四个角上都栽了树,每两棵树相隔5米.甲、乙从一个角上同时出发,向不同的方向走去,甲的速度是乙的2倍,乙在拐了一个弯之后的第5棵树与甲相遇(把角上的树看作第一棵树),操场四周栽了多少棵树?【分析】因为甲的速度是乙的两倍,乙走了操场的一条边,甲走了两条边,乙拐了一个弯之后走到第5棵树,实际走了4个间隔,那么甲应该走了8个间隔,相遇的树就是甲拐弯以后走的第9棵树,所以这一边有9+4=13(棵)树.操场周围的树一共有(13-1)×4=48(棵).3.20名运动员,骑摩托车围绕体育场的环形跑道头尾相接作表演,每辆车长2米,前后两辆车需要30230325÷+÷=(元).现在两种球的售价都是2元钱5个,花球和白球各买30个需要(305)2224-=(元).现÷⨯⨯=(元),说明花球和白球各买30个能省下25241在共省了4元,说明花球和白球各有304120⨯=(个).⨯=(个),共买了1202240【答案】240个4、有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够.问第二组有多少人?【考点】盈亏问题【难度】5星【题型】解答【解析】如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.说明第一组人数少于48412÷=,即9人;如果把书全分给第二组,那么÷=(人),多于48593每人3本,有剩余;每人4本,书不够.说明第二组人数少于48316÷=(人),多于÷=(人);因为已知第二组比第一组多5人,所以,第一组只能是10人,第二48412组15人.【答案】15人5、某学校组织师生去春游,准备租用如图1示的两种客车。
盈亏问题来源:盈亏问题,顾名思义有剩下就叫盈,不够分就叫亏,不同的方法分配物品时,经常会产程这种盈亏现象。
把若干物体平均分给一定数量的对象,并不是每次都能正好分完。
如果物体还有剩余,就叫盈;如果物体不够分,少了,叫亏。
凡是研究盈和亏这一类算法的应用题就叫盈亏问题。
分类:“盈亏问题”“盈盈问题”“亏亏问题”解题思路:主要包含1、由人数差别而产生的盈亏2、由每个人分得的物品数量差别而产生的盈亏。
解决这类问题的思路,就在于,物品分配时的总量是不变的,变得只是每个人拿到的数量,或者人数。
因此,只要得到分掉的总差数和每份的差值,就能得到份数,进而求得总数。
解题公式:1、(盈+亏)÷两次分得之差=人数或单位数2、(盈-盈)÷两次分得之差=人数或单位数3、(亏-亏)÷两次分得之差=人数或单位数易错点:解题思路类似于鸡兔同笼问题盈亏问题自测卷A1、幼儿园老师给小朋友分饼干,每人5个剩7个,每人7个少9个,请问有多少饼干?2、有一根绳子绕树4圈,余2米;如果绕树5圈,则差6米。
绳子长多少米?3、明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4 元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?(答案格式:数字中间请用一个空格隔开(从前到后))4、实验小学的少先队员去植树。
如果每人种5棵还有3棵没人种;如果其中2人各种4棵。
其余的人各种6棵,这些树苗正好种完,问有多少少先队员参加植树,一共多少棵树苗?(答案格式:数字中间请用一个空格隔开(从前到后))5、学校将一批铅笔奖给三好学生。
如果每人奖9支,则缺45支;如果每人奖7支,则缺7支。
三好学生有多少人?铅笔有多少支?(答案格式:数字中间请用一个空格隔开(从前到后))6、学校规定上午8时到校,小明去上学,如果每分钟走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,求小明都是几时几分离家?由家到学校的路程是多少米?(时间的答案答题格式为X点X)(答案格式:数字中间请用一个空格隔开(从前到后))7、小明和小刚去超市买蛋糕,他们看中了同一款蛋糕,但是小明发现他还差35块钱,小刚也少带了20块,于是他们合买了一个,结果还剩10块钱,那么这个蛋糕多少钱?8、猪妈妈带着孩子去野餐,如果每张餐布周围坐4只小猪就有6只小猪没地方坐,如果每张餐布周围多坐一只小猪就会余出4个空位子,问:猪妈妈一共带了多少张餐布,一共有多少只小猪?(答案格式:数字中间请用一个空格隔开(从前到后))9、小白兔和小灰兔各有若干只.如果5只小白兔和3只小灰兔放到一个笼子中,小白兔还多4只,小灰兔恰好放完;如果7只小白兔和3只小灰兔放到一个笼子中,小白兔恰好放完,小灰兔还多12只.那么小灰兔共有多少只?10、学校买来一批体育用品,羽毛球拍是乒乓球拍的2倍,分给同学们,每组分乒乓球拍5 副,余乒乓球拍15副,每组分羽毛球拍14副,则差30副,问:学校买来羽毛球拍、乒乓球拍各多少副?(答案格式:数字中间请用一个空格隔开(从前到后))11、用一根长绳测量井的深度,如果绳子两折时,多5米;如果绳子3折时,差4米.求绳子长度和井深(答案格式:数字中间请用一个空格隔开(从前到后)).12、食堂采购员小李到集贸市场去买肉,如果买牛肉18千克,则差4元;如果买猪肉20千克,则多2元.已知牛肉、猪肉每千克差价8角.问每千克牛肉、猪肉各多少钱?(结果单位为角)(答案格式:数字中间请用一个空格隔开(从前到后))盈亏问题自测卷B1、妈妈买回一筐苹果,按计划吃的天数算了一下,如果每天吃4个,要多出48个苹果;如果每天吃6个,则又少8个苹果.那么妈妈买回的苹果有多少个?计划吃多少天?(答案格式:数字中间请用一个空格隔开(从前到后))2、用一根长绳测量井的深度,如果绳子两折时,多4米;如果绳子3折时,差2米.求井深.3、幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢?4、一些学生分住几间宿舍,如果每间住9人,则有2人无处住,如果每间住10人,则多出一间宿舍无人住,这些学生一共有多少人,宿舍有多少间?(答案格式:数字中间请用一个空格隔开(从前到后))5、学校组织学生春游。
《盈亏问题》知识反应检测卷姓名成绩1 同学们去公园植树,假如每人植2 棵,则有 14 棵没人植;假如每人植3 棵,则少 2 棵树。
问共有多少名学生,共有多少棵树?2) 老师给四周的小朋友们分糖,假如每人分 5 块糖还剩下 17 块,假如每人分 7 块还剩 1 块。
老师的四周有多少个小朋友?老师有多少块糖上?3)少儿园的小朋友分饼干,假如每人分 5 块,节余 22 块,假如每人分 7 块,还少 18 块。
少儿园有多少个小朋友?一共有多少块饼干?4) 学校图书室买来一批新书,这些书假如每班借12 本,正好借完,假如每班借18 本,就缺乏72 本书。
这批新书有多少本?5) 四年级同学排队,假如每行站8 人,则多 24 人;假如每行站9 人,则多 4 人。
问一共站多少行,有多少个同学?6)老师给美术活动小组的同学散发画纸。
假如每人分 3 张,则缺 2 张;假如每人分 5 张,则缺 32 张。
美术活动小组有多少名同学?一共有多少张图画纸?7) 夏令营老师为小营员安排住宿,假如每个房间住 4 人,则多出 24 个人;假如每个房间住 6 人,则有 2 个房间空着。
求有几个房间?有多少个夏令营小营员?8) 六一小孩节那一天,某班同学去划船,他们租了一些船,假如每船 4 人,则多 1 人,假如每船 5 人则能够少租 2 条船。
求一共有多少个同学?9) 动物园饲养员把一堆桃子分给一群猴子。
假如每只猴子分10 个桃子,则有两只猴子没有分到,假如每只猴子分8个桃子,正好分完。
一共有多少只猴子?有多少个桃子?10) 上周,四一班同学参加植树,假如每人种 5 棵,还剩下 3 棵。
假如此中 2 人各样 4 棵,其他的同学各样 6 棵,正好种完。
四一班有多少名同学?一共种了多少棵树?11) 五二班同学去划船同。
假如减少一条船,每条船正好坐 9 人,假如增添一条船,每条船正好坐 6 人。
五二班共多少人?12) 李师傅加工一批部件,假如每日做50 个,要比原计划晚8 天达成;假如每日做60 个,就能够提早 5 天达成。
1. 熟练掌握盈亏问题的本质.2. 运用盈亏问题的解题方法解决一些生活实际问题.盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”.注意:1.条件转换; 2.关系互换.模块一、利用盈亏公式直接计算(一)盈+亏型【例 1】 三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【考点】盈亏问题 【难度】1星 【题型】解答【解析】 比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差541-=(块).第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:729+=(块),每人相差1块,结果总数就相差9块,所以有少先队员919÷=(人).共有砖:49743⨯+=(块). 【答案】9人,搬43块【巩固】 把一堆糖果分给小朋友们,如果每人2块,将剩余12块;每人3块,将缺少2块,那么小朋友共有 人。
【考点】盈亏问题 【难度】1星 【题型】填空【关键词】希望杯,4年级,1试【解析】 盈亏问题:(12+2)÷(3-2)=14人【答案】14人【巩固】 智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?【考点】盈亏问题 【难度】1星 【题型】解答知识精讲教学目标6-1-7.盈亏问题(一)【解析】由题目条件知道,同学的人数与糖果的粒数不变,比较两种分配方案,第一种每人分4粒就多9粒,第二种每人分5粒则少6粒,两种不同方案一多一少差9+6=15(粒),相差原因在于两种方案分配数不同,两次分配数之差为:5-4=1(粒),每人相差一粒,15人相差15粒,所以参与分糖果的同学的人数是15÷1=15(位),糖果的粒数为:4×15+9=69(粒).【答案】15位同学分69粒糖【巩固】秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?【考点】盈亏问题【难度】1星【题型】解答【解析】题中告诉我们每天吃4个,多出48个萝卜;每天吃6个,少8个萝卜.观察每天吃的个数与萝卜剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,萝卜从多出48个到少8个,也就是所需的萝卜总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个萝卜了.吃的天数:(48+8)÷(6-4)=56÷2=28(天),萝卜数:6×28-8=160(个)或4×28+48=160(个).【答案】160个萝卜吃28天【巩固】幼儿园的老师给小朋友们发梨。
1. 熟练掌握盈亏问题的本质.2. 运用盈亏问题的解题方法解决一些生活实际问题.盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种 情况,都是属于按两个数的差求未知数的“盈亏问题”.注意:1.条件转换; 2.关系互换.模块一、利用盈亏公式直接计算(一) 盈+亏型【例 1】 三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【考点】盈亏问题 【难度】1星 【题型】解答【解析】 比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差541-=(块).第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:729+=(块),每人相差1块,结果总数就相差9块,所以有少先队员919÷=(人).共有砖:49743⨯+=(块).【答案】9人,搬43块【巩固】 把一堆糖果分给小朋友们,如果每人2块,将剩余12块;每人3块,将缺少2块,那么小朋友共有 人。
【考点】盈亏问题 【难度】1星 【题型】填空【关键词】希望杯,4年级,1试【解析】 盈亏问题:(12+2)÷(3-2)=14人【答案】14人【巩固】 智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?【考点】盈亏问题 【难度】1星 【题型】解答【解析】 由题目条件知道,同学的人数与糖果的粒数不变,比较两种分配方案,第一种每人分4粒就多9粒,第二种每人分5粒则少6粒,两种不同方案一多一少差9+6=15知识精讲 教学目标6-1-7.盈亏问题(一)(粒),相差原因在于两种方案分配数不同,两次分配数之差为:5-4=1(粒),每人相差一粒,15人相差15粒,所以参与分糖果的同学的人数是15÷1=15(位),糖果的粒数为:4×15+9=69(粒).【答案】15位同学分69粒糖【巩固】秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?【考点】盈亏问题【难度】1星【题型】解答【解析】题中告诉我们每天吃4个,多出48个萝卜;每天吃6个,少8个萝卜.观察每天吃的个数与萝卜剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,萝卜从多出48个到少8个,也就是所需的萝卜总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个萝卜了.吃的天数:(48+8)÷(6-4)=56÷2=28(天),萝卜数:6×28-8=160(个)或 4×28+48=160(个).【答案】160个萝卜吃28天【巩固】幼儿园的老师给小朋友们发梨。
1.一个植树小组植树,如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵。
这个植树小组有()人,一共植树()棵。
2.学生夏令营,如果每车乘28人,则有13名同学上不了车;如果每车乘32人,这还有3个空位。
有()个学生,有()辆车。
3.参加美术活动小组的同学,分配若干支彩色笔。
如果每人分5支多12支,如果每人分8支还多3支。
问有()个同学,有()支彩色笔。
4.李师傅加工一批零件,如果每天做50个,要比计划晚8天完成;如果每天做60个,就可提前5天完成,这批零件共有()个。
5.小明借一本书,如果每天读30页,到规定还书的日期还有60页没读,如果每天读35页,到期还有25页没读。
这本书有()页。
6.某校参加学雷锋活动,每组5人,可正好分成若干组;如果每组增加到7人,可以减少4组。
一共有()人参加学雷锋活动。
7.用一根绳子测井台到井水面的深度,把绳子对折后垂到水面,绳子超过井台1.2米;把绳子三折后垂到水面,绳子超过井台0.2米。
绳子长()米,井台到水面的距离是()米。
8.小明早上步行去学校,如果每分钟走80米,可以提前6分钟到校;如果每分钟走50米,就要迟到3分钟。
小明家到学校有()米。
9.幼儿园大班小朋友分水果糖,如果其中4 人每人分8 块,其余每人分3 块,则少10 块;如果其中2 人每人分10 块,其余每人分2 块,则多24 块。
小朋友有()人,水果糖有()块。
10.一群兔子在一块地里拔萝卜,如果每只兔都拔10个,地里还剩下20个萝卜;如果其中2只兔各拔8个,其余的兔各拔12个,那么地里剩下8个萝卜。
有()只兔子,地里有()个萝卜。
11.有一些苹果和梨。
苹果的数量是梨的4倍少2个。
如果每次拿走6个苹果和2个梨,当梨拿完后还剩18个苹果。
问有()个梨。
12.有一些糖,每人分5块多10块;如果现在人数增加到原来人数的1.5倍,那么每人4块就少2块。
这些糖共有()块。
1.小朋友分饼干,每人分10块正好分完;如果每人分16块,则有3个小朋友分不到饼干。
问有( )块饼干.。
2.动物园饲养员把一堆桃子分给一群猴子。
如果每只猴子分10个桃子,则有两只猴子没有分到,如果每只猴子分8个桃子,正好分完。
一共有()只猴子,有()个桃子。
3.幼儿园给小班的小朋友分糖块和橘子,糖块的个数是橘子个数的2倍,每人分2个糖块和2个橘子,则橘子正好分完,糖果还剩42块,这个幼儿园小班有()个小朋友。
4.四一班同学参加植树,如果每人种5棵,还剩下3棵。
如果其中2人各种4棵,其余的
同学各种6棵,正好种完。
四一班有()名同学,一共种了()棵树。
5.同学们去划船,如果每只船坐4人,则需增加一只船;如果每只船坐6人,则空一只船。
有()只船。
有()人去划船。
6.一辆汽车从甲地到乙地,如果每小时行45千米,就要迟到0.6小时;如果每小时行50千米,就可提前0.3小时。
甲乙两地的路程是()千米。
7.妈妈带钱若干,到菜场去买鱼。
若买5千克鲤鱼,则差5元;若买6千克鲢鱼,则余下4元。
两种鱼的价格相差2元5角。
两种鱼的价格各是()元。
8.有红球和绿球若干个,如果按每堆1个红球2个绿球,绿球分完后还剩5个红球;如果按每堆3个红球5个绿球分堆,红球分完了还剩5个绿球。
红球和绿球各有()个。
9.有一批正方形的瓷砖,拼成一个大正方形,余下25块。
如果将它们拼成每边比原来多一块瓷砖的正方形,就差47块。
这批瓷砖有()块。
10.从广东运来一批水果,运费花了1000元,水果报损了100千克。
若按1元1千克卖出,则要亏损300元;若按2元1千克卖出,则可盈利500元。
原来进货()千克,进货金额是()元。
解答
1.(14+4)÷(7-5)=9(人)5×9+14=59(棵)
2.(13+3)÷(32-28)=4(辆)28×4+13=125(人)
3.(12-3)÷(8-5)=3(人)3×5+12=27(支)
4.(50×8+60×5)÷(60-50)=70(天)50×(70+8)=3900(个)
5.(60-25) ÷(35-30)=7(天 )30×7+60=270(页)
6.(7×4)÷(7-5)=14(组)14×5=70(人)
7.(1.2×2-0.2×3)÷(3-2)=1.8(米) (1.2×1.8) ×2=6(米)
8.(80×6+50×3) ÷(80-50)=21(分) 80×(21-6)=1200(米)
9.(8-3) ×4-10=10(块)(10-2) ×2+24=40(块)(40-10)÷(3-2)=30(人)
4×8+(30-4) ×3-10=100(块)或2×10+(30-2) ×2+24=100(块)
10.[(12-8)-8+20] ÷(12-10)=10只 10×10+20=120个。
11.以梨的个数为标准,假设苹果是梨的4倍,则每次拿走6个苹果和2个梨,当梨拿完后还剩18+2=20个苹果,因为苹果是梨的4倍,那么每次拿2×4=8个苹果和2个梨,梨拿完时苹果也正好拿完.比较两组条件可得拿的次数为:20÷(8-6)=10(次)梨的个数:2×10=20(个)苹果的个数:20×4-2=78(个)或6×10+18=78(个)
12.(10+2)÷(1.5×4-5)=12人 5×12+10=70块
1.(16×3) ÷(16-10)=8(人) 8×10=80(块)
2.(10×2) ÷(10-8)=10(只)10×8=80(个)
3.42÷(2×2-2)=21(个)
4.[(6-4) ×2+3] ÷(6-5)=7(人)5×7+3=38(棵)
5.(4+6) ÷(6-4)=5(条)4×(5+1)=24(人)
6.(45 ×0.6+50 ×0.3) ÷(50-45)=8.4(小时)50×(8.4-0.3)=405(千米)
7.2.5×6-4=11(元)(11-5) ÷(6-5)=6(元)6-2.5=3.5(元)
8.由条件“按每堆1个红球2个绿球,绿球分完后还剩5个红球”,可假设继续分下去,红球分完后,则缺2×5=10个绿球,把3堆合成一堆,则可得每堆3个红球2×3=6个绿球,红球分完后绿球缺10个。
与条件“每堆3个红球5个绿球分堆,红球分完后,还剩5个绿球”比较可得分的堆数为:(10+5)÷(6-5)=15(堆)红球个数:15×3=45(个)绿球个数:15×5+5=80(个)
9.(25+47)÷4-1=17块 17×17+25=304块
10.(300+500)÷(2-1)+100=900(千克),800+300-1000=100(元)。