浅谈磁共振血管成像(MRA)
- 格式:ppt
- 大小:2.57 MB
- 文档页数:34
磁共振MRA血管成像
随着我国磁共振检查应用越来越广泛,MR具有较高的软组织分辨率,广泛应用于中枢神经系统疾病的检查。
MR在检查中枢神经系统病变有助于了解病变与周围组织关系,为临床提供制定诊疗计划与评估预后提供更多有价值的信息。
MR血管成像(MRA)是磁共振应用中很重要的技术之一,也是各家医院MRI检查的常规技术,相对于CTA和数字减影血管造影(DSA)相比,具备如下优势:无创伤、无并发症;无放射性损害;空间分辨率高。
MRA有直接MRA和增强MRA两种方法,其中直接MRA包括时间飞越(TOF)法、相位对比血管成像(PC)法,而对比增强MRA( CE-MRA)是借助对比剂来进行血管增强显影。
MRI可以利用血液流动的特性进行成像,在不用对比剂的情况下MRA技术可清楚显示血管结构,可清晰显示脑动脉的主干及3~4级分支。
MRA与常规的血管造影具有一定的一致性,但是存在将血管狭窄过高估计的倾向。
由于MRA空间分辨率较低,对于细小的血管病变尚不理想。
如果在静脉内注射Gd-DTPA对比剂后进行增强MRA,将更有利于显示更小的血管。
因此,目前MRA检查是作为脑血管病变筛查的一种手段,用于监控发生脑梗死的患者。
磁共振血管成像检查技术主要应用范围包括:
1、颅内血管:脑血管发育变异、脑动脉硬化、脑血管狭窄和闭塞、脑动脉瘤、脑血管畸形、颈静脉球瘤、静脉窦血栓等,特别是对脑血管病早期筛查及诊断具有较高的应用价值。
颈部血管:可以观察颈总动脉、颈内外动脉、椎动脉的狭窄、扩张、动脉瘤、变异等解剖异常。
心胸外科磁共振脑血管造影(MRA)和计算机体层扫描脑血管造影心胸外科磁共振脑血管造影(MRA)和计算机体层扫描脑血管造影(CTA)是目前常用的非侵入性检查方法,用于评估脑血管的异常情况。
两种方法各有优点和适用范围,下面将分别介绍这两种方法的原理、特点和应用。
首先,我们来了解一下磁共振脑血管造影(MRA)。
MRA利用磁共振成像技术,通过使用高强度磁场和无辐射的无损扫描方式,可以对脑血管进行影像重建。
在进行MRA前,通常会通过静脉注射造影剂,使血管更容易被检测到。
MRA可以提供三维血管成像,能够观察到血管的完整结构、形态和血流动力学。
MRA的优点在于非侵入性、无辐射、无痛苦,对于儿童、孕妇以及对辐射敏感的人群来说,是较为理想的检查方法。
此外,MRA还可以评估血管的病理情况,如动脉瘤、血管狭窄等,可以指导医生制定治疗方案。
然而,MRA也有一些缺点。
首先,相比于CTA,MRA图像分辨率较低,可能无法清晰地显示血管的细节。
其次,造影剂可能会引发过敏反应,虽然这种情况比较少见,但仍需要注意。
此外,MRA对金属植入物、心脏起搏器等辅助设备的敏感性较高,可能会产生异常信号干扰。
接下来,我们介绍一下计算机体层扫描脑血管造影(CTA)。
CTA利用X射线和计算机技术,可以对血管进行成像。
在进行CTA前,通常需要静脉注射造影剂,使血管更明显地显示出来。
CTA可以提供高分辨率的图像,能够观察到血管的形态、血流情况以及局部异常病变。
CTA的优点在于成像速度快、分辨率高,能够清晰显示血管的细节。
此外,CTA对于血管狭窄、血栓形成、动脉瘤等病变的检测效果较好。
CTA还可以评估脑卒中的病因,帮助医生制定合理的治疗方案。
然而,CTA也有一些缺点。
首先,CTA需要使用X射线,对于辐射敏感的人来说,可能会存在风险。
其次,CTA的造影剂会经过肾脏排泄,对肾功能不全的患者潜在有一定的风险。
此外,有关CTA的成像结果需要专业医生进行解读,对于不熟悉CTA的医生来说,可能会存在诊断偏差的可能。
什么是磁共振血管成像技术在生病后,去医院就诊,医生会根据我们的病症让我进行一些相关的检查,例如。
也就是磁共振血管造影(MRA)。
该方法是临床上影像学检查中比较先进的一种检查方法。
其在临床上的应用较为广泛。
经通过磁共振检查后能够对身体的早期病变予以发现,有助于及时的治疗干预。
本次我就和大家一起在下文中了解下什么是我们可以发现身体很多早期病变,并及时治疗。
今天我们来了解一下:什么是磁共振血管成像技术,以及了解其优势等。
一、什么是磁共振血管造影?磁共振血管造影检查属于磁共振检查中的一种,其检查方法较为特殊。
该方法一般是经血管注射造影剂,通过血液循环到达需要检查的位置,之后进行相关检查。
该方法可对病灶部位的大小、分布以及病变供血情况予以充分的表达。
采取磁共振血管造影检查能够帮助医生了解患者病变的情况,从而对治疗有着较好的帮助。
二、磁共振血管造影的分类磁共振血管造影在临床上课将其分为2种类型,也就是不需要注射造影剂和需要注射造影剂的增强血管造影。
前者通常在血管病变的普通筛查中应用较多,例如头颅血管成像,后者与需要注射造影剂的ct相比较,其发生造影剂过敏的几率较低。
根据相关资料得知,肾功能不全患者不能采取该检查方法之外,其没有较多的限制没有过多的限制。
因此与CT增强血管造影进行比较,增强磁共振血管造影的安全性更高,从而不会对身体产生较大的伤害。
三、磁共振血管成像技术在头颈部的应用头颈磁共振血管造影是一种用于显示血管和血流信号特征的技术。
它可以描述血管的解剖腔,还可以反映血管的血流方式和速度信息,从而可以快速预先评估头颈部血管是否有畸形,狭窄,动脉瘤,钙化斑块和其他与血管相关的病变以及各级血管的供血,为临床准确评估血管病变以及制定治疗和手术计划提供了可靠的证据。
例如,颈动脉斑块不仅导致管腔狭窄,而且破裂,出血,脱落并阻塞血管。
磁共振血管造影检查能够较为清晰的显示颈动脉管腔狭窄,还可以显示管壁和斑块病变,能够对硬化斑块的范围、组成以及易损性予以有效准确评估和精确测量,防止并发症发生。
MRA原理及应用解读MRA,即磁共振成像(Magnetic Resonance Imaging)技术,是一种医学成像技术,利用核磁共振现象来观察人体内部的结构和功能。
MRA技术广泛应用于神经学、心血管学、骨科学等领域。
本文将对MRA的原理及应用进行解读。
首先,磁共振成像是一种无创、无放射性的成像技术。
它利用强大的磁场和无害的无线电波来产生具有磁共振特性的信号。
当人体置于磁场中,大部分人体组织中的氢原子核都具有自旋(即旋转)的特性。
在磁场作用下,这些氢原子核会以特定的频率进行共振。
通过改变磁场的强弱和向量方向,可以对氢原子核进行激发和释放,从而得到图像信息。
MRA技术的主要原理是利用磁场和无线电波的相互作用来产生一个磁共振信号。
具体而言,MRA主要关注的是人体内液体的运动状态和血液的流动情况。
通过对血液进行加权,可以对血管进行成像。
这种成像方法可以用来观察血管的结构和功能。
MRA技术主要有以下几种应用:1.大脑血管成像:MRA技术可以用于观察大脑血管的情况,包括血管的形态、狭窄程度和血流速度等。
这对于诊断脑血管疾病,如脑梗塞和动脉瘤,非常重要。
2.心脏血管成像:MRA技术可以用于观察心脏血管的情况,包括冠状动脉和心脏瓣膜的形态和功能等。
这对于诊断心脏病,如冠心病和心脏瓣膜疾病,非常重要。
3.腹部血管成像:MRA技术可以用于观察腹部血管的情况,包括肝脏、肾脏和脾脏等腹部器官的血流情况。
这对于诊断腹部血管疾病,如肝癌和肾动脉狭窄,非常重要。
4.骨关节成像:MRA技术可以用于观察骨关节的情况,包括关节软骨、韧带和滑膜等的形态和功能。
这对于诊断骨关节疾病,如关节炎和骨折,非常重要。
总结起来,MRA技术通过利用磁共振原理来观察人体内部结构和功能,主要应用于神经学、心血管学和骨科学等领域。
它是一种无创、无放射性的成像技术,对于诊断和治疗多种疾病非常有价值。
未来,随着MRA技术的不断发展,它将在医学领域发挥更大的作用,为人类健康提供更好的保障。
mra原理磁共振血管成像(Magnetic Resonance Angiography,MRA)是一种无创的医学成像技术,用于显示血管系统的结构,特别是动脉和静脉。
MRA利用核磁共振 (NMR)原理,通过对核磁共振信号的测量来生成图像。
以下是MRA的基本原理:1.核磁共振现象: 核磁共振是基于原子核在强磁场中的行为。
当被放置在强磁场中时,原子核会对外加的射频脉冲产生响应。
这个响应包括放射出射频信号,这些信号可以被测量和分析。
2.强磁场: 患者置身于强磁场中,通常是由超导磁体产生的。
强磁场使得体内的氢原子核 (人体中最丰富的原子核之一)取向与磁场相同。
3.射频脉冲: 在强磁场中,通过患者身体传递一个射频脉冲。
这个脉冲使得氢原子核发生共振,从而改变其磁矩方向。
4.回复过程: 当射频脉冲停止时,原子核开始返回到其基本状态。
在这个过程中,它们放射出射频信号。
5.信号检测: 探测器测量这些放射出的射频信号,并通过数学算法将其转化为图像。
这个图像显示了不同区域的核磁共振信号的强度和空间分布。
在MRA中,血液中的氢原子核产生的信号被特别关注。
由于血液中的氢原子核主要来自水分子,因此MRA能够成像血管系统的分布。
有几种MRA的技术,包括:•时间飞行 (Time-of-Flight,TOF)MRA: 利用血液流动的影响,通过测量不同位置上的信号强度来生成图像。
•相位对比 (Phase Contrast)MRA: 利用测量血流速度的信息,生成对比度更高的图像。
•立体成像(3D MRA): 通过获取三维数据集,生成更详细的血管结构图像。
MRA在临床上广泛用于检测和评估血管异常、动脉瘤、动脉狭窄等疾病。
磁共振血管成像技术倪红艳祁吉天津市第一中心医院放射科近年来磁共振血管成像(Magnetic Resonance AngiograPhy,MRA)技术发展迅速,可供选择的磁共振血管成像(MRA)技术有多种,充分理解MRA技术的原理及其特性,有利于日常工作中恰当地应用这些技术。
本文就目前常用的几种磁共振血管成像技术的原理、特点做一些简单介绍。
一几种常用的磁共振血管成像技术l.时间飞越法(TOF)MRA时间飞越法(Time of Flight,TOF)血管成像的基本原理是采用了“流动相关增强’机制,是最广泛采用的MRA方法。
TOF血管成像用具有非常短TR的梯度回波序列。
由于TR短,静态组织在没有充分弛豫时就接受到下一个脉冲的激励,在脉冲的反复作用下,其纵向磁化矢量越来越小而达到饱和,信号被衰减对于成像容积以外的血流,因为开始没有接受脉冲激励而处于完全弛豫状态,当该血流进入成像容积内时才被激励而产生较强的信号。
TOF MRA的对比极大地依赖于血管进入的角度,所以在用TOF法进行血管成像时扫描层面一般要垂直于血管走向。
另外,在TOF血管成像中,通过在成像区域远端或近端放置预饱和带,去除来自某一个方向的血流信号,因而可以选择性地对动脉或静脉成像。
目前已有效地应用于身体各部位的TOF技术有多种,并且各具特色。
a.三维(3D)单容积采集TOF法MRA3D TOF同时激励一个容积,这种容积通常3~8mm厚;含有几十个薄层面。
3D TOF的最大优点是可以采集簿层,可薄于lmm,最终产生很高分辨率的投影。
另外,3D TOF对容积内任何方向的血流均敏感,所以对于迂曲多变的血管,如脑动脉的显示有一定优势。
但是对于慢血流,因其在成像容积内停留时间较长,反复接受多个脉冲的激励,可能在流出层块远端之前产生饱和而丢失信号,所以3D TOF不适于慢血流的显示,也因此不能对大范围血管(例如颈部血管)成像,这是3D TOF的主要缺陷。
磁共振血管成像技术磁共振血管成像以其无创性和图像的直观清晰性,越来越受到临床的重视。
近年来磁共振血管成像(MRA)技术发展迅速,可供选择的磁共振血管成像(MRA)技术有多种,充分理解MRA技术的原理及其特性,有利于日常工作中恰当地应用这些技术。
目前比较常用的普通磁共振血管造影成像方法有时间飞跃法(time-of-flight,TOF)、相位对比法(phase contrast,PC)以及对比增强磁共振血管造影法(contrast-enhanced magnetic resonance angiography,CE MRA)。
在MRA 中起重要作用的流动效应有二种:饱和效应和相位效应,二者均可区分流动血液和静止组织。
CE-MRA则是利用了对比剂作用,改变血液的弛豫时间下面就几种技术作一简单的分析和比较,希望对我们临床中正确选择和使用不同的方法有帮助。
一、时间飞越法(TOF)MRA时间飞越法血管成像采用"流动相关增强"机制,是最广泛采用的MRA方法。
TOF血管成像使用具有非常短TR的梯度回波序列。
由于TR 短,静态组织没有充分弛豫就接受下一个脉冲激励,在脉冲的反复作用下,其纵向磁化矢量越来越小而达到饱和,信号被衰减;对于成像容积以外的血流,因为开始没有接受脉冲激励而处于完全弛豫状态,当该血流进入成像容积内时才被激励而产生较强的信号。
TOF MRA的对比极大地依赖于血管进入的角度,所以在用TOF法进行血管成像时扫描层面一般要垂直于血管走行。
另外,在TOF血管成像中,通过在成像区域远端或近端放置预饱和带,去除来自某一个方向的血流信号,因而可以选择性地对动脉或静脉成像。
目前已有效地应用于身体各部位的TOF技术有多种,并且各具特色。
1. 三维(3D)单容积采集TOF法MRA3D TOF同时激励一个容积,这种容积通常3~8cm厚,含有几十个薄层面。
3D TOF的最大优点是可以采集薄层,可薄于1mm,最终产生很高分辨率的投影。