圆锥曲线——点乘双根法
- 格式:pdf
- 大小:126.81 KB
- 文档页数:4
+ = y 圆锥曲线齐次式与点乘双根法一,圆锥曲线齐次式与斜率之积(和)为定值x 2 y 2例 1:Q 1 , Q 2 为椭圆 2b 2 + b2 线OD ,求 D 的轨迹方程.= 1上两个动点,且OQ 1 ⊥ OQ 2 ,过原点O 作直线Q 1Q 2 的垂解法一(常规方法):设Q 1 (x 1 , y 1 ),Q 2 (x 2 , y 2 ) , D (x 0 , y 0 ) ,设直线Q 1Q 2 方程为 y = kx + m ,⎧ y = kx + m⎪联立⎨ x 2 ⎪⎩ 2b 2 y 2b2 1 化简可得:(2b 2k 2 + b 2 )x 2 + 4kmb 2 x + 2b 2 (m 2 - b 2 ) = 0 ,所以x 1x 2 = 2b 2 (m 2 + b 2 ) 2b 2k 2 + b 2, y 1 y 2 = b 2 (m 2 - 2b 2k 2 ) 2b 2k 2 + b 2因为OQ 1 ⊥ OQ 2 所以2b 2 (m 2 + b 2 ) b 2 (m 2 - 2b 2k 2 ) 2(m 2 - b 2 )m 2 - 2b 2k 2x 1x 2 + y 1 y 2 = 2b 2k 2 + b 2 + 2b 2k 2 + b 2 = 2k 2+1 + 2k 2 +1 =0∴3m 2 = 2b 2 (1+ k 2 ) *又因为直线 Q Q 方程等价于为 y - y = - x0 (x - xx x 2) , 即 y = - 0 x + 0 + y对比于1 2 0y 0 y 0⎨ 20 00 0y y ⎧- x 0 = k y = kx + m ,则⎪ y 0x 代入* 中,化简可得: x 2 + y 2= 2b 2. 3 ⎪ 0 + y = m ⎪ y 0 ⎩ 0解法二(齐次式):⎧ mx + ny= 1 ⎧ mx + ny = 1 ⎪ ⎪ 设直线Q 1Q 2 方程为 mx + ny = 1,联立⎨ x 2 + y 2 =⇒ ⎨ x 2 + y 2- =⎪⎩ 2b2b21⎪⎩ 2b2 b21 0x 2 y22x 2 y 2 2 2 2 22b 2 + (m x + ny ) b 2= 0 化简可得: 2b 2 + m x b 2- n y- 2mnxy = 0 整理成关于 x , y x , y 的齐次式: (2 - 2b 2n 2 ) y 2 + (1- 2m 2b 2 ) x 2 - 4mnb 2xy = 0 ,进而两边同时除以 x 2,则2 2 2 2 2 21- 2m 2b 2(2 - 2b n )k - 4mnb k +1- 2m b= 0 ⇒ k 1k 2 =2 - 2b 2n 21- 2m 2b 2因为OQ 1 ⊥ OQ 2 OQ 1 ⊥ OQ 2 所以 k 1k 2 = -1,2 - 2b 2n2= -1∴3 = 2b 2 (m 2 + n 2 ) *又因为直线 Q Q 方程等价于为 y - y = - x0 (x - xx x 2) , 即 y = - 0 x + 0 + y 对比于1 2⎧x 0= my 0 y 0⎪ x 2 + y 22mx + ny = 1,则⎨ 0 0y 代入* 中,化简可得: x 2+ y 2= b 2 .3 0 = n ⎪ x 2 + y 2 ⎩ 0 0例 2:已知椭圆 x 2 + 24= 1,设直线l 不经过点P (0,1) 的直线交于 A , B 两点,若直线 PA , PB 的斜率之和为-1,证明:直线l 恒过定点.⎩ ⎩解:以点 P 为坐标原点,建立新的直角坐标系 x ' py ' ,如图所示:旧坐标 新坐标(x , y ) ⇒ (x ', y ')即(0,1) ⇒ (0, 0)⎧ x ' = x ⎧ A → A ' 所以⎨ y ' = y -1 ⇒ ⎨B → B '原来 k + k = -1⇒y 1 -1 + y 2 -1 = -1 则转换到新坐标就成为: y 1 ' + y 2 '= -1PAPBx x x ' x ' 1 21 2即k 1 '+ k 2 ' = -1设直线l 方程为: mx '+ ny ' = 1原方程: x 2 + 4 y 2 = 4 则转换到新坐标就成为: x '2 + 4( y '+1)2= 4展开得: x '2 + 4 y '2+ 8 y ' = 0⎨⎪x' ⎩ ⎩ 构造齐次式: x '2 + 4 y '2+ 8 y '(mx '+ ny ') = 0整理为: (4 + 8n ) y '2 + 8mx ' y '+ x '2= 0两边同时除以 x '2 ,则(4 + 8n )k '2+ 8mk '+1 = 0所以 k '+ k ' = -8m= -1 所以 2m - 2n = 1 ⇒ m = n + 1124 + 8n 21 x '而 mx '+ ny ' = 1 ∴(n + )x '+ ny ' = 1 ⇒ n (x '+ y ') + -1 = 0 对于任意 n 都成立.2 2⎧x '+ y ' = 0则: ⎪⇒ -1 = 0 ⎩ 2⎧ x ' = 2 ⎨ y ' = -2,故对应原坐标为⎧ x = 2 ⎨ y = -1所以恒过定点(2, -1) .x 2例 3:已知椭圆y 2+ = 1,过其上一定点 P (2,1) 作倾斜角互补的两条直线,分别交于椭 8 2圆于 A , B 两点,证明:直线 AB 斜率为定值.解:以点 P 为坐标原点,建立新的直角坐标系 x ' py ' ,如图所示:旧坐标新坐标(x , y ) ⇒ (x ', y ')即(2,1) ⇒ (0, 0)所以⎧x ' =x - 2⇒⎧A →A '⎨y '=y -1⎨B →B '⎩⎩原来k +k = 0 ⇒ y1-1+y2-1= 0 则转换到新坐标就成为:y1'+y2'= 0PA PB x - 2 x -1 x ' x '1 2 1 2即k1 '+k2' = 0设直线 AB 方程为: mx '+ny ' = 1原方程: x2 + 4 y2 = 8 则转换到新坐标就成为: (x '+ 2)2 + 4( y '+1)2 = 8 展开得: x '2 + 4 y '2 + 4x '+ 8 y ' = 0构造齐次式: x '2 + 4 y '2 + 4x '(mx '+ny ') + 8 y '(mx '+ny ') = 0整理为: y '2 (4 + 8n) +x ' y '(4n + 8m) + (1 + 4m)x '2 = 0两边同时除以 x '2 ,则(4 + 8n)k '2 + (4n + 8m)k '+1+ 4m = 0所以 k '+k ' =-4n + 8m= 0 所以 n =-2m1 2 4 +8n1而mx '+ny ' = 1 ∴mx '+ (-2m) y ' = 1 ⇒mx - 2my -1 = 0 .所以k =21平移变换,斜率不变,所以直线AB 斜率为定值.21 2 1 1 2 2 1 2 1 21 二,点乘双根法例 4:设椭圆中心在原点O ,长轴在 x 轴上,上顶点为 A ,左右顶点分别为 F 1 , F 2 ,线段OF 1 ,OF 2 中点分别为 B 1 , B 2 ,且△AB 1B 2 是面积为 4 的直角三角形.(1) 求其椭圆的方程(2) 过 B 1 作直线l 交椭圆于 P , Q 两点,使 PB 2 ⊥ QB 2 ,求直线l 的方程.x 2y 2解:(1) + = 20 4(2)易知:直线l 不与轴垂直,则设直线l 方程为: y = k (x + 2) , P (x 1, y 1 ), Q (x 2 , y 2 )因为 PB ⊥ QB,则,22PB 2 QB 2 =0所以(x - 2, y )(x - 2, y ) = 0 ⇒ (x - 2)(x - 2) + k 2(x + 2)(x + 2) = 0 *⎧ y = k (x + 2) ⎪2 2 2现联立⎨ x 2+ y 2 = ⇒ x ⎩ 20 4+ 5k (x + 2) - 20 = 0则方程 x 2 + 5k 2 (x + 2)2 - 20 = 0 可以等价转化(1+ 5k 2)( x - x )( x - x ) = 012即 x 2 + 5k 2 (x + 2)2 - 20 = (1+ 5k 2)(x - x )(x - x )令 x = 2 , 4 + 80k 2- 20 = (1+ 5k 2)( x 1 - 2)( x 2 - 2) ⇒ ( x 1 - 2)( x 2 - 2) =80k 2 -16 1+ 5k 2令 x = -2 , 4 + 0 - 20 = (1+ 5k 2)( x + 2)( x + 2) ⇒ ( x + 2)( x + 2) = -161 2 1 21+ 5k 21结合(x1 - 2)(x2- 2) +k (x1 + 2)(x2 + 2) = 0 *化简可得:80k 2 -161+ 5k 2+-16= 01+ 5k 280k 2 -16k 2 -16 = 0 ⇒ 64k 2 =16 ⇒k 2 =1∴k =±1 4 2所以直线l 方程为: y =± 1(x + 2) . 22。
“齐次式”法解圆锥曲线斜率有关的顶点定值问题定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线如何转化题目条件圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型:例题、(07山东)已知椭圆C :13422=+y x 若与x 轴不垂直的直线l 与曲线C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解法一(常规法):m kx y l +=:设1122(,),(,)A x y B x y ,由223412y kx mx y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=,22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=,(*) 2222223(4)4(3)1640343434m k m mkk k k --+++=+++,(**)整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +--+-。
数学分析:点乘双根法知识与方法1.预备知识(二次函数的两根式):一般地,设=++≠f x ax bx c a 02)()(,若一元二次方程++=ax bx c 02有两根x 1和x 2,则必有=−−f x a x x x x 12)()()(, 即++=−−ax bx c a x x x x 122)()(.2.点乘双根法:若我们将直线与圆锥曲线方程联立,得到关于x 的一元二次方程++=ax bx c 02≠a 0)(,并且假设该方程的两根为x 1和x 2,现在我们要计算−−x t x t 12)()(这个量,此时当然可以将其展开,利用韦达定理来进行计算,但更简单的操作方法是利用二次函数的两根式,得出++=−−ax bx c a x x x x 122)()(,并在两端同时令=x t ,即可得到++=−−at bt c a t x t x 122)()(,从而−−=++ax t x t at bt c122)()(,这样就求出了我们想要的量,这种技巧叫做“点乘双根法”,其一般的步骤是“化两根式→赋值→求得结采”.【例题】已知抛物线=>E y px p :202)(的焦点为F ,A y 1,0)(>y 00)(为抛物线E 上一点,=AF 45 (1)求p 和y 0的值;(2)过F 作两条互相垂直的直线与抛物线E 交于另外两点B 和C ,证明:直线BC 过定点. 【解析】(1)由题意,=+=AF p 2415,解得:=p 21,所以抛物线C 的方程为=y x 2,将A y 1,0)(代入=y x 2得:=y 102,又>y 00,所以=y 10. (2)解法1:显然直线BC 不与坐标轴垂直,可设其方程为=+x my t ≠m 0)(,设B y y ,112)(,C y y ,222)(,易得直线AB 和AC 斜率均存在,因为⊥AB AC ,所以−−⋅=−−−y y y y 11111122212,从而++=−y y 11112)()(①,联立⎩=⎨⎧=+y xx my t2消去x 整理得:−−=y my t 02②,因为y 1和y 2是方程②的两根,所以−−=−−y my t y y y y 122)()(,令=−y 1得:+−=−−−−m t y y 11112)()(,所以++=+−y y m t 11112)()(代入式①得:+−=−m t 11,所以=+t m 2,故直线BC 的方程为=++x my m 2,即=++x m y 12)(,所以直线BC 过定点−2,1)(.解法2:显然直线BC 不与坐标轴垂直,可设其方程为=+x my t ≠m 0)(,设B x y ,11)(,C x y ,22)(,联立,消去x 整理得:①,则和是方程①的两根,所以,令=y 1得:−−=−−m t y y 11112)()(,所以−−=−−y y m t 11112)()(联立消去y 整理得:−++=x t m x t 20222)(②,则x 1和x 2是方程②的两根,所以−++=−−x t m x t x x x x 212222)()()(令=x 1得:−−+=−−t m t x x 12111222)()(,所以−−=−−+x x t m t 11121222)()(,由(1)知点A 的坐标为1,1)(,所以=−−AB x y 1,111)(,=−−AC x y 1,122)(, 由题意,⊥AB AC ,所以⋅=−−+−−=AB AC x x y y 111101212)()()()(, 从而−−++−−=t m t m t 121022)()(整理得:+−−−=t m t m 120)()(,所以=−t m 1或=+t m 2, 若=−t m 1,则直线BC 的方程为=+−x my m 1 即=−+x m y 11)(,显然直线BC 过点A ,不合题意, 所以=+t m 2,从而直线BC 的方程为=++x my m 2, 即=++x m y 12)(,故直线BC 过定点−2,1)(.【反思】当涉及到−−x t x t 12)()(或−−y t y t 12)()(这种结构计算时,就可以考虑使用点乘双根法,这是一种能够降低计算复杂度的优越算法.强化训练1.(★★★★)椭圆+=>>a ba b x y 102222)(的左焦点为F ,左、右顶点分别为A 、B ,离心率为,=AB .(1)求椭圆的方程;(2)过F 且斜率为k 的直线l 与椭圆交于C 、D 两点,若⋅+⋅=AC DB AD CB 8,求k 的值. 【解析】(1)由题意,==AB a 2=a又椭圆的离心率eb , 故椭圆的方程为+=x y 32122. (2)由(1)可得A )(,B),−F 1,0)(,所以直线l 的方程为=+y k x 1)(,设C x y ,11)(,D x y ,22)(,则=+AC x y 3,11)(,=−−DB x y 3,22)(,=+AD x y 3,22)(,=−−CB x y 3,11)(,从而⋅+⋅=+−−++−−AC DB AD CB x x y y x x y y 333312122112)()()()(=−+−+−=−−=−−++x x x x y y x x y y x x k x x 3362262211112212112121212122)()(,由题意,⋅+⋅=AC DB AD CB 8,所以−−++=x x k x x 62211812122)()(,故+++=−x x kx x 11112122)()(①,联立⎩⎪+=⎨⎪⎧=+x y y k x 321122)(消去y 整理得:+++−=k x k x k 3263602222)(②,因为x 1和x 2是方程②的两根,所以+++−=+−−k x k x k k x x x x 32636321222222)()()()(③,在③中取=−x 1可得:+++=−k x x 32114212)()(,又由方程②的韦达定理,+=−k x x k 32362122,代入①得:⎝⎭++ ⎪+⋅−=−⎛⎫−k k k k 323213642222,解得:=k2.(★★★★)已知椭圆+=C x y 42:122和点P 1,1)(,过点P 且斜率为2的直线与椭圆C 交于A 、B 两点.(1)求⋅PA PB 的值;(2)直线l 过点P 与椭圆C 交于不与A 、B 重合的M 、N 两点,若⋅=⋅PA PB PM PN ,求直线l 的方程.【解析】(1)由题意,直线AB 的方程为−=−y x 121)(,即=−y x 21,设A x y ,11)(,B x y ,22)(联立⎩⎪+=⎨⎪⎧=−x y y x 4212122消去y 整理得:−−=x x 98202①,则x 1和x 2是方程①的两根,所以−−=−−x x x x x x 9829122)()(,令=x 1可得−−=−x x 911112)()(,故−−=−x x 911112)()(从而⋅=−−=−−=PA PB x x x x 91151151212)()(.(2)当直线l 的斜率不存在时,其方程为=x 1,代入椭圆C的方程可求得=y所以⎝⎭⎪ ⎪⋅=−=≠⋅⎛⎫PM PN PA PB 2111,不合题意, 当直线l 斜率存在时,设其方程为−=−y k x 11)(,即=+−y kx k 1,设M x y ,33)(,N x y ,44)(, 联立⎩⎪=+−+=⎨⎪⎧x y y kx k142122消去y 整理得:++−+−−=k x k k x k 12412140222)()()(②,则x 3和x 4是方程②的两根,所以++−+−−=+−−k x k k x k k x x x x 124121412342222)()()()()()(令=x 1可得++−+−−=+−−k k k k k x x 1241214121134222)()()()()()(, 所以+−−=−k x x 12111234)()(从而+⋅=−−=+⋅−−=+k PM PN x x k x x k 121111112343422)()()(,因为⋅=⋅PA PB PM PN所以+=+k k 1291522,解得:=±k 2,因为M 、N 不与A 、B 重合, 所以≠k 2,故=−k 2,从而直线l 的方程为=−+y x 23.。
圆锥曲线向量点乘知识讲解一、相关向量知识点1.三点共线: ①;②存在实数,使;③若存在实数,且,使. 2.给出,等于已知,即是直角; 给出,等于已知是钝角, 给出,等于已知是锐角.3.给出,等于已知是4.在中,给出垂心是三角形三条高的交点).5.如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行转化,还是选择向量的代数形式进行转化.二、垂直与角度1.垂直以AB 为直径的圆过原点O 121200OA OB x x y y ⇔⋅=⇔+=2212121212()()()y y kx m kx m k x x km x x m =++=+++ 21222221kmb x x k a b+=-+ 故222222222121212122222222(1)(1)0(1)()11m k m k b b x x y y k x x km x x m mk k a b a b +-=+=++++=-+++ A B C ,,//AB AC λAB AC λ=αβ,1αβ+=OC OA OB αβ=+0MA MB ⋅=MA MB ⊥AM B ∠0MA MB ⋅<AM B ∠0MA MB ⋅>AM B ∠MA MB MP MA MB λ⎛⎫⎪+= ⎪⎝⎭MP AM ∠ABC △OA OB OB OC OC OA ⋅=⋅=⋅两边同时乘以2221k a b+,整体处理得222222222221(1)(1)()0m k m k k m b b a b+--++= 消去高次项222k m b得2222210m m k b a --+=即找了,,,a b m k 的关系式. 推广:以AB 为直径的圆过焦点1F1112120()()0F A FB x c x c y y ⇔⋅=⇔+++=⇔可以看得出,同样可以采用整体法处理.2.角度问题成锐角或钝角原点O 在以AB 为直径的圆内0OA OB x ⇔⋅<⇔易得2222210m m k b a--+<原点O 在以AB 为直径的圆外121200OA OB x x y y ⇔⋅>⇔+>易得2222210m m k b a--+>经典例题一.选择题(共7小题)1.(2018•重庆三模)直线l过抛物线y2=ax(a>0)的焦点F且与抛物线交于A,B两点,则=()A.B.C.2a D.4a【解答】解:抛物线的焦点F(,0),设直线l的方程为x=ky+,联立方程组,消去y得:x2﹣(+k2a)x+=0,设A(x1,y1),B(x2,y2),则x1+x2=+k2a,x1x2=,又|AF|=x1+,|BF|=x2+,∴====.故选:B.2.(2018•三明模拟)设F1,F2分别为双曲线C:﹣=1(a>0,b>0)的左、右焦点,A为双曲线的左顶点,M,N为直线bx﹣ay=0上两点,且,,∠MAN=135°,则该双曲线的离心率为()A.B. C.D.【解答】解:如图,F1,F2分别为双曲线C:﹣=1(a>0,b>0)的左、右焦点,A为双曲线的左顶点,,,即以F1F2为直径的圆交双曲线某条渐近线于M、N两点,∴直线MN:bx﹣ay=0,圆的方程为:x2+y2=c2,联立,解得M(a,b),N(﹣a,﹣b),∵A(﹣a,0),∴=(2a,b),=(0,﹣b),∵∠MAN=135°,∴cos<,>==﹣,解得b=2a,∴c==a,∴e==.故选:A.3.(2018•乌鲁木齐模拟)已知抛物线y2=2px(p>0)与圆F:x2+y2﹣px=0,过点F作直线l,自上而下顺次与上述两曲线交于点A,B,C,D,则下列关于|AB|•|CD|的值的说法中,正确的是()A.等于B.等于4p2C.最小值为p2D.最大值为p2【解答】解:圆F的半径为,设A(x A,y A),D(x D,y D),由抛物线的定义可知|AB|=|AF|﹣|BF|=x A+﹣=x A,同理可得|CD|=x D.∴|AB|•|CD|=x A x D.(1)当直线l与x轴垂直时,x A=x D=,∴|AB|•|CD|=.(2)当直线l与x轴不垂直时,设直线l的方程为:y=kx﹣,联立方程组,消去y得:k2x2﹣(k2p+2p)x+=0,∴x A x D=,即|AB|•|CD|=.综上,|AB|•|CD|=.故选:A.4.(2018•宁城县模拟)椭圆的焦点为F1,F2,点M在椭圆上,且=0,则△MF1F2的内切圆半径为()A.B.C.D.2﹣【解答】解:设,,椭圆的焦距为:2c=2,a=2,因为点M在椭圆上,且=0,可得m2+n2=12,m+n=4,可得mn=2,△MF1F2的内切圆半径为:r.mn=(m+n+2c)r,解得r===2﹣.故选:D.5.(2018•上饶二模)已知点F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使(O为坐标原点)且|PF1|=λ|PF2|,则实数λ的值为()A.3 B.2 C.D.【解答】解:由双曲线方程可得a=2,b=,c=,∴||=又∵使,∴(+)(﹣)=0,∴﹣=0,∴||=||=,故△PF1F2是以P为直角的直角三角形又∵P是双曲线右支上的点∴|PF1|>|PF2|,∴|PF1|=|PF2|+4,由勾股定理可得|PF2|2+(|PF2|+4)2=4C2=40,解得|PF2|=2,|PF1|=6故λ=3故选:A.6.(2018•乌鲁木齐模拟)已知抛物线y2=4x与圆F:x2+y2﹣2x=0,过点F作直线l,自上而下顺次与上述两曲线交于点A,B,C,D,则下列关于|AB|•|CD|的值的说法中,正确的是()A.等于1 B.等于16 C.最小值为4 D.最大值为4【解答】解:∵y2=4x,焦点F(1,0),准线:x=﹣1.由定义得:|AF|=x A+1,又∵|AF|=|AB|+1,∴|AB|=x A,同理:|CD|=x D,当l⊥x轴时,则x D=x A=1,∴|AB|•|CD|=1当l:y=k(x﹣1)时,代入抛物线方程,得:k2x2﹣(2k2+4)x+k2=0,∴x A x D=1,∴|AB|•|CD|=1综上所述,|AB|•|CD|=1,故选:A.7.(2018•济南二模)已知抛物线C:x2=4y,过抛物线C上两点A,B分别作抛物线的两条切线PA,PB,P为两切线的交点O为坐标原点若,则直线OA与OB的斜率之积为()A.B.﹣3 C.D.﹣4【解答】解:设A(,),B(,),由抛物线C:x2=4y,得,则y′=.∴,,由,可得,即x1x2=﹣4.又,,∴.故选:A.二.填空题(共6小题)8.(2018•襄城区校级一模)已知直线l:x+y+m=0与双曲线C:﹣=1(a >0,b>0)右支交于M,N两点,点M在第一象限,若点Q满足+=(其中O为坐标原点),且∠MNQ=30°,则双曲线C的渐近线方程为y=±x.【解答】解:由题意可知:M,Q关于原点对称,设M(m,n),N(u,v),则Q(﹣m,﹣n),即有﹣=1,﹣=1,两式相减可得=,可得k MN•k QN=•==,∵k MN=﹣,k QN=tan150°=﹣,∴=1,即a=b,∴双曲线C的渐近线方程为y=±x,即y=±x,故答案为:y=±x.9.(2018•赤峰一模)抛物线y2=2px (p>0)的焦点为F,其准线与双曲线相交于M,N 两点,若=14,则p=.【解答】解:抛物线y2=2px(p>0)的准线方程为x=﹣,焦点F(,0).把x=﹣代入双曲线方程:,化简得:y2=﹣9,∴M(﹣,),N(﹣,﹣),∴=(﹣p,),=(﹣p,﹣),∴=p2﹣+9=14,又p>0,∴p=.故答案为:.10.(2018•黑龙江模拟)M,N分别为双曲线﹣=1左、右支上的点,设是平行于x轴的单位向量,则|•|的最小值为4.【解答】解:由向量数量积的定义知•即向量在向量上的投影||模长的乘积,故求|•|的最小值,即求在x轴上的投影的绝对值的最小值,由双曲线的图象可知|•|的最小值为4故答案为:411.(2018•黄州区校级模拟)已知点F2、P分别为双曲线(a>0,b >0)的右焦点和右支上的点,O为坐标原点,若,,且,则此双曲线的离心率为.【解答】解:∵,∴M是PF2的中点,∵,∴OF2=F2M=c,∵,则2c2cos(π﹣∠OF2M)=a2+b2=c2,∴∠OF2M=120°.∴M(,),∵F2(c,0),M是PF2的中点,∴P(2c,c),∵P在双曲线上,∴,即4b2c2﹣3a2c2﹣a2b2=0,∵b2=c2﹣a2,∴4c2(c2﹣a2)﹣3a2c2﹣a2(c2﹣a2)=0,即4c4﹣8a2c2+a4=0,4e4﹣8e2+1=0,解得e2=.∴.故答案为:.12.(2014秋•杭州期末)已知动点P(x,y)在椭圆=1上,若A点的坐标为(6,0),||=1,且•=0,则||的最小值为.【解答】解:∵•=0,∴PM⊥AM,∴|PM|2=|AP|2﹣|AM|2,又∵||=1,∴|AP|越小,|PM|就越小,设P(10cosx,8sinx),则|AP|2=(10cosx﹣6)2+(8sinx﹣0)2=100cos2x﹣120cosx+36+64sin2x=36cos2x﹣120cosx+100=(6cosx﹣10)2,∴|AP|的最小值为=4,∴|PM|的最小值为:=,故答案为:.13.(2007•南通模拟)经过双曲线>,>上任一点M,作平行于实轴的直线,与渐近线交于P,Q两点,则=a2.【解答】解:设M(x,y),则有: ⇒x2=①且P(﹣y,y),Q(y,y),∴,,,∴=(﹣)•()+0=x2﹣=﹣=a2.故答案为a2.三.解答题(共6小题)14.(2018•定远县模拟)已知椭圆C:+=1(a>b>0)的离心率为,其左、右焦点分别为F1,F2,点P(x0,y0)是坐标平面内一点,且|OP|=5,•=16(O 为坐标原点).(1)求椭圆C的方程;(2)过点S(0,﹣1)且斜率为k的动直线l交椭圆于A,B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过该点?若存在,求出点M的坐标,若不存在,说明理由.【解答】解:(1)设P(x0,y0),F1(﹣c,0),F2(c,0),则由|OP|=5,得=25,由=16,得(﹣c﹣x0,﹣y0)•(c﹣x0,﹣y0)=16,∴﹣c2=16,∴c2=9,c=3,∵,∴a2=18,b2=9,∴椭圆方程为=1.(2)设动直线l的方程为y=kx﹣1,由,得(2k2+1)x2﹣4kx﹣16=0,设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=﹣,假设在y轴上存在M(0,m),满足题设,则=(x1,y1﹣m),=(x2,y2﹣m),=x1x2+(y1﹣m)(y2﹣m)==x1x2+(kx1﹣1)﹣m(kx1﹣1+kx2﹣1)+m2===,由假设得对于任意的k∈R,=0恒成立,即,解得m=3.∴在y轴上存在定点M,使以AB为直径的圆恒过该点,点M的坐标为(0,3).15.(2018•南平二模)已知抛物线C:y2=2px的焦点为F,抛物线C上的点M(2,y0)到F的距离为3.(Ⅰ)求抛物线C的方程;(Ⅱ)斜率存在的直线l与抛物线相交于相异两点A(x1,y1),B(x2,y2),x1+x2=4.若AB的垂直平分线交x轴于点G,且=5,求直线l方程.【解答】解:(Ⅰ)由抛物线定义知MF=2+所以2+=3,⇒p=2.所以,抛物线方程为y2=4x.(Ⅱ)设AB中点坐标(2,m),直线l的斜率存在,所以m≠0,=,所以直线AB方程为:y﹣m=,即2x﹣my+m2﹣4=0.由得y2﹣2my+2m2﹣8=0,其中△>0得到m2<8,.AB的垂直平分线方程为:y﹣m=﹣,,令y=0,得x=4,所以G(4,0),,,,.因为=5,所以(x1﹣4)(x2﹣4)+y1y2=5.x1x2﹣4(x1+x2)+16+y1y2=5,③,把②代入③得((m2﹣4)2+8(m2﹣4)﹣20=0,(m2+6)(m2﹣6)=0,m2=6<8,m=,所以,直线l方程为2x﹣或2x+.16.(2018•黄山一模)已知椭圆Γ:>>的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形AF1BF2是边长为2的正方形.(1)求椭圆Γ的方程;(2)若C、D分别是椭圆Γ的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于与点P.证明:为定值.【解答】解:(1)∵左右焦点分别为F1,F2,短轴两个端点为A,B,且四边形F1AF2B是边长为2的正方形,∴a=2,b=c,a2=b2+c2,∴b2=2,∴椭圆方程为+=1.(2)C(﹣2,0),D(2,0),设M(2,y0),P(x1,y1),则=(x1,y1),=(2,y0)直线CM:y﹣0=(x+2),即y=x+y0.代入椭圆x2+2y2=4,得(1+)x2+y02x+y02﹣4=0,故方程的两个根分别为﹣2和x1,由韦达定理可得x1﹣2=,∴x1=,∴y1=.∴=(,)∴=+==4.17.(2018•海南一模)在平面直角坐标系xOy中,已知椭圆>>的离心率为,A,F分别为椭圆的上顶点和右焦点,△AOF的面积为,直线AF与椭圆交于另一个点B,线段AB的中点为P.(1)求直线OP的斜率;(2)设平行于OP的直线l与椭圆交于不同的两点C,D,且与直线AF交于点Q,求证:存在常数λ,使得.【解答】解:(1)根据题意,椭圆>>的离心率为,即e==,即a2=2b2,c2=a2﹣b2=b2,所以A(0,b),F(c,0),所以,所以c=1,所以椭圆的方程为.直线AF的方程为y=﹣x+1,联立消去y得3x2﹣4x=0,所以或x=0,所以,,从而得线段AB的中点,.所以直线OP的斜率为.(2)证明:由(1)知,直线AF的方程为y=﹣x+1,直线OP的斜率为,设直线l的方程为.联立得;所以点Q的坐标为,.所以,,,.所以.联立消去y得,由已知得△=4(3﹣2t2)>0,又t≠0,得,,.设C(x1,y1),D(x2,y2),则,,,.所以,=,,,,故===.所以.所以存在常数,使得.18.(2018•马鞍山二模)在直角坐标系中,己知点A(﹣2,0),B(2,0),两动点C(0,m),D(0,n),且mn=3,直线AC与直线BD的交点为P.(1)求动点P的轨迹方程;(2)过点F(1,0)作直线l交动点P的轨迹于M,N两点,试求的取值范围.【解答】解:(1)直线AC的方程:(1)直线BD的方程:(2)上述两式相乘得:,又mn=3,于是:由mn=3得m≠0,n≠0,∴x≠±2所以动点P的轨迹方程:.(2)当直线MN的斜率不存在时,,,,,有:,,,,得;当直线MN的斜率存在时,设方程:y=k(x﹣1),M(x1,y1),N(x2,y2)联立:,整理得:(4k2+3)x2﹣8k2x+4k2﹣12=0有,,由;由k2>0,可得:<<,综上所得:的取值范围:,.19.(2018•全国I模拟)设O为坐标原点,椭圆C:=1,动直线l (l不经过O)与C交于P、Q两点,M为线段PQ的中点.(1)设直线l的斜率为k,直线OM的斜率为k1,求k1k的值;(2)若△OPQ的面积等于,求M的轨迹方程,并|OM||PQ|的最大值.【解答】解:(1)设l:y=kx+m,代入椭圆方程整理得:(2k2+1)x2+4kmx+2m2﹣4=0则设M(x,y),则x=y=故k1=,于是k1k=为常数;(本问也可用点差法)…(5分)(2)当l不与y轴平行时,同(1)可得(2k2+1)x2+4kmx+2m2﹣4=0,△=8(4k2﹣m2+2),|PQ|=,d O﹣l=,S=…(8分)化简得:m2=2k2+1…①,代入△=8(4k2﹣m2+2)=8(2k2+1)>0设M(x,y)则x=…②y=…③①②③式消去m、k可得=1当l与y轴平行时,设l:x=m,可解得:|PQ|=2S=|m|由S=解得m=,此时M(,0)也满足=1…(10分)|OM||PQ|=当k=时等号成立,故最大值为3…(12分)。
一、圆锥曲线齐次式与斜率之积(和)为定值且OQ 11OQ 2,过原点O 作直线Q 1Q 2的垂D (X, V0),设直线 Q 1Q 2 方程为 V= kx +m ,V = kx + m X 2 V 2 化简可得: ——+ — = 1 〔2b 2 b 2(2b 2k 2 + b 2)x 2 + 4kmb 2x + 2b 2(m 2 一b 2) = 0,所以2b 2(m 2 + b 2)b 2(m 2 -2b 2k 2)解法二(齐次式):w r k r第十讲 锥曲线齐次式与点乘双根法V = kx +m ,x]—0-二kV代入*中, 化简可得: x 2 -0- + V = mV 0x x 2V = --0-x + T- + V 对比于V VX 2 V 2 一例1:4%为椭圆乐+b=1上两个动点,线OD ,求D 的轨迹方程.解法一(常规方法):设Q ",V j Q 2a 2,V 2)x 2 y 2 x 2 y 2----------- 1 ---------(mx + ny )2 = 0 化简可得 --- 1 ------------ m 2x 2 一 n 2y 2 一 2mnxy = 02 b 2 b 22 b 2 b 2整理成关于 X , J X , J 的齐次式:(2 - 2b 2n 2)y 2 + (1 - 2m 2b 2)x 2 - 4mnb 2xy = 0,进而两边同时除以x 2,则1 -2 m 2 b 2(2 一 2b 2n 2)k 2 一 4mnb 2k +1 一 2m 2b 2 = 0 n k k = ---------1 2 2 - 2 b 2 n 2因为OQ 1 OQ OQ 1 OQ 所以kk =—1:.3 = 2b 2(m 2 + n 2)・・・*设直线Q 1Q 2方程为mx + ny=1,又因为直线Q1Q2方程等价于为y-y 0 =-x0- (x - x )y0x x 2y = -i x + t- + y对比于mx + ny = 1,则<x--------- 0—x 2 + y 0 (y2i代入*中,化简可得:x 2 + y 2 = -b2. x 2 , ____ __ .一例2:已知椭圆了+y2 =1,设直线,不经过点P(0,D的直线交于A,B两点若直线PA, PB的斜率之和为-1,证明:直线/恒过定点.解:以点P为坐标原点,建立新的直角坐标系x' py ',如图所示:即 k 「+ k 2' ―-1设直线l 方程为:mx '+ ny ' = 1原方程:X 2+ 4y 2 = 4则转换到新坐标就成为:x '2 + 4(y '+1)2 = 4 展开得:x '2 + 4y '2 + 8y' = 0构造齐次式:x '2 + 4y '2 + 8y '(mx '+ ny ') = 0 整理为:(4 + 8n )y '2 + 8mx'y '+ x '2 = 0 两边同时除以 x '2,则(4 + 8n )k '2 + 8mk '+1 = 08 m 1所以 k + k = ---- = —1 所以 2 m — 2 n — 1 n m — n + —1 2 4 + 8 n 2 , ,< ,1 ............................................. x’ “八而 mx + ny = 1「. (n + -)x + ny = 1 n n (x + y ) + --1 = 0 对于任意 n 都成立.x 2 y 2 ~ _ _例3:已知椭圆7 + 4- = 1,过其上一定点尸(2,1)作倾斜角互补的两条直线,分别交于椭所以原来 k pA +k pB =T ny -1, y -1 —t —+——x1—-1则转换到新坐标就成为:十,二一1 12x'+ y' — 0x ' n --1 — 0 [2x' = 2 t c ,故对应原坐标为 y =-2x = 2 1所以恒过定点(2,-1). y = -1即(0,1) n (0,0)8 2圆于A ,B 两点,证明:直线AB 斜率为定值.解:以点P 为坐标原点,建立新的直角坐标系x' py ',如图所示:旧坐标 新坐标即(2,1) n (0,0)所以原来『女。
一,圆锥曲线齐次式与斜率之积(和)为定值例1:12,Q Q 为椭圆222212x y b b+=上两个动点,且12OQ OQ ⊥,过原点O 作直线12Q Q 的垂线OD ,求D 的轨迹方程.解法一(常规方法):设111222(,),(,)Q x y Q x y ,00(,)D x y ,设直线12Q Q 方程为y kx m =+,联立222212y kx mx y bb =+⎧⎪⎨+=⎪⎩化简可得: 22222222(2)42()0b k b x kmb x b m b +++-=,所以 222222212122222222()(2),22b m b b m b k x x y y b k b b k b+-==++ 因为12OQ OQ ⊥所以2222222222221212222222222()(2)2()2=0222121b m b b m b k m b m b k x x y y b k b b k b k k +---+=+=+++++ 22232(1)m b k ∴=+*又因为直线12Q Q 方程等价于为0000()x y y x x y -=--,即200000x x y x y y y =-++对比于y kx m =+,则00200x k y x y my ⎧-=⎪⎪⎨⎪+=⎪⎩代入*中,化简可得:2220023x y b +=.解法二(齐次式):设直线12Q Q 方程为1mx ny +=,联立222222221111022mx ny mx ny x y x y b b b b+=+=⎧⎧⎪⎪⇒⎨⎨+=+-=⎪⎪⎩⎩ 22222()02x y mx ny b b +-+=化简可得:22222222202x y m x n y mnxy b b+---= 整理成关于,x y ,x y 的齐次式:2222222(22)(12)40b n y m b x mnb xy -+--=,进而两边同时除以2x ,则22222222122212(22)412022m b b n k mnb k m b k k b n---+-=⇒=- 因为12OQ OQ ⊥12OQ OQ ⊥所以121k k =-,222212122m b b n-=-- 22232()b m n ∴=+*又因为直线12Q Q 方程等价于为0000()x y y x x y -=--,即200000x x y x y y y =-++对比于1mx ny +=,则0220002200x m x y y n x y ⎧=⎪+⎪⎨⎪=⎪+⎩代入*中,化简可得:2220023x y b +=.例2:已知椭圆2214x y +=,设直线l 不经过点(0,1)P 的直线交于,A B 两点,若直线,PA PB的斜率之和为1-,证明:直线l 恒过定点.解:以点P 为坐标原点,建立新的直角坐标系''x py ,如图所示:旧坐标 新坐标(,)(',')x y x y ⇒即(0,1)(0,0)⇒所以'''1'x x A A y y B B =→⎧⎧⇒⎨⎨=-→⎩⎩原来12121111PA PB y y k k x x --+=-⇒+=-则转换到新坐标就成为:1212''1''y y x x +=- 12''1k k +=-即设直线l 方程为:''1mx ny +=原方程:2244x y +=则转换到新坐标就成为:22'4('1)4x y ++=展开得:22'4'8'0x y y ++=构造齐次式:22'4'8'('')0x y y mx ny +++=整理为:22(48)'8'''0n y mx y x +++=两边同时除以2'x ,则2(48)'8'10n k mk +++=所以128''148m k k n +=-=-+所以12212m n m n -=⇒=+而''1mx ny +=1'()''1('')1022x n x ny n x y ∴++=⇒++-=对于任意n 都成立. 则:''0'2''2102x y x x y +=⎧=⎧⎪⇒⎨⎨=--=⎩⎪⎩,故对应原坐标为21x y =⎧⎨=-⎩所以恒过定点(2,1)-. 例3:已知椭圆22182x y +=,过其上一定点(2,1)P 作倾斜角互补的两条直线,分别交于椭圆于,A B 两点,证明:直线AB 斜率为定值.解:以点P 为坐标原点,建立新的直角坐标系''x py ,如图所示:旧坐标 新坐标(,)(',')x y x y ⇒即(2,1)(0,0)⇒所以'2''1'x x A A y y B B =-→⎧⎧⇒⎨⎨=-→⎩⎩原来1212110021PA PB y y k k x x --+=⇒+=--则转换到新坐标就成为:1212''0''y y x x += 12''0k k +=即设直线AB 方程为:''1mx ny +=原方程:2248x y +=则转换到新坐标就成为:22('2)4('1)8x y +++=展开得:22'4'4'8'0x y x y +++=构造齐次式:22'4'4'('')8'('')0x y x mx ny y mx ny +++++=整理为:22'(48)''(48)(14)'0y n x y n m m x +++++=两边同时除以2'x ,则2(48)'(48)'140n k n m k m +++++=所以1248''048n mk k n++=-=+所以2n m =-而''1mx ny +='(2)'1210mx m y mx my ∴+-=⇒--=.所以1=2k 平移变换,斜率不变,所以直线AB 斜率为定值12.二,点乘双根法例4:设椭圆中心在原点O ,长轴在x 轴上,上顶点为A ,左右顶点分别为12,F F ,线段12,OF OF 中点分别为12,B B ,且12AB B △是面积为4的直角三角形.(1)求其椭圆的方程(2)过1B 作直线l 交椭圆于,P Q 两点,使22PB QB ⊥,求直线l 的方程.解:(1)221204x y +=(2)易知:直线l 不与轴垂直,则设直线l 方程为:(2)y k x =+,1122(,),(,)P x y Q x y 因为22PB QB ⊥,则22=0PB QB ,所以211221212(2,)(2,)0(2)(2)(2)(2)0x y x y x x k x x --=⇒--+++=*现联立22222(2)5(2)2001204y k x x k x x y =+⎧⎪⇒++-=⎨+=⎪⎩则方程2225(2)200x k x ++-=可以等价转化212(15)()()0k x x x x +--= 即2222125(2)20(15)()()x k x k x x x x ++-=+--令2x =,22212122801648020(15)(2)(2)(2)(2)15k k k x x x x k -+-=+--⇒--=+令2x =-,212122164020(15)(2)(2)(2)(2)15k x x x x k -+-=+++⇒++=+结合21212(2)(2)(2)(2)0x x k x x --+++=*化简可得:22280161601515k k k --+=++2222118016160641642k k k k k --=⇒=⇒=∴=±所以直线l 方程为:1(2)2y x =±+.。
焦点在y 轴上的椭圆,那么 m 的取值范畴是—〔答:(°(谆〕2020高考数学必胜秘诀(八)圆锥曲线――概念、方法、题型、易误点及应试技巧总结八、圆锥曲线1.圆锥曲线的两个定义:〔1〕第一定义中要重视”括号〃内的限制条件 :椭圆中,与两个定点F ,, F 2的距离的和等于常数 2a ,■ ■ ■J"J- -1-■ ■ ■." ~—- -^-1" ■- ■■■且此常数2a 一定要大于 RF 2,当常数等于FT ?时,轨迹是线段卩汗2,当常数小于FT ?时,无轨迹; 双曲线中,与两定点F 1, F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2I ,定义中的”绝对值'’与2a v |F 1F 2 |不可忽视。
假设2a = |F 1F 2|,那么轨迹是以 F 1, F 2为端点的两条射线, 假设2a > |F 1F 2|,那么轨迹不存在。
假设去掉定义中的绝对值那么轨迹仅表示双曲线的一支。
女口〔 1〕定点F 1( 3,0)也(3,0),在满 足以下 条件的平 面上动点P 的轨迹中 是椭圆的是A . PF j |PF 242 2B • |PF ^ |PF 2| 6C • PF 1PF 2 10 D • PF 1 PF 2 12 〔答:C 〕;_匚2〕.方程J (x 6)2 y 2 J (x 6)2 y 2 8表示的曲线是 _________________〔答:双曲线的左支〕〔2〕第二定义中要注意定点和定直线是相应的焦点和准线,且”点点距为分子、点线距为分母",其商即是离心率e 。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的 2关系,要善于 运用第二定义对它们进行相互转化。
如点Q(2.. 2,0)及抛物线y — 上一动点P 〔x,y 〕,那4么y+|PQ|的最小值是 ______ 〔答:2〕2.圆锥曲线的标准方程 〔标准方程是指中心〔顶点〕在原点,坐标轴为对称轴时的标准位置的方程〕1 I I 12 2 2 2(3, 3)U ( -,2)〕;〔2〕假设x, y R ,且3x 2y 6,那么x y 的最大值是 _____________________ , x y 的最小值是—〔答:后2〕、x 2y 2y 2x 2〔2丨双曲线:焦点在x 轴上:—J=1,焦点在 y 轴上: 土—= 1〔 a 0,b 0〕。
圆锥曲线解题方法技巧归纳第一、知识储备: 1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。
(2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈②点到直线的距离d =③夹角公式:2121tan 1k k k k α-=+(3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =-= 或12AB y y =- (4)两条直线的位置关系①1212l l k k ⊥⇔=-1 ②212121//b b k k l l ≠=⇔且 2、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:221(0,0)x y m n m n m n+=>>≠且2a =参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种标准方程:221(0)x y m n m n+=⋅<距离式方程:2a =(3)、三种圆锥曲线的通径你记得吗? (4)、圆锥曲线的定义你记清楚了吗?如:已知21F F 、是椭圆13422=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则动点M 的轨迹是( )A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线(5)、焦点三角形面积公式:122tan2F PFP b θ∆=在椭圆上时,S(其中2221212121212||||4,cos ,||||cos ||||PF PF c F PF PF PF PF PF PF PF θθθ+-∠==•=⋅) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。
(2)0||x e x a ±双曲线焦点在轴上时为(3)11||,||22p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为(6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备1、点差法(中点弦问题) 设()11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点则有1342121=+y x ,1342222=+y x ;两式相减得()()03422212221=-+-y yx x⇒()()()()3421212121y y y y x x x x +--=+-⇒AB k =ba 43-2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0∆≥,以及根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元······,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、F 共线解决之。
齐次化法与点乘双根法
冯连福
【期刊名称】《中学生数理化(高二数学、高考数学)》
【年(卷),期】2024()8
【摘要】解析几何数学运算能力是指在明确运算对象(直线、圆、圆锥曲线等)的基础上,依据运算法则解决数学问题的能力,其中包括能对运算步骤、推理程序进行简化和优化的能力。
因此,同学们要在明确运算对象的基础上,找准切入点,优化解题路径。
如何提高解析几何运算能力呢? 下面把齐次化法与点乘双根法作为重要的优化解题路径的策略介绍给同学们。
【总页数】5页(P34-38)
【作者】冯连福
【作者单位】郑州市第一〇一中学
【正文语种】中文
【中图分类】G63
【相关文献】
1."化齐次构造二次函数法"在解一类不等式最值中的妙用
2.用化齐次法简证几道不等式
3.齐次化法在求解最值问题中的应用
4.利用“齐次化法”求多元函数最值问题
5.“齐次化”法在圆锥曲线问题中的应用
因版权原因,仅展示原文概要,查看原文内容请购买。
第11讲 点乘双根法知识与方法在计算两个向量的数量积(即点乘)时,会遇到 (x 1−x 0)(x 2−x 0)+(y 1−y 0)(y 2−y 0)的结构, 常规 方法是将它展开, 再结合韦达定理化简整理,也可以利用“点乘双根法”进行整体处理, 达到简化运算, 快速解题的目的.1.方法介绍所谓的“点乘双根法”, 是指构建双根式,整体处理含 或 (x 1−x 0)(x 2−x 0)(y 1−y 0) 等类似结构的计算问题.(y 2−y 0)2.理论基础二次函数 的双根式. 若一元二次方程 f (x )=ax 2+bx +c ax 2+bx +c =0(a ≠0)有两根 , 则, 取 , 可得 x 1,x 2f (x )=a (x−x 1)(x−x 2)x =x 0f (x 0)=a (x 1−x 0)(x 2−x 0).3.适用类型, 或 等形式.x 1x 2, y 1y 2,(x 1−m )(x 2−m ),(y 1−m )(y 2−m )PA ⋅PB 4.解题步骤化双根式 赋值 整体代入.→→典型例题下面以一个例题来说明点乘双根法的解题步骤.【例1】 已知点 是拋物线 上一定点, 以M (x 0,y 0)y 2=2px (p >0)M 为直角顶点作该抛物线的内接直角三角形 , 则动直线 过定点 △MAB AB .(x 0+2p,−y 0)【证明】设 , 由 , 得 A (x 1,y 1),B (x 2,y 2)MA ⋅MB =0(x 1−x 0)(x 2−x 0)+(y 1−y 0)(y 2−y 0)=0(∗)显然直线 不与 轴平行,设其方程为 .AB x x =my +t 步骤 1: 化双根式联立 , 得 , 方程两根为 , 则 {y 2=2px x =my +ty 2−2pmy−2pt =0y 1,y 2(y 1−y )(y 2−y )=y 2−2pmy (1)−2pt 联立 , 得, 则 {y 2=2px x =my +t x 2−(2t +2m 2p )x +t 2=0(x 1−x )(x 2−x )=x 2−(2t +2m 2p )x +t 2(2)步骤 2: 赋值在(1)中, 令 , 则 (4)y =y 0(y 1−y 0)(y 2−y 0)=y 20−2pmy 0−2pt 在(2)中, 令 , 则 (5)x =x 0(x 1−x 0)(x 2−x 0)=x 20−(2t +2m 2p )x 0+t 2步骤 3: 整体代入即 ,t 2−(2p +2x 0)t +x 20−m 2y 20+y 20−2pmy 0=0即 ,[t−(x 0−my 0)]⋅[t−(x 0+my 0+2p )]=0所以 或 ,t =x 0−my 0t =x 0+my 0+2p 情形一:当 , 即 时, 说明点 在直线 上, 不合题意;t =x 0−my 0x 0=my 0+t M AB 情形二:当 , 即 时, 直线 过定点 t =2p +x 0+my 0x 0+2p =m (−y 0)+t x =my +t .(x 0+2p,−y 0)综上所述:直线 恒过定点 .AB (x 0+2p,−y 0)通过本例可以看到,利用点乘双根法处理这类问题时,看起来式子仍然不少, 实际上运算量已经減少了很多.【例2】 设椭圆中心在原点 , 长轴在 轴上,上顶点为 , 左右顶点分别为 O x A F 1,F 2,线段 中点分别为 , 且 是面积为 4 的直角三角形.OF 1,OF 2B 1,B 2△AB 1B 2(1) 求椭圆的方程;(2) 过 作直线 交椭圆于 两点, 使 , 求直线 的方程.B 1l P ,Q PB 2⊥QB 2l【解析】(1)设所求椭圆的标准方程为 , 右焦点为 .x 2a 2+y 2b 2=1(a >b >0)F 2(c ,0)因为 是直角三角形, 又 , 故 为直角, 因此 ,△AB 1B 2|AB 1|=|AB 2|∠B 1AB 2|OA |=|OB 2|得 .b =c2 结合 c2=a 2−b 2 得 4b 2=a 2−b 2, 故 a 2=5b 2,c 2=4b 2 , 所以离心率 e =在 中, , 故 2Rt ABB ∆12OA B B ⊥22,1221||||22MBB B cS B B OA OB OA b b =⋅=⋅=⋅=由题设条件 , 得 , 从而 .2,4AB B S ∆=24b =22520a b ==因比, 所求椭圆的标准方程为 ;221204x y +=(2) 显然直线 不与 轴垂直,设 的方程为 ,l x l ()()1122(2),,,,y k x P x y Q x y =+因为 , 则 ,22PB QB ⊥220PB QB ⋅=所以 ()()()()()()2112212122,2,022220(*)x y x y x x k x x -⋅-=⇒--+++=联立 22222(2)5(2)2001204y k x x k x x y =+⎧⎪⇒++-=⎨+=⎪⎩因为 是方程的两根, 所以 ,12,x x ()()()2222125(2)2015x k x k x x xx ++-=+--令 , 得 ,2x =()()()()()2221212280164802015222215k k k x x x x k -+-=+--⇒--=+令 , 得 ,2x =-()()()()()21212216402015222215k x xx x k -+-=+++⇒++=+代入 (*), 得,22280161601515k k k --+=++化简可得: , 所以 ,22221801616064164k k k k --=⇒=⇒=12k =±故直线 方程为: .l 1(2)2y x =±+【例3】 设 分别为椭圆 的左、右顶点, 过左焦点 且斜率为 ,A B 22132x y +=F 的直线与椭圆交于 两点. 若 , 求 的值.k ,C D 8AC DB AD CB ⋅+⋅=k 【答案】 k =【解析】设点 , 由 得直线 的方程为 ()()1122,,,C x y D x y (1,0)F -CD (1)y k x =+,由方程组 , 消去 , 整理得 .22(1)12y k x y x =+⎧⎪⎨+=⎪⎩y ()2222236360k x k x k +++-=由韦达定理可得 .22121222636,2323k k x x x x k k -+=-=++因为,(A B 所以AC DB AD CB⋅+⋅()()11222211,,x y x y xy x y =+⋅-+⋅--1212622x x y y =--()()2121262211x x k x x =--++8=由 , 得 .8AC DB AD CB ⋅+⋅=()()21212111x x k x x +++=-因为 是方程 的两根, 所以12,x x ()2222236360k x k x k +++-=()()()()()()()2222221212236362323k xk x k k x x x x k x x xx +++-=+--=+--令 , 则 , 所以 0x =()22123623k kx x -=+21223623k x x k -=+令 , 则 1x =-()()()()222212236362311k k k k x x+-+-=+++所以 ()()12241123x x k ++=-+因为 ,()()21212111x x k x x +++=-所以 , 解得222223641,22323k k k k k--=-=++k =【例4】设 为曲线 上两点, 与 的横坐标之和为 4 .,A B 2:4x C y =A B (1) 求直线 的斜率;AB(2) 设 为曲线 上一点, 在 处的切线与直线 平行, 且 , M C C M AB AM BM ⊥求直线 的方程.AB 【答案】 (1) 1; (2) 7y x =+【解析】(1) 设 , 则 ()()1122,,,A x y B x y 2212121212,,,444x x x x y y x x ≠==+=于是直线 的斜率 .AB 12121214y y x x k x x -+===-(2) 由 , 得 .24x y =2x y '=设 , 由題设知, 解得 , 于是 ()33,M x y 312x =32x =(2,1)M 因为 , 所以 , 即 .AM BM ⊥0MA MB ⋅=()()()()121222110x x y y --+--=设直线 的方程为 , 因为点 在直线 上,AB y x m =+,A B AB 所以 ,1122,y x m y x m =+=+所以 .()()()()121222110x x x m x m --++-+-=由 得 . 由 , 得 .24y x m x y =+⎧⎪⎨=⎪⎩2440x x m --=16(1)0m ∆=+>1m >-()()21244x x m x x x x --=--在 式中, 令 , 得 (1)2x =()()212242422m x x -⨯-=--在(1)式中, 令 , 得 1x m =-()()212(1)4(1)411m m m x m x m --⨯--=+-+-∴()()()()12122211x x x m x m --++-+-,222424(1)4(1)40m m m m =-⨯-+--⨯--=解得 , 或 (舍), 所以直线 的方程为 .7m =1m =-AB 7y x =+强化训练1. 椭圆 , 若直线 与椭圆 交于 两点 22:143x x C +=:l y kx m =+C ,A B (,A B 不是左右顶点), 且以直线 为直径的圆恒过椭圆 的右顶点. 求证:直线AB C 恒过定点, 并求出该点的坐标.l【答案】 2,07⎛⎫⎪⎝⎭【解析】设椭圆的右顶点为 ,()()1122(2,0),,,,C A x y B x y 则 ()()1212220,(*)CA CB x x y y ⋅=--+=联立 , 整理得: ,22143x y y kx m ⎧+=⎪⎨⎪=+⎩()()222348430k x mkx m +++-=因为 是方程 的两个根, 所以12,x x ()()222348430k x mkx m +++-=()()()()()2222123484334(1)k xmkx m k x x x x +++-=+--取 , 得 ,2x =()()()()()2221243416433422k mk m k x x +++-=+--所以 (2).()()22122161642234k mk m x x k++--=+取 , 并两边同时乘以 , 可得 m x k =-2k 2221212231234m m m k y y k x x k k k -⎛⎫⎛⎫=++= ⎪⎪+⎝⎭⎝⎭(3).将(2和(3)整体代入 (*), 得,2222221616431203434k mk m m k k k ++-+=++即 , 即 或 ,2241670k mk m ++=(72)(2)0,2m k m k m k ++=∴=-27m k =-当 时, 直线 过点 , 不合题意;2m k =-:(2),l y kx m k x l =+=-(2,0)C 当 时, 直线 , 显然 恒过定点 .27m k =-2:7l y kx m k x ⎛⎫=+=- ⎪⎝⎭l 2,07⎛⎫⎪⎝⎭2. 已知椭圆 的右焦点为 , 过 且与2222:1(0)x y E a b a b+=>>(1,0)F F x 轴垂直的弦长为 3 .(1) 求椭圆标准方程;(2) 直线 过点 与满圆交于 两点, 问 轴上是否存在点 , 使 l F ,A B x P PA PB ⋅为定值?若存在, 求出 的坐标; 若不存在, 说明理由.P【答案】 (1) ; (2) 见解析22143x y +=【解析】 (1)易得椭圆标准方程为 ;22143x y +=(2) 当直线 的斜率存在时, 设为 , 则直线 的方程为 ,l k l (1)y k x =-设 , 则()()1122(,0),,,,P m A x y B x y ()()()22221234(1)1234x k x k x x x x +--=+--(1).()()1122,,,PA x m y PB x m y =-=-()()()()()()21212121211(2)PA PB x m x m y y x m x m k x x ⋅=--+=--+--在(1)中令 , 得 , (3)x m =()()22212234(1)1234m k m x m x m k+----=+在(1)中令 , 得 , (4)1x =()()12291134x x k ---=+把(3)4代入(2)并整理得()()22224(1)931243m k m PA PB k --+-⋅=+ 所以, 得 , 此时 .()224(1)931243m m---=118m =13564PA PB ⋅=- 当直线 的斜率不存在时, , 仍有 .l 33111,,1,,,0228A B P ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13564PA PB ⋅=- 综上所述, 的坐标为 .P 11,08P ⎛⎫⎪⎝⎭3. 已知椭圆2222:1(0)x y E a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点, 直线 与椭圆 有且只有一个公共点 .:3l y x =-+E T (1) 求椭圆 的方程及点 的坐标;E T (2) 设 是坐标原点, 直线 平行于 , 与椭圆 交于不同的两点 , O l OT E ,A B 且与直线 交于点 . 证明: 存在常数 , 使得 , 并求 l P λ2||||||PT PA PB λ=⋅λ的值.【答案】 (1) (2) ,(2,1);45λ=【解析】 (1) , 点 坐标为 , 过程路.22163x y +=T (2,1)(2) 由已知可设直线 的方程为 ,l 1(0)2y x m m =+≠由方程组 可得 1,23y x m y x ⎧=+⎪⎨⎪=-+⎩223213m x m y ⎧=-⎪⎪⎨⎪=+⎪⎩所以 点坐标为 , 设点 的坐标分别为, P 222282,1,||339m m PT m ⎛⎫-+= ⎪⎝⎭,A B ,()()1122,,,A x y B x y 由方程组 , 可得 (1)2216312x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩()22344120x mx m ++-=而 是 的两根, 所以12,x x ()22344120x mx m ++-= (2)()()()2212344123x mx m x x x x ++-=--方程(2)的判别式为 , 由 , 解得 .()21692m ∆=-0∆>m <<由(2)得 212124412,33m m x x x x -+=-=所以1122||233m m PA x x ==-=-同理, 所以22||3m PB x =-1252222433m m PA PB x x ⎛⎫⎛⎫=----⎪⎪⎝⎭⎝⎭②中令,得223mx =-得()2212222232424123223333m m m m m m x x ⎛⎫⎛⎫⎛⎫⎛⎫-+-+-=---- ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭得 21222822339m m x x m ⎛⎫⎛⎫----= ⎪⎪⎝⎭⎝⎭,故存在,使得2109PA PB m =54λ=2||||||.{PT PA PB λ=⋅。
圆锥曲线的解题技巧三、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法)入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 过A (2,1) 的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P典型例题 设P(x,y)(1)求证离心率βαβαsin sin )sin(++=e ; (2 (3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题 (1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
(4)圆锥曲线的相关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。
<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。
<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。
(1),可以设法得到关于a的不等式,通过解不等式求出a的范围,即:“求范围,找不等式”。
圆锥曲线知识总结1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段F F,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|F F|,定义中的“绝对值”与<|F F|不可忽视。
若=|F F|,则轨迹是以F,F为端点的两条射线,若﹥|F F|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。
例题讲解:①已知定点,在满足下列条件的平面上动点P的轨迹中是椭圆的是( )A. B.C. D.();②方程表示的曲线是__ __已知点及抛物线上一动点P(x,y),则y+|PQ|的最小值是_____2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在轴上时()(参数方程,其中为参数),焦点在轴上时=1()。
方程表示椭圆的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)(2)双曲线:焦点在轴上: =1,焦点在轴上:=1()。
方程表示双曲线的充要条件是什么?(ABC≠0,且A,B异号)。
(3)抛物线:开口向右时,开口向左时,开口向上时,开口向下时。
例题讲解:①已知方程表示椭圆,则的取值范围为____②若,且,则的最大值是____,的最小值是___(①双曲线的离心率等于,且与椭圆有公共焦点,则该双曲线的方程_______②设中心在坐标原点,焦点、在坐标轴上,离心率的双曲线C过点,则C的方程为_______3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。
第一章:规定动作1.规定动作之联消判韦(2013天津卷改编)已知,A B 是椭圆22132x y +=的左、右顶点,F 为该椭圆的左焦点,过点F 且斜率为k 的直线与椭圆交于,C D 两点。
若8AC DB AD CB ⋅+⋅=,求k 的值.2. 联消判韦之速算判别式(2018全国3卷改编)已知斜率为k 的直线l 与椭圆22:143x y C +=交于,A B 两点,线段AB 中点D 的横坐标为1,求证:1||2k >.(2015江苏卷改编)已知椭圆2212x y +=的右焦点为F ,直线l 的方程为2x =-,过点F 的直线与椭圆交于,A B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点,P C ,若2PC AB =,求直线AB 的方程。
4.联消判韦之直线的设法: x 型还是y 型(2012北京文改编)已知椭圆22142x y +=的右顶点为A ,直线()1y k x =-与椭圆交于不同的两点,M N .当三角形AMN 的面积为3时,求k 的值.(2013陕西文改编)已知椭圆22:143x y C +=,过点()0,3P 的直线l 与椭圆C 交于,A B 两点,若A 是PB 的中点,求直线l 的斜率.6.传说中的点乘双根式(2012重庆理改编)已知椭圆221204x y +=,12(2,0),(2,0)B B -,过1B 的直线l 交椭圆于,P Q 两点,且22PB QB ⊥,求直线l 的方程.7.不对称处理第0招:假的不对称,整体就对称已知椭圆22:33C x y +=.过点()1,0D 且不过()2,1E 的直线与椭圆C 交于,A B 两点,直线AE 与直线3.x M =交于点试判断直线BM 与直线DE 的位置关系,并说明理由.8.不对称处理第1招:硬凑韦达(2011四川理改编)椭圆有两顶点()()1,0,1,0,A B -过其焦点()0,1F 的直线l 与椭圆交于,C D 两点,并与x 轴交于点P 。
浅谈“双根法”在高考圆锥曲线大题的运用四川泸州 黄忠海首先,一起回忆一下在初中我们已经学习过一元二次方程有三种形式 一般式:()200ax bx c a ++=≠ 顶点式:()()200a x h k a -+=≠交点式(双根式):()()()1200,0a x x x x a --=≠≥为我们介绍双根法出场作一下铺垫。
对于圆锥曲线大题第二问许多同学感觉最大的麻烦就是运算量大,成为其绊脚石难以做下去,甚至很多老师在平时的教学中教教同学们联立直线与圆锥曲线方程再使用韦达定理得一点步骤分也就知足了。
所以,在高考有限的时间里能否简化运算量就成其关键,那有没有什么好方法能简化运算量呢?下面就给大家分享双根法(大招)在高考圆锥曲线中的运用。
2012年重庆卷(文科)如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为12,F F ,线段12,OF OF 的中点分别为12,B B ,且12AB B ∆是面积为4的直角三角形. (Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过点1B 作直线l 交椭圆于M,N 两点,22MB NB ⊥,求直线l 的方程. 理科:(Ⅱ)过1B 作直线l 交椭圆于M,N 两点,22MB NB ⊥,求直线2PB Q 的面积.(Ⅰ)易求椭圆方程为221204x y+= (Ⅱ)方法1:(大联立)略(过程多,海哥编辑麻烦) 分情况设出直线l 的方程再使用韦达定理评析:此法乃通法,但运算繁琐.方法2:(大联立)点()12,0B -,设点()11,M x y ,()22,N x y ,直线l 的方程为2x my =-联立直线l 与椭圆的方程有2212042x y x my ⎧+=⎪⎨⎪=-⎩⇒()2254160m y my +--=由韦达定理有12212245165m y y m y y m ⎧+=⎪⎪+⎨-⎪=⎪+⎩,又22MB NB ⊥ 220B M B N ∴⋅=即:()()1212220x x y y --+=()()1212440my my y y ⇒--+=()()2121241160m y y m y y ∴-++++= ()22221611616055m mm m -+-∴++=++24m ∴= 即:2m =±评析:①设直线l 的方程为横截式从而避免讨论斜率不存在的情况达到简化运算的目的;②联立直线与圆锥曲线方程再使用韦达定理.方法3:(大招双根法)显然当直线l 垂直于x 轴时不满足题意点()12,0B -,设点()11,M x y ,()22,N x y ,直线l 的方程为()2y k x =+,联立直线l 与椭圆的方程有()2212042x y y k x ⎧+=⎪⎨⎪=+⎩ ⇒()22252200x k x ++-=12,x x 是方程()22252200x k x ++-=的两根∴()()()()222212522015x k x kx x x x ++-=+-- (*)又22MB NB ⊥,220B M B N ∴⋅= ⇒()()1212220x x y y --+=即:()()()()2121222220x x k x x --+++=在(*)中用2替换x 有 ()()212216802215k x x k -+--=+在(*)中用2-替换x 有 ()()122162215x x k -++=+∴222216801601515k k k k -+-+=++ ⇒ 214k = 即:12k =± 所以直线l 的方程为:()122y x =±+.评析:①使用双根法整体代换避免使用韦达定理带来的繁琐运算;②当然双根法不是万能的,在什么情况使用双根法这是关键,主要解决数量积为定值情况. 最后给大家一道高考题练习一下双根法的使用练习题:(2013年天津卷)已知椭圆方程为22132x y+=,,A B是椭圆的左右顶点,过左焦点F且斜率为k的直线l与椭圆相交于C,D两点,若8AC DB AD CB⋅+⋅=,求k的值.。
齐次化妙解圆锥曲线题型1定点在原点的斜率问题题型2定点在原点转化成斜率问题题型3定点不在原点之齐次化基础运用题型4定点不在原点的斜率问题题型5定点不在原点转化为斜率问题题型6定点不在原点之二级结论第三定义的使用题型7齐次化妙解之等角问题题型8点乘双根法的基础运用题型9点乘双根法在解答题中的运用题型1定点在原点的斜率问题圆锥曲线的定义、定值、弦长、面积,很多都可以转化为斜率问题,当圆锥曲线遇到斜率之和或者斜率之积,以往我们的常用解法是设直线y=kx+b,与圆锥曲线方程联立方程组,韦达定理,再将斜率之和或之积的式子通分后,将x1+x2和x1⋅x2代入,得到关于k、b的式子.解法不难,计算量较为复杂.如果采用齐次化解决,直接得到关于k的方程,会使题目计算量大大减少.“齐次”即次数相等的意思,例如f x =ax2+bxy+cy2称为二次齐式,即二次齐次式的意思,因为f x 中每一项都是关于x、y的二次项.如果公共点在原点,不需要平移.1直线mx+ny=1与抛物线y2=4x交于A x1 , y1,求k OA+k OB , k OA⋅k OB.(用m , n表 , B x2 , y2示)1直线mx+ny=1与椭圆x24+y23=1交于A x1 , y1 , B x2 , y2,求k OA⋅k OB(用m , n表示).2抛物线y2=4x,直线l交抛物线于A、B两点,且OA⊥OB,求证:直线l过定点.3不过原点的动直线交椭圆x24+y23=1于A、B两点,直线OA、AB、OB的斜率成等比数列,求证:直线l的斜率为定值.4已知直线y=kx+4交椭圆x24+y2=1于A,B两点,O为坐标原点,若k OA+k OB=2,求该直线方程.5设Q1,Q2为椭圆x22b2+y2b2=1上两个动点,且OQ1⊥OQ2,过原点O作直线Q1Q2的垂线OD,求D的轨迹方程.题型2定点在原点转化成斜率问题圆锥曲线齐次化原理是:过程中为了式子整齐好记,所以将它齐次化。
圆锥曲线向量点乘知识讲解一、相关向量知识点1.三点共线: ①;②存在实数,使;③若存在实数,且,使. 2.给出,等于已知,即是直角; 给出,等于已知是钝角, 给出,等于已知是锐角.3.给出,等于已知是4.在中,给出垂心是三角形三条高的交点).5.如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行转化,还是选择向量的代数形式进行转化.二、垂直与角度1.垂直以AB 为直径的圆过原点O 121200OA OB x x y y ⇔⋅=⇔+=2212121212()()()y y kx m kx m k x x km x x m =++=+++ 21222221kmb x x ka b+=-+ 故222222222121212122222222(1)(1)0(1)()11m k m k b b x x y y k x x km x x m m k k a b a b +-=+=++++=-+++ A B C ,,//AB AC λAB AC λ=αβ,1αβ+=OC OA OB αβ=+0MA MB ⋅=MA MB ⊥AMB ∠0MA MB ⋅<AMB ∠0MA MB ⋅>AMB ∠MA MB MP MA MB λ⎛⎫⎪+= ⎪⎝⎭MP ∠ABC △OA OB OB OC OC OA ⋅=⋅=⋅两边同时乘以2221k a b+,整体处理得222222222221(1)(1)()0m k m k k m b b a b+--++= 消去高次项222k m b得2222210m m k b a --+=即找了,,,a b m k 的关系式. 推广:以AB 为直径的圆过焦点1F1112120()()0F A F B x c x c y y ⇔⋅=⇔+++=⇔可以看得出,同样可以采用整体法处理.2.角度问题成锐角或钝角原点O 在以AB 为直径的圆内0OA OB x ⇔⋅<⇔易得2222210m m k b a--+<原点O 在以AB 为直径的圆外易得2222210m m k b a--+>121200OA OB x x y y ⇔⋅>⇔+>经典例题一.选择题(共8小题)1.(2018•呼伦贝尔一模)设坐标原点为O,抛物线y2=2x与过焦点的直线交于A、B两点,则等于()A.B.﹣C.3 D.﹣32.(2018•保山二模)P为双曲线C:>上一点,F1,F2分别为双曲线的左、右焦点,∠F1PF2=60°,则|PF1||PF2|的值为()A.6 B.9C.18 D.363.(2018•新课标Ⅰ)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5 B.6C.7 D.84.(2018•全国)过抛物线y2=2x的焦点且与x轴垂直的直线与抛物线交于M、N 两点,O为坐标原点,则•=()A.B.C.﹣D.﹣5.(2018•潍坊二模)设P为双曲线右支上一点,F1,F2分别为该双曲线的左右焦点,c,e分别表示该双曲线的半焦距和离心率.若,直线PF2交y轴于点A,则△AF1P的内切圆的半径为()A.a B.bC.c D.e6.(2018•新华区校级模拟)若焦点为F,准线为l的抛物线C:x2=2py(p>0)上一点A(点A在第一象限),过点A作直线AA1⊥l,垂足为A1,三角形AA1F 是等边三角形,且三角形AA1F的面积为4,过点A作互相垂直的直线AM,AN分别交抛物线C于M,N两点,点P在直线MN上,且=0,点P的轨迹为()A.抛物线B.圆C.椭圆D.双曲线7.(2018•安阳一模)已知F1,F2分别是椭圆>>的左、右焦点,P为椭圆上一点,且(O为坐标原点),若,则椭圆的离心率为()A.B.C.D.8.(2018•遂宁模拟)已知P是双曲线﹣y2=1上任意一点,过点P分别作曲线的两条渐近线的垂线,垂足分别为A、B,则•的值是()A.﹣B.C.﹣D.不能确定二.填空题(共4小题)9.(2018•三明模拟)已知圆C1:(x﹣2)2+y2=4和抛物线C2:y2=2x,点P是C1与C2在第一象限的交点,F为抛物线C2的焦点,则=.10.(2018•凉山州模拟)在△ABC中,a、b、c为角A、B、C所对的边,若=(a+c,﹣b),=(a﹣c,b),且•=bc,则A=.11.(2018•亭湖区校级模拟)已知F1(﹣c,0),F2(c,0)为椭圆+=1(a >b>0)的两个焦点,P为椭圆上一点且•=c2,则此椭圆离心率的取值范围是.12.(2018•乐山二模)如图,在△ABC中,cos=,•=0,•(+)=0,则过点C,以A、H为两焦点的双曲线的离心率为.三.解答题(共5小题)13.在椭圆+=1(a>b>0)上取一点,P与长轴两端点A、B的连线分别交短轴所在直线于M,N两点,设O为原点,求证:|OM|•|ON|为定值.14.已知椭圆的焦点分别为F1(﹣4,0),F2(4,0),离心率e=0.8.(1)求椭圆的标准方程;(2)在椭圆上是否存在点P,使•=0,若存在,求出坐标.15.(2015•江苏模拟)如图,椭圆(a>b>0)过点,,其左、右焦点分别为F1,F2,离心率,M,N是椭圆右准线上的两个动点,且.(1)求椭圆的方程;(2)求MN的最小值;(3)以MN为直径的圆C是否过定点?请证明你的结论.16.已知椭圆C:+=1(a>b>0)的离心率为,其左、右焦点分别为F1,F2,点P是坐标平面内一点,且||=,•=﹣1其中O为坐标原点.(1)求椭圆C的方程;(2)已知在第一象限内,横坐标为1的点M在椭圆上,经过点M的直线l′与椭圆有且仅有一个公共点,A,B是椭圆上的两个不同的动点,记直线AB,l′的斜率分别为k1,k2,若直线MA,MB的倾斜角互补,求证:k1+k2为定值,并求出这个定值.17.(2018•全国一模)已知椭圆:>>过抛物线M:x2=4y的焦点F,F1,F2分别是椭圆C的左、右焦点,且.(1)求椭圆C的标准方程;(2)若直线l与抛物线M相切,且与椭圆C交于A,B两点,求△OAB面积的最大值.。
圆锥曲线——点乘双根法
适用类型:类似21x x ,21y y ,))((21t x t x ++,))((21t y t y ++或||||,MB MA MB MA ⋅⋅(其中2121,,,y y x x 是直线与曲线的两个交点的横纵坐标,B A ,直线与曲线的两个交点)以及可转化为上述结构的问题
理论基础:二次函数的双根式,若一元二次方程)0(02
≠=++a c bx ax 的两根为21,x x ,则)
)((212x x x x a c bx ax --=++具体步骤:化双根式→赋值→变形代入
1.(2013天津)设椭圆)0(122
22>>=+b a b
y a x 的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为
334.(1)求椭圆的方程;
(2)设B A ,分别为椭圆的左,右顶点,过点F 且斜率为k 的直线与椭圆交于D C ,两点.若8=⋅+⋅CB AD DB AC ,求k 的值.
2.(2012重庆)如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为21,F F ,线段21,OF OF 的中点分别为21,B B ,且21B AB ∆是面积为4的直角三角形.
(1)求该椭圆的离心率和标准方程;
(2)过1B 作直线l 交椭圆于Q P ,两点,使22QB PB ⊥,求直线l 的方程.
3.(2014辽宁理)圆22
4x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22
122:1x y C a b
-=过点P 且离心率为3.(1)求1C 的方程;
(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于B A ,两点,若以线段AB 为直径的圆心过点P ,求l 的方程.
4.已知O 是坐标原点,若椭圆Γ:22221(0)x y a b a b +=>>的离心率为2
2,右顶点为P ,上顶点为Q ,OPQ ∆的面积为22.
(1)求椭圆Γ的标准方程;
(2)已知点)0,6(E ,N M ,为椭圆Γ上两动点,若有2-=⋅EN EM ,证明:直线MN 恒过定点.
5.已知点22,1(在椭圆)0(1:2222>>=+b a b
y a x C 上,椭圆离心率为22.(1)求椭圆C 的方程;
(2)过椭圆C 右焦点F 的直线l 与椭圆交于两点,A B ,在x 轴上是否存在点M ,使得MB MA ⋅为定值?若存在,求出点M 的坐标,若不存在,请说明理由.
6.(2014大纲)已知抛物线)0(2:2
>=p px y C 的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且5||||4
QF PQ =
.(1)求C 的方程;(2)过F 的直线l 与C 相交于B A ,两点,若AB 的垂直平分线l '与C 相交于N M ,两点,且N B M A ,,,四点在同一圆上,求l 的方程.
7.(2016四川)已知椭圆:E 22
221+=x y a b
(0a b >>)的一个焦点与短轴的两个端点是正
三角形的三个顶点,点1)2P 在椭圆E 上.
(1)求椭圆E 的方程;
(2)设不过原点O 且斜率为12
的直线l 与椭圆E 交于不同的两点B A ,,线段AB 的中点为M ,直线OM 与椭圆E 交于D C ,,证明:||||||||MD MC MB MA ⋅=⋅.
8.(2016四川理)已知椭圆)0(1:22
22>>=+b a b
y a x E 的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线3:+-=x y l 与椭圆E 有且只有一个公共点T .
(1)求椭圆E 的方程及点T 的坐标;
(2)设O 是坐标原点,直线l '平行于OT ,与椭圆E 交于不同的两点B A ,,且与直线l 交于点P ,证明:存在常数λ,使得2PT PA PB λ=⋅,并求λ的值.。