函数总复习题.doc
- 格式:doc
- 大小:411.02 KB
- 文档页数:7
函数复习题(一)1. 已知一次函数的图象经过点(1,-1)和点(-1,2)。
求这个函数的解析式。
2 一条直线过点A(0,3),B(2,0),求直线的解析式3 已知一次函数y=kx+b中,当x=1时,y=3,当x=-1时,y=7。
求这个函数的解析式。
且求当x=3时,y的值。
4 一次函数的图象经过点(2,1)和(1,5),求出它的解析式5 已知直线y=kx+b经过(9,0)和点(24,20),求这个函数的解析式6 已知直线y=kx+b经过点A(2,5)、(-3,0)。
求这个函数的解析式7 已知一次函数y=kx+b,当x=0时,y=1;当x=1时,y=-1。
求这个函数的解析式8 已知一次函数的图像过点(3,5)与(-4,-9),求这个一次函数的解析式9 某个一次函数的图象分别过点(3,5)和(-4,-9),求这个一次函数的解析式10 已知一次函数y=kx+b ,图像经过点A(2,4),B(0,2)两点,且与x 轴交于点C 。
(1).求这个函数的解析式。
(2).求三角形AOC 的面积11 已知直线L 的图象,能否求出它的解析式?12 如图所示,直线l 是一次函数的图象. (1) 求这个函数的解析式; (2) 当x =4时,y 的值为多少?13 如图,在平面直角坐标系中,已知长方形OABC 的两个顶点坐标为A (3,0),B (3,2),对角线AC 所在的直线为l ,求直线l 的解析式.14 已知一次函数的图象如图所示,求出它的函数关系15 若点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,求m的值16 若点A(6,-1)、B(1,4)、C(2,m)在一条直线上,则m的值为17 已知点(3,5)、(m,9)、(-4,-9)在同一直线上,(1)求经过以上三点的直线解析式(2)求m的值18 已知一次函数 y=kx+2,当x=5时,y的值为4,求k的值。
19 一次函数y=k x+b的图象过点(1,-1),且与直线y=—2x+5平行,则此一次函数的解析式20 一个一次函数平行于y=2x,且过点(1,5),求其解析式。
指数函数总复习【知识点回顾】一、指数与指数幂的运算 (1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n 是偶数时,正数a 的正的n n 次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.n a =;当n a =;当n 为偶数时, (0)|| (0) a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +⋅=>∈②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈ 二、指数函数及其性质 (4)指数函数定义域R值域(0,+∞)过定点图象过定点(0,1),即当x=0时,y=1.奇偶性非奇非偶单调性在R上是增函数在R上是减函数函数值的变化情况y>1(x>0), y=1(x=0), 0<y<1(x<0)y>1(x<0), y=1(x=0), 0<y<1(x>0)a变化对图象的影响在第一象限内,a越大图象越高,越靠近y轴;在第二象限内,a越大图象越低,越靠近x轴.在第一象限内,a越小图象越高,越靠近y轴;在第二象限内,a越小图象越低,越靠近x轴.【考点链接】考点一、指数的运算xay=xy(0,1)O1y=xay=xy(0,1)O1y=例1.化简:1114424111244()a b b a a b --=- .例2. 根据下列条件求值:已知32121=+-xx ,求23222323-+-+--x x x x 的值;练习1:计算:(1)1020.5231(2)2(2)(0.01)54--+⋅-(2)120.750311(0.064)()16()2322----÷+-.(3) 2433221)(---⋅÷⋅a b b a(4)211511336622263a b a b a b ⎛⎫⎛⎫⎛⎫-÷- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭考点二、定义域例3. 求下列函数的定义域:21(1).2-=x y 31(2).3-⎛⎫= ⎪⎝⎭xy练习2.求下列函数的定义域:(1)1x 21y ()2-= (2)2x 3y 5-=考点三、值域例4. 函数11x x e y e -=+的值域练习3、(1)求函数2(0)21xxy x =>+的值域.(2)求下列函数的定义域、值域: (1)1218x y -= (2)11()2x y =-(3)3x y -=考点四、指数型函数例5. 已知函数3234+⋅-=x x y 的定义域为[0,1],则值域为 。
必修1根本初等函数复习题求函数的定义域时列不等式组的主要依据是:⑴偶次方根的被开方数不小于零;(2)对数式的真数必须大于零;⑶分式的分母不等于零;[4〕指数、对数式的底必须大于零且不等于1.4、函数单调区间与单调性的判定方法(八)定义法:①任取xι,X 2∈D,且XKX2;Q)作差千(xι)—fa);(3)变形〔通常是因式分解和配方];④定号[即判断差千(x∣)-f(x2)的正负〕;@下结论[指出函数f(x)在给定的区间D 上的单调性].(B)图象法(从图象上看升降)⑹复合函数的单调性:复合函数Hg"]的单调性与构成它的函数u=g(x),y 二人。
的单调性密切相关,其规律:"同增异减〃 1、以下函数中,在区间(0,÷oo)不是增函数的是()1、暴的运算性质 〔1〕a r ∙a s = a r+s (r,5 ∈ R); 〔3〕a r ∙b r = (ab)r (r ∈ R) 2对数的运算性质 如果 α>0,且 awl, M >0, ① Iog“(M ・N)= Iogq M +log” N ; ③ IOg“M" =〃Iog"M,(Y ∈R). 换底公式:log” b = l°g 。
■ 〔 a IogC α(1)log b n= —log rt ⅛ ; [2 〃7 〔2〕S)' =α" ; (r,StR)(4)a" =yja n, (a>0,m,n E N ∖n> 1) a' = N Q IOga N = x N>0,那么:② log 噂=log” M Tog” N ;④ IOgQl= O, bg" = lO,且 awl ; c>0,且 CW1; b>0〕 log” b =; ---- ∙log/y = a x a>1 0<a<1 y = Iog tj X a>1 II0<a<1定义域R 值域y>0 在R 上单调递增 非奇非偶函数 函数图象都过定点[0, 1〕 3、定义域: 定义域R 值域y>0 在R 上单调递减 非奇非偶函数 函数图象都过定点〔〕 定义域x>0 值域为R在R 上递增 非奇非偶函数 函数图象都过定点定义域x>0值域为R 在R 上递减 非奇非偶函数 函数图象都过定点[1, 能使函数式有意义的实数X 的集合称为函数的定义域。
高中数学函数专题复习2.1 映射与函数、函数的解析式一、选择题:1.设集合}21|{≤≤=x x A ,}41|{≤≤=y y B ,则下述对应法则f 中,不能构成A 到B 的映射的是( ) A .2:x y x f =→ B .23:-=→x y x fC .4:+-=→x y x fD .24:x y x f -=→2.若函数)23(x f -的定义域为[-1,2],则函数)(x f 的定义域是( ) A .]1,25[--B .[-1,2]C .[-1,5]D .]2,21[3,设函数⎩⎨⎧<≥-=)1(1)1(1)(x x x x f ,则)))2(((f f f =() A .0B .1C .2D .24.下面各组函数中为相同函数的是( ) A .1)(,)1()(2-=-=x x g x x fB .11)(,1)(2-+=-=x x x g x x fC .22)1()(,)1()(-=-=x x g x x f D .21)(,21)(22+-=+-=x x x g x x x f5. 已知映射f :B A →,其中,集合{},4,3,2,1,1,2,3---=A 集合B 中的元素都是A 中元素在映射f 下的象,且对任意的,A a ∈在B 中和它对应的元素是a ,则集合B 中元素的个数是( ) (A) 4 (B) 5 (C) 6 (D) 77.已知定义在),0[+∞的函数⎩⎨⎧<≤≥+=)20()2( 2)(2x xx x x f若425)))(((=k f f f ,则实数=k2.2函数的定义域和值域1.已知函数xxx f -+=11)(的定义域为M ,f[f(x)]的定义域为N ,则M ∩N= .2.如果f(x)的定义域为(0,1),021<<-a ,那么函数g(x)=f(x+a)+f(x-a)的定义域为 . 3. 函数y=x 2-2x+a 在[0,3]上的最小值是4,则a= ;若最大值是4,则a= . 4.已知函数f(x)=3-4x-2x 2,则下列结论不正确的是( )A .在(-∞,+∞)内有最大值5,无最小值,B .在[-3,2]内的最大值是5,最小值是-13C .在[1,2)内有最大值-3,最小值-13,D .在[0,+∞)内有最大值3,无最小值5.已知函数1279,4322+--=-+=x x x y x x y 的值域分别是集合P 、Q ,则( )A .p ⊂QB .P=QC .P ⊃QD .以上答案都不对6.若函数3412++-=mx mx mx y 的定义域为R ,则实数m 的取值范围是( )A .]43,0(B .)43,0( C .]43,0[ D .)43,0[ 7.函数])4,0[(422∈+--=x x x y 的值域是( )A .[0,2]B .[1,2]C .[-2,2]D .[-2,2]8.若函数)(},4|{}0|{113)(x f y y y y x x x f 则的值域是≥⋃≤--=的定义域是( )A .]3,31[ B .]3,1()1,31[⋃ C .),3[]31,(+∞-∞或 D .[3,+∞)9.求下列函数的定义域:①12122---=x x x y10.求下列函数的值域: ①)1(3553>-+=x x x y ②y=|x+5|+|x-6|③242++--=x x y④x x y 21-+= ⑤422+-=x x xy 11.设函数41)(2-+=x x x f .(Ⅰ)若定义域限制为[0,3],求)(x f 的值域; (Ⅱ)若定义域限制为]1,[+a a 时,)(x f 的值域为]161,21[-,求a 的值.2.3函数的单调性1.下述函数中,在)0,(-∞上为增函数的是( )A .y=x 2-2B .y=x3C .y=x --21D .2)2(+-=x y2.下述函数中,单调递增区间是]0,(-∞的是( )A .y=-x1B .y=-(x -1)C .y=x 2-2D .y=-|x |3.函数)(2∞+-∞-=,在x y 上是( )A .增函数B .既不是增函数也不是减函数C .减函数D .既是减函数也是增函数 4.若函数f(x)是区间[a,b]上的增函数,也是区间[b,c]上的增函数,则函数f(x)在区间[a,b]上是( )A .增函数B .是增函数或减函数C .是减函数D .未必是增函数或减函数5.已知函数f(x)=8+2x-x 2,如果g(x)=f(2-x 2),那么g(x) ( ) A.在区间(-1,0)上单调递减 B.在区间(0,1)上单调递减C.在区间(-2,0)上单调递减D 在区间(0,2)上单调递减6.设函数),2(21)(+∞-++=在区间x ax x f 上是单调递增函数,那么a 的取值范围是( )A .210<<aB .21>a C .a<-1或a>1 D .a>-27.函数),2[,32)(2+∞-∈+-=x mx x x f 当时是增函数,则m 的取值范围是( )A . [-8,+∞)B .[8,+∞)C .(-∞,- 8]D .(-∞,8]8.如果函数f(x)=x 2+bx+c 对任意实数t 都有f(4-t)=f(t),那么( )A .f(2)<f(1)<f(4)B .f(1)<f(2)<f(4)C .f(2)<f(4)<f(1)D .f(4)<f(2)<f(1)9.若函数34)(3+-=ax x x f 的单调递减区间是)21,21(-,则实数a 的值为 .10.(理科)若a >0,求函数)),0()(ln()(+∞∈+-=x a x x x f 的单调区间.2.4 函数的奇偶性1.若)(),()(12x f N n x x f n n 则∈=++是( )A .奇函数B .偶函数C .奇函数或偶函数D .非奇非偶函数2.设f(x)为定义域在R 上的偶函数,且f(x)在)3(),(),2(,)0[f f f π--∞+则为增函数的大小顺序为( ) A .)2()3()(->>-f f f π B .)3()2()(f f f >->-π C .)2()3()(-<<-f f f πD .)3()2()(f f f <-<-π3.如果f (x )是定义在R 上的偶函数,且在),0[+∞上是减函数,那么下述式子中正确的是( ) A .)1()43(2+-≥-a a f f B .)1()43(2+-≤-a a f fC .)1()43(2+-=-a a f f D .以上关系均不成立5.下列4个函数中:①y=3x -1,②);10(11log ≠>+-=a a xxy a且 ③123++=x x x y ,④).10)(2111(≠>+-=-a a a x y x且 其中既不是奇函数,又不是偶函数的是( )A .①B .②③C .①③D .①④6.已知f (x )是定义在R 上的偶函数,并满足:)(1)2(x f x f -=+,当2≤x ≤3,f (x )=x ,则f (5.5)=( )A .5.5B .-5.5C .-2.5D .2.57.设偶函数f (x )在),0[+∞上为减函数,则不等式f (x )> f (2x+1) 的解集是8.已知f (x )与g (x )的定义域都是{x|x ∈R ,且x ≠±1},若f (x )是偶函数,g(x )是奇函 数,且f (x )+ g(x )=x-11,则f (x )= ,g(x )= .9.已知定义域为(-∞,0)∪(0,+∞)的函数f (x )是偶函数,并且在(-∞,0)上是增函数,若f (-3)=0,则不等式)(x f x<0的解集是 . 11.设f (x )是定义在R 上的偶函数,在区间(-∞,0)上单调递增,且满足f (-a 2+2a -5)<f (2a 2+a +1), 求实数a 的取值范围.2.7 .指数函数与对数函数1.当10<<a 时,aa aa a a ,,的大小关系是( ) A .aa aa a a >> B .a aa aa a>>C .aa a a aa>>D .aa aaa a >>2.已知()|log |a f x x =,其中01a <<,则下列不等式成立的是( ) A .11()(2)()43f f f >> B .11(2)()()34f f f >>C .11()()(2)43f f f >>D .11()(2)()34f f f >> 3.函数)2(x f y =的定义域为[1,2],则函数)(log 2x f y =的定义域为( )A .[0,1]B .[1,2]C .[2,4]D .[4,16]4.若函数)2,3()(log )(321---=在ax x x f 上单调递减,则实数a 的取值范围是( )A .[9,12]B .[4,12]C .[4,27]D .[9,27]6.若定义在(—1,0)内的函数)1(log )(2+=x x f a 满足)(x f >0,则a 的取值范围是 7.若1)1(log )1(<-+k k ,则实数k 的取值范围是 . 8.已知函数)1,0)(4(log )(≠>-+=a a xax x f a 且的值域为R ,则实数a 的取值范围是 .10.求函数)(log )1(log 11log )(222x p x x x x f -+-+-+=的值域. 12.已知函数)10)(1(log )1(log )(≠>--+=a a x x x f a a 且 (1)讨论)(x f 的奇偶性与单调性; (2)若不等式2|)(|<x f 的解集为a x x 求},2121|{<<-的值;2.8 .二次函数1.设函数∈++=a x a ax x x f ,(232)(2R )的最小值为m (a ),当m (a )有最大值时a 的值为( ) A .34B .43C .98D .89 2.已知0)53()2(,2221=+++--k k x k x x x 是方程(k 为实数)的两个实数根,则2221x x +的最大值为( )A .19B .18C .955D .不存在3.设函数)0()(2≠++=a c bx ax x f ,对任意实数t 都有)2()2(t f t f -=+成立,则函数值)5(),2(),1(),1(f f f f -中,最小的一个不可能是( )A .f (-1)B .f (1)C .f (2)D .f (5)4.设二次函数f (x ),对x ∈R 有)21()(f x f ≤=25,其图象与x 轴交于两点,且这两点的横坐标的立方和为19,则f (x )的解析式为5.已知二次函数12)(2++=ax ax x f 在区间[-3,2]上的最大值为4,则a 的值为6.一元二次方程02)1(22=-+-+a x a x 的一根比1大,另一根比-1小,则实数a 的取值范围是7.已知二次函数∈++=c b a c bx ax x f ,,()(2R )满足,1)1(,0)1(==-f f 且对任意实数x 都有)(,0)(x f x x f 求≥-的解析式. 8.a >0,当]1,1[-∈x 时,函数b ax x x f +--=2)(的最小值是-1,最大值是1. 求使函数取得最大值和最小值时相应的x 的值.9.已知22444)(a a ax x x f --+-=在区间[0,1]上的最大值是-5,求a 的值. 10.函数)(x f y =是定义在R 上的奇函数,当22)(,0x x x f x -=≥时,(Ⅰ)求x <0时)(x f 的解析式;(Ⅱ)问是否存在这样的正数a ,b ,当)(,],[x f b a x 时∈的值域为]1,1[ab ?若存在,求出所有的a ,b 的值;若不存在,说明理由.2.9 .函数的图象1.函数)32(-x f 的图象,可由)32(+x f 的图象经过下述变换得到( ) A .向左平移6个单位 B .向右平移6个单位 C .向左平移3个单位 D .向右平移3个单位2.设函数)(x f y =与函数)(x g y =的图象如右图所示,则函数)()(x g x f y ⋅=的图象可能是下面的( )4.如图,点P 在边长的1的正方形的边上运动,设M 是CD 边的中点,当P 沿A →B →C →M 运动时,以点P 经过的路程x 为自变量,APM ∆的面积为y ,则函数)(x f y =的图象大致是( ) 6.设函数)(x f 的定义域为R ,则下列命题中: ①若)(x f y =为偶函数,则)2(+=x f y 的图象关于y 轴对称; ②若)2(+=x f y 为偶函数,则)(x f y =的图象关于直线2=x 对称;③若)2()2(x f x f -=-,则)(x f y =的图象关于直线2=x 对称;④函数)2(-=x f y 与函数)2(x f y -=的图象关于直线2=x 对称. 则其中正确命题的序号是10.m 为何值时,直线m x y l +-=:与曲线182+-=x y 有两个公共点?有一个公共点?无公共点?3.0导数复习1、导数的几何意义/0()f x 是曲线)(x f y =上点()(,00x f x )处的切线的斜率因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为))(()(00/0x x x f x f y -=-注意:“过点A 的曲线的切线方程”与“在点A 处的切线方程”是不尽相同的,后者A 必为切点,前者未必是切点.(1)曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为 ( ).A 30°.B 45°.C 60° .D 12(2)已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为 ( ).A 1.B 2.C 3.D 4(3)过点()1,0-作抛物线21y x x =++的切线,则其中一条切线为( ).A 220x y ++=.B 330x y -+=.C 10x y ++=.D 10x y -+=(4)求过点()1,1P 且与曲线3y x =相切的直线方程:导数的应用.利用导数判断函数单调性及求解单调区间导数和函数单调性的关系: 一般的,设函数y=f(x)在某个区间内有导数,如果在这个区间内有f '(x)>0, 那么f(x)为这个区间内的增函数, 对应区间为增区间; 如果在这个区间内有f '(x)<0,那么f(x)为这个区间内的减函数,对应区间为减区间。
函数复习题及答案一、选择题1. 函数f(x) = 2x^2 + 3x - 5的图像关于哪条直线对称?A. x = -1B. x = 1C. x = 0D. x = 3答案: B2. 如果函数f(x) = x^3 - 2x^2 + x + 2的导数为0,那么x的值是多少?A. -1B. 0C. 1D. 2答案: C3. 函数g(x) = 1/x在区间(0, +∞)上的单调性是?A. 单调递增B. 单调递减C. 先递增后递减D. 先递减后递增答案: B二、填空题4. 函数h(x) = 4x^3 - 5x^2 + 2x + 1的极值点是______。
答案: x = 0 或 x = 5/45. 如果函数f(x) = sin(x) + cos(x)的最大值为√2,那么x的取值范围是______。
答案:[2kπ + π/4, 2kπ + 5π/4] (k ∈ Z)三、简答题6. 描述函数y = x^2在区间[-1, 1]上的性质。
答案:函数y = x^2在区间[-1, 1]上是单调递增的,且图像是一个开口向上的抛物线,顶点在原点。
7. 解释什么是函数的周期性,并给出一个周期函数的例子。
答案:函数的周期性是指函数值在某个固定的间隔内重复出现的性质。
例如,正弦函数sin(x)就是一个周期函数,它的周期是2π。
四、计算题8. 计算函数f(x) = 3x^2 - 4x + 5在x = 2时的值。
答案: f(2) = 3 * (2)^2 - 4 * 2 + 5 = 12 - 8 + 5 = 99. 求函数f(x) = x^3 - 6x^2 + 9x + 2的一阶导数和二阶导数。
答案:一阶导数:f'(x) = 3x^2 - 12x + 9二阶导数:f''(x) = 6x - 12五、证明题10. 证明对于任意实数x,函数f(x) = x^3 - 3x + 2的值总是大于0。
答案:首先求导f'(x) = 3x^2 - 3,令导数为0得到x = ±1。
高中数学函数专题复习2.1 映射与函数、函数的解析式1.不能构成A到B的映射的是哪个对应法则?设集合A={x|1≤x≤2},B={y|1≤y≤4},则不能构成A到B的映射的对应法则是:D。
f:x→y=4-x。
2.若函数f(3-2x)的定义域为[-1,2],则函数f(x)的定义域是什么?若函数f(3-2x)的定义域为[-1,2],则函数f(x)的定义域为:[-5/2,1]。
3.求f(f(f(2)))的值。
设函数f(x)=x-1(x≥1),f(f(f(2)))的值为:2.4.下面哪组函数是相同函数?下面相同函数的函数组是:C。
f(x)=(x-1)²。
g(x)=(x-1)²。
5.已知映射f:A→B,其中,集合A={-3,-2,-1,1,2,3,4}。
集合B中元素的个数是多少?已知映射f:A→B,其中,集合A={-3,-2,-1,1,2,3,4},集合B中元素的个数为:7.6.已知定义在[,+∞)的函数f(x),若f(f(f(k)))=25,则实数k 等于多少?已知定义在[,+∞)的函数f(x):f(x) = {x+2 (x≥2)。
2 (≤x<2)。
x (x<0)}若f(f(f(k)))=25,则实数k=4.2.2 函数的定义域和值域1.已知函数f(x)=(1+x)/(1-x),其定义域为M,f[f(x)]的定义域为N,则M∩N=什么?已知函数f(x)=(1+x)/(1-x),其定义域为M,f[f(x)]的定义域为N,则M∩N={x|-1<x<1}。
2.若f(x)的定义域为(0,1),-1/2<a<1/2,那么函数g(x)=f(x+a)+f(x-a)的定义域是什么?若f(x)的定义域为(0,1),-1/2<a<1/2,则函数g(x)=f(x+a)+f(x-a)的定义域为:(a,1-a)。
3.函数y=x-2x+a在[0,3]上的最小值是4,则a=什么?若最大值是4,则a=什么?当函数y=x-2x+a在[0,3]上的最小值是4时,a=2.当最大值是4时,a=1.4.已知函数f(x)=3-4x-2x²,下列结论不正确的是哪个?已知函数f(x)=3-4x-2x²,下列结论不正确的是:C。
函数的概念复习题答案一、选择题1. 函数的定义域是指函数中所有可能的自变量x的取值范围。
以下哪个选项不是函数定义域的描述?A. 所有实数B. 所有非负实数C. 所有正实数D. 所有负实数答案:D2. 函数的值域是指函数中所有可能的因变量y的取值范围。
以下哪个选项不是函数值域的描述?A. 所有实数B. 所有非负实数C. 所有正实数D. 所有负实数答案:D3. 函数的单调性是指函数在其定义域内随着自变量的增加,函数值是增加还是减少。
以下哪个选项描述了函数的单调性?A. 函数值随着自变量的增加而增加B. 函数值随着自变量的增加而减少C. 函数值随着自变量的增加而不变D. 函数值随着自变量的增加而先增后减答案:A4. 函数的奇偶性是指函数是否满足特定的对称性。
以下哪个选项描述了偶函数的性质?A. f(-x) = f(x)B. f(-x) = -f(x)C. f(x) = -f(x)D. f(x) = f(-x)答案:A5. 函数的连续性是指函数在其定义域内任意两点之间的函数值是否没有间断。
以下哪个选项描述了连续函数的性质?A. 函数在其定义域内任意两点之间存在间断点B. 函数在其定义域内任意两点之间没有间断点C. 函数在其定义域内所有点上都存在间断点D. 函数在其定义域内至少存在一个间断点答案:B二、填空题1. 如果一个函数f(x)满足f(x) = f(-x),则称该函数为____函数。
答案:偶2. 如果一个函数f(x)满足f(x) = -f(-x),则称该函数为____函数。
答案:奇3. 如果一个函数在其定义域内任意两点之间没有间断点,则称该函数为____函数。
答案:连续4. 函数f(x) = 2x + 3的定义域是____。
答案:所有实数5. 函数f(x) = 1/x的值域是____。
答案:所有非零实数三、解答题1. 给定函数f(x) = x^2 - 4x + 4,求该函数的定义域和值域。
答案:定义域为所有实数,值域为[0, +∞)。
7. 8. 定义两种运算:a ①b =』a ,— b ,,a 区b =』(a -2® x 曰 (x®2)-2正 9. 6. 函数综合复习题(二)1. 已知函数v = /(%)是定义在R 上的奇函数,且/(2) = 0 ,对任意xeR ,都有 f(x + 4) = f(x) + f(4)成立,则 /(2006)的值为A. 4012B. 2006C. 2008D. 02. 设函数f(x)(nR)为奇函数/⑴= |,/(.r+ 2) = /(%) + /⑵,则/'(5)= () 5 A. 0 B. 1 C. -D. 5 23. 给出下列四个命题:①函数)=f(x)的图象与函数y = f(x-2) + 3的图象一定不会重合; ②若 f(x) = *一1 则y (4) > 7X3);③ y = 10g“(2 + a x\a > 0且E)在 R 上是增函数; x-vlO④函数y niogj-r 2 + 2X + 3)的单调区间为(1, +8);则正确的命题个数是2A. 1个B. 2个C. 3个D. 4个|QP % X > 0 14. 已知函数/*(、) = <2》之’<0,则满足f(a) < -的。
的取值范围是( ) A. (-8,—1)B. (―oo, — 1) U (0, V2) c. (0,V2)D. (-OO , -1) U (0,2) 5. 已知xc(-8,l]时,不等式l + 2A +(fl-fl 2)4A >0恒成立,则“的取值范围是( )A ・B. (一1,「)C. (一8,:] D. (-oo ?6] 已知函数 y = /(X )(XG R)满足 /(x + 3) = /(x + 1)且工£ [一1,1]时,f 3) =| 工 |,贝!J y = /(%) 与=log 5 x 的图象的交点个数是 ( )A. 3B. 4C. 5D. 6a x …x>l 如果/(x)= Q是R 上的单调递增函数,则实数。
中考数学总复习《函数》专项测试卷-附参考答案一、单选题(共12题;共24分)1.如图所示,抛物线L:y=ax2+bx+c(a<0)的对称轴为x=5,且与x轴的左交点为(1,0)则下列说法正确的有()①C(9,0);②b+c>-10;③y的最大值为-16a;④若该抛物线与直线y=8有公共交点,则a的取值范围是a≤ 1 2.A.①②③④B.①②③C.①③④D.①④2.若y+3与x-2成正比例,则y是x的()A.正比例函数B.不存在函数关系C.一次函数D.以上都有可能3.关于函数y=2x﹣1,下列结论成立的是()A.当x<0时,则y<0B.当x>0时,则y>0C.图象必经过点(0,1)D.图象不经过第三象限4.关于一次函数y=x+2,下列说法正确的是()A.y随x的增大而减小B.经过第一、三、四象限C.与y轴交于(0,2)D.与x轴交于(2,0)5.点P(3,y1)、Q (4,y2)是二次函数y=x2−4x+5的图象上两点,则y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定6.快、慢两车分别从甲、乙两地同时出发,相向匀速行驶,两车在途中相遇时都停留了一段时间,然后分别按原速度原方向匀速行驶,快车到达乙地后休息半小时后,再以另一速度原路匀速返回甲地(掉头的时间忽略不计),慢车到达甲地以后即停在甲地等待快车.如图所示为快、慢两车间的距离y (千米)与快车的行驶时间x(小时)之间的函数图象.则下列说法:①两车在途中相遇时都停留了1小时;②快车从甲地去乙地时每小时比慢车多行驶40km;③快车从乙地返回甲地的速度为120km/h;④当慢车到达甲地的时候,快车与甲地的距离为400km.其中正确的有()A.4B.3C.2D.17.如图,动点A在抛物线y=−x2+2x+3(0≤x≤3)上运动,直线l经过点(0,6),且与y轴垂直,过点A做AC⊥ l于点C,以AC为对角线作矩形ABCD,则另一对角线BD的取值范围正确的是()A.2≤BD≤3B.3≤BD≤6C.1≤BD≤6D.2≤BD≤68.如图,在平面直角坐标系中,函数y=kx,y=−2x的图像交于A,B两点,过A作y轴的垂线,交函数y=3x的图像于点C,连接BC,则ΔABC的面积为()A.2B.3C.5D.69.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点是A,对称轴是直线x=1,且抛物线与x轴的一个交点为B(4,0);直线AB的解析式为y2=mx+n(m≠0).下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=mx+n有两个不相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,则则y1>y2,其中正确的是()A.①②B.①③⑤C.①④D.①④⑤10.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.11.如图,在平面直角坐标系中,ΔA1A2A3,ΔA3A4A5,ΔA5A6A7,…都是等边三角形,其边长依次为2,4,6,…,其中点A1的坐标为(2,0),点A2的坐标为(1,−√3),点A3的坐标为(0,0),点A4的坐标为(2,2√3),…,按此规律排下去,则点A2020的坐标为()A.(1,−1009√3)B.(1,−1010√3)C.(2,1009√3)D.(2,1010√3)12.如图,二次函数y=-x2+bx+c 图象上有三点A(-1,y1 )、B(1,y2) 、C(2,y3),则y1,y2,y3大小关系为()A.y1<y3<y2B.y3<y1<y2C.y1<y2<y3D.y2<y1<y3二、填空题(共6题;共6分)13.点P(1,1)向左平移两个单位后恰好位于双曲线y=k x上,则k=.14.将二次函数y=−x2+3的图像向下平移5个单位长度,所得图像对应的函数表达式为.15.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1)…,则点A2021的坐标为.16.请写出一个二次函数,使它的图象同时满足下列两个条件:①开口向下,②与y轴的交点是(0,1),你写出的函数表达式是.17.若点P(n,1),Q(n+6,3)在正比例函数图象上,请写出正比例函数的表达式. 18.在−3,−2,−1,4,5五个数中随机选一个数作为一次函数y=kx−3中k的值,则一次函数y=kx−3中y随x的增大而减小的概率是.三、综合题(共6题;共67分)19.3−√(−3)2+|√3−2|(1)计算:(−1)2021+√16+√−27(2)如图所示的是某学校的平面示意图,已知旗杆的位置是(−1,2),实验室的位置是(2,3).①根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂,宿舍楼和大门的位置.②已知办公楼的位置是(−2,1),教学楼的位置是(3,1),在①中所画的图中标出办公楼和教学楼的位置.20.汽车出发1小时后油箱里有油40L,继续行驶若干小时后,在加油站加油若干升(加油时间忽略不计).图象表示出发1小时后,油箱中剩余测量(y)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余量y与行驶时间t的函数关系式;(3)若加油前后汽车都以80km/h匀速行驶,则汽车加油后最多能行驶多远?21.凤凰单丛(枞)茶,是潮汕的名茶,已有九百余年的历史.潮汕人将单丛茶按香型分为黄枝香、芝兰香、桃仁香、玉桂香、通天香、鸭屎香等多种.清明采茶季后,某茶叶店准备购买通天香和鸭屎香两种单丛茶进行销售,已知若购买4千克通天香单丛和3千克鸭屎香单丛需要2500元,购买2千克通天香单丛和5千克鸭屎香单丛需要2300元.(1)求通天香、鸭屎香两种茶叶的单价分别为多少元?(2)茶叶专卖店计划购买通天香、鸭屎香两种单丛茶共80千克,总费用不多于26000元,并且要求通天香茶叶数量不能低于10千克,那么应如何安排购买方案才能使总费用最少,最少费用应为多少元?22.为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.23.直线y=kx+b经过A(0,-3))和B(-3,0)两点.(1)求这个一次函数的解析式;(2)画出图象,并根据图象说明不等式kx+b<0的解集.24.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场,下面的函数图象表示“龟兔再次赛跑”时,则乌龟所走路程y1(米)和兔子所走的路程y2(米)分别与乌龟从起点出发所用的时间x(分)之间的函数图象,根据图象解答下列问题:(1)“龟兔再次赛跑”的路程是米,兔子比乌龟晚走了分钟,乌龟在途中休息了分钟,“龟兔再次赛跑”获胜的是.(2)分别求出乌龟在途中休息前和休息后所走的路程y1关于时间x的函数解析式,并写出自变量x的取值范围.(3)乌龟和兔子在距离起点米处相遇.参考答案1.【答案】B 2.【答案】C 3.【答案】A 4.【答案】C 5.【答案】B 6.【答案】B 7.【答案】D 8.【答案】C 9.【答案】B 10.【答案】C 11.【答案】D 12.【答案】A 13.【答案】-114.【答案】y =−x 2−2 15.【答案】(506,﹣505)16.【答案】y =−x 2+x +1 (不唯一) 17.【答案】y =13x 18.【答案】3519.【答案】(1)解:原式=−1+4−3−3+2−√3=−1−√3(2)解:①根据题意,建立如图所示的平面直角坐标系,如下:∴食堂(−4,4),宿舍楼(-5,1),大门(1,−1) ②办公楼和教学楼的位置如图所示.20.【答案】(1)4;35(2)解:设y 与x 的函数关系式为y =kt+b 把(1,40)和(4,10)代入得{k +b =404k +b =10解得 {k =−10b =50∴加油前油箱剩余油量y 与行驶时间t 的函数关系式y =﹣10t+50(3)解:由图象知,汽车加油前行驶了3小时,则用油40﹣10=30(L ) ∴汽车行驶1小时耗油量为 303=10(L/h )加油后邮箱中剩余油量45L ,可以行驶 4510 ×80=360(km ).∴汽车加油后最多能行驶360km .21.【答案】(1)解:设通天香茶叶每千克为x 元,鸭屎香茶叶每千克为y 元,根据题意,得{4x +3y =25002x +5y =2300解得{x =400y =300∴通天香茶叶每千克为400元,鸭屎香茶叶每千克为300元.(2)解:设购买通天香茶叶m 千克,鸭屎香茶叶(80-m )千克,总费用w 元 根据题意,得400m +300(80−m)≤26000 解得m ≤20 ∵m ≥10∴m 的取值范围是:10≤m ≤20总费用w =400m +300(80−m)=100m +24000 ∵100>0∴w 随着m 的增大而增大∴当m =10时,则w 最少,w 最少=1000+24000=25000(元)∴通天香茶叶购进10千克,鸭屎香茶叶购进70千克,总费用最少为25000元.22.【答案】(1)解:由题意可得,y 甲=0.85x ;乙商店:当0≤x≤300时,则y 乙与x 的函数关系式为y 乙=x ; 当x >300时,则y 乙=300+(x-300)×0.7=0.7x+90 由上可得,y 乙与x 的函数关系式为y 乙={x(0≤x ≤300)0.7x +90(x >300)(2)解:由{y 甲=0.85xy 乙=0.7x +90,解得{x =600y 乙=510点A 的坐标为(600,510);(3)解:由点A 的意义,当买的体育商品标价为600元时,则甲、乙商店优惠后所需费用相同,都是510元 结合图象可知当x <600时,则选择甲商店更合算; 当x=600时,则两家商店所需费用相同; 当x >600时,则选择乙商店更合算.23.【答案】(1)解:将A(0,−3),B(−3,0)代入y =kx +b 得{b =−3−3k +b =0解得:k =−1,b =−3∴y =−x −3一次函数的解析式为:y =−x −3. (2)解:作图如下:由图象可知:直线从左往右逐渐下降,即y 随x 的增大而减小 当x =−3时∴kx +b <0的解集为:x >−3.24.【答案】(1)1000;40;10;兔子(2)解:设乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=kx ∴600=30k ,解得k =20∴乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=20x (0≤x≤30) 设乌龟在途中休息后所走的路程y 1关于时间x 的函数解析式为y 1=k′x+b∴{40k ′+b =60060k ′+b =1000,解得{k ′=20b =−200∴乌龟在途中休息后所走的路程y1关于时间x的函数解析式为y1=20x﹣200(40≤x≤60);(3)750第11页共11。
§4.基本初等函数1.指数与指数运算(1(0)|| (0) a a a a a ≥⎧=⎨-<⎩.(2)分数指数幂:),,0(1,+-∈>==N n m a a a a a n m n mn m n m .(3)分数指数幂的运算性质:当a>0时,有:①n m n m a a a +=⋅,n m n m n ma a a a a --=⋅=; ②mn n m a a =)(; ③nn n b a ab =)(.例1:化简121121333225(3)(4)6a b a b a b ----⎛⎫- ⎪⎝⎭÷= .2.对数与对数运算(1)定义:a x =N ⇔x =log a N (a>0,且a≠1).(2)对数的运算性质:①01log =a ;1log =a a ;②对数恒等式:N a Na =log ;b a b a =log .③运算法则:N M N M a a a log log )(log +=⋅;N M N Ma a a log log log -=;M n M a n a log log =;④换底公式:a bb c c a log log log =;b m nb a n a m log log =;1log log =⋅a b b a例2:化简()()481293log 3log 3log 2o 2l g log ++-=练习:解方程:(1)3log 2=x (2) 32=x(3).012242=--+x x)24.指数型函数与对数型函数练习:函数22+=x y 过定点 ,函数1)3(log 3--=x y 过定点 .(1)求定义域:(1)y (2)x x x x f ---=4lg 32)((2)求值域:(1))2(log 22+-=x y (2)]100,1001[,lg 2lg 2∈+=x x x y(3)求单调区间:(1) x x y 222-= (2))32(log 23++-=x x y练习:比较大小(1)7.27.1 37.1 (2)37.0 36.0 (3) 3.07.1 3.29.0(4)2.4log 2 4.3l o g 2 (5)5.1log 2,2log 5.0,5.15.1例5:若ln 2ln 3ln 5,,235a b c ===,则 ( )A .a <b<cB .c<b<aC .c<a <bD .b<a <c6.反函数(1)反函数的定义域是原函数的值域,值域是原函数的定义域;(2)反函数与原函数单调性相同,只有单调函数才具有反函数;(3)互为反函数的两个函数的图像关于直线y=x 对称;(4)若点(a,b)在原函数的图像上,则点(b,a)在其反函数的图像上;练习:(1)若函数f x ()的图像过点(1,2),且1211f x ()-+=, 则x = . (2)函数)1(log )(4+=x x f 的反函数)(1x f -=__________.7.自我补充:过关检测一、选择题:本大题共10小题,每小题5分.1.函数1()x y e x R +=∈的反函数是( )A .y=1+lnxB .y=1-lnx C.y=-1-lnx D .y=-1+lnx2.已知⎩⎨⎧≥<+-=1,log 1,4)13()(x x x a x a x f a 是(,)-∞+∞上的减函数,那么a 的取值范围是 ( ) A.(0,1) B.1(0,)3 C.11[,)73 D.1[,1)7 3.函数y ( )A.(3,+∞)B.[3, +∞)C.(4, +∞)D.[4, +∞)4.设f (x )= 1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩ 则不等式f (x )>2的解集为 A (1,2)⋃(3,+∞) B (10,+∞) (C)(1,2)⋃ (10 ,+∞) (D)(1,2)5.设2log 3P =,3log 2Q =,23log (log 2)R =,则( )A.R<Q<P B.P<R<Q C.Q<R<P D.R<P<Q6.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫ ⎪⎝⎭的值为( ) A .1516 B .2716- C .89D .18 7.函数lg ||x y x =的图象大致是 ( )A B C D8.若)2(log ax y a -=在]1,0[上是减函数,则a 的取值范围是 ( )A.)1,0(B.)2,0(C.)2,1(D.),2(+∞9.若函数f(x)=是奇函数,则m 的值是( ) A .0 B . C .1 D .2 10.定义在R 的偶函数f (x )在[0,+∞)上单调递减,且f (21)=0,则f (log 41x )<0的解集为( ) A.(-∞,12)∪(2,+∞) B.(12,1)∪(1,2) C.(12,1)∪(2,+∞) D.(0,12)∪(2,+∞) 二、填空题(每小题5分共25分)11.方程1)12(log 3=-x 的解=x .12.设0,1a a >≠,函数2()log (23)a f x x x =-+有最小值,则不等式log (1)0a x ->的解集为 . 13.方程0224=-+x x 的解是__________.14.函数y =的单调递减区间是 .15.函数()22231m m y m m x --=--是幂函数且在(0,)+∞上单调递减,则实数m 的值为 .三、解答题.(共75分)16.记函数f(x)=132++-x x 的定义域为A, g(x)=lg[(x -a -1)(2a -x)](a<1)的定义域为B.(1) 求A ; (2) 若B ⊆A, 求实数a 的取值范围.17.已知函数2lg )2lg()(2-++=x x x f . (1)判断函数)(x f 的奇偶性。
2008 年函数总复习题海淀区教师进修学校 方 菁 2008.3.25[典型例题与练习 ] 平面直角坐标系例 1(1)(上海市 2007) 已知 a<b<0,则点 A(a-b ,b)在第 _______象限.( 2) (沈阳市 2007) 若点 P(a ,b)在第四象限,则点 Q(b ,-a)在第 ______象 限.( 3) (贵阳市, 2007) 若点 M ( 1 + a , 2b –1 ) 在第二象限,则点 N ( a - 1,1 - 2b ) 在第 象限 .( 4) (哈尔滨市 2007) 已知坐标平面内点 A(m ,n)在第四象限, 那么点 B(n , m)在() (A) 第一象限 (B)第二象限 (C)第三象限 (D)第四象限 例 2 已知点 M ( 3x + 2, -x - 2)在第三象限,则 x 的取值范围 为 .例 3 (广西, 2007)已知点 ( 2m, m –4 )在第四象限,且 m 为偶数,则 m 的值 是.例 4 (海南省 2007) 如果点 A(m ,n)在第三象限,那么点 B(0,m + n)在( )例 5 (A)x 轴正半轴上 (B)x 轴负半轴上 (C)y 轴正半轴上 (D)y 轴负半轴上已知点 Q (2m 22 )在第一象限的角平分线上, 则m = .+ 4, m + m + 6 例 6 ( 1) (常州市 2007) 点 A(-1 ,2)关于 y 轴的对称点的坐标是 _______; 点 A 关于原点的对称点的坐标是 ________.( 2) 已知点 A (a, -7), B ( 5, b), 若 A ﹑ B 两点关于 x 轴对称, 则 a = , b = .( 3) (北京市朝阳区, 2007) 若点 P(m ,2)与点 Q(3,n)关于原点对称, 则 m 、n 的值分别是 、 .( 4) (山东省 2007) 将一张坐标纸折叠一次,使得点 (0,2) 与 (-2, 0) 重合,则点 ( 1, 0)与_______重合.2– 关于轴的对称( 5)(辽宁省, 2007)已知 a < 0,那么点 P ( - a2x 点 P ’在第 象限 .- 2, 2 a )( 6) ( 宁夏回族自治区 2007) 点 (-1 , 4)关于坐标原点对称的点的坐标是 ()(A) (-1 ,-4) (B) (1,-4) (C) (1,4) (D) (4,-1)( 7) (北京市石景山区, 2007)点 P(2,-3)关于 y 轴的对称点的坐标是 ( ).(A )(2,3) (B )(-2,-3) (C )(-2,3) (D )(-3,2)例 7 ( 1) (广州市 2007) 点 P 在第二象限,若该点到 x 轴的距离为3 、到 y轴的距离为 1,则点 P 的坐标是 ()(A) (-l ,(2) 点3 )P 坐标为(B) (- 3 ,1)(C) (( 2 - a ,3a + 6 ),且点3 ,-1)(D) (1, 3 )P 到两坐标轴的距离相等,则点P的坐标是 ().(A)(3,3) (B)(3,-3) (C)(6,-6) (D)(3,3)或(6,-6)例 8 (海口市课改实验区2007) 如图:如果“士”所在位置的坐标为(-1,-2),“相”所在位置的坐标为(2,-2),那么,“炮”所在位置的坐标为________.例 9 ★★ (四川省郫县课改实验区 2007) 在上面的网格图中按要求画出图形,并回答问题:(1)先画出△ABC 向下平移 5 格后的△A1B1C1,再画出△ABC 以点 0 为旋转中心,沿顺时针方向旋转90 后的△ A2 B2 C 2;(2)在与同学交流时,你打算如何描述 (1)中所画的△A2B2C2的位置 ?例9题图例 10 ★★ (海口市课改实验区 2007) (1)请在如图所示的方格纸中,将△ABC 向上平移 3 格,再向右平移 6 格,得△A1B1C1,再将△A1B1C1绕点B1按顺时针方向旋转 90 ,得△ A2 B1C 2,最后将△ A2 B1C 2以点 C 2为位似中心放大到 2 倍,得△ A3B3C2;(2)请在方格纸的适当位置画上坐标轴 ( 一个小正方形的边长为 1 个单位长度 ),在你所建立的直角坐标系中,点 C、C1、C2的坐标分别为:点 C(_____)、点 C 1 (_____)、点 C 2 (_____).函数及其图象例 11 ( 1) (北京市2007) 在函数 y =1 中,自变量 x 的取值范围是x2__________.( 2) (苏州市 2007) 函数 y = x 3 中自变量 x 的取值范围是 ________.1中,自变量 x 的取值范围是 _______. ( 3) (常州市 2007) 在函数 y =2x( 4) (山东省潍坊课改实验区 2007) 函数 y1自变量 x 的取值范围是=x 1______.( 5)(甘肃省 2007) 在函数 y =1 中,自变量 x 的取值范围是()x 4(A) x ≥ 4 (B) x ≤ 4(C) x>4(D) x<4( 6) (广州市 2007) 函数 y=x 中,自变量 x 的取值范围是 ()x 1(A) x ≥ o(B) x>0 且 x ≠ l (C) x>O(D)x ≥o 且 x ≠1例 12(1) 已知 y =3x 2,当 x = 3 时,y =,当 x =2 时,y =.x 1(2) 已知 y = -3x + 2 ,当 y = 4时, x =.例 13 已知 函数 y= 5x + 2,不画图象,判断点 (-2, -8) 、 (-1, 3) 、(-2,0) 、5(0, 2) 在不在这个函数图象上 .5例 14(1) ( 泰州市, 2007) 为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过 l0t 时,水价为每吨 1. 2 元;超过 l0t 时,超 过的部分按每吨 1. 8 元收费.该市某户居民 5 月份用水 xt(x>10) ,应交水费 y 元,则 y 关于 x 的关系式是 。
( 2) ( 曲靖市, 2007) 公民的月收入超过 1000 元时,超过部分须依法缴纳个人所得税,当超过部分在 500 元以内 ( 含 500 元) 时税率为 5%,那么公民每月所 纳税款 y( 元) 与月收入 z( 元) 之间的函数关系式是 ,(不用写出自变量 取值范围) . 某人月收人为 1360 元,则该人每月应纳税 元.(3)( 呼和浩特市, 2007) 等腰△ ABC 周长为 l0cm ,底边 BC 长为 ycm ,腰 AB 长为 xcm . ①写出 y 关于 x 的函数关系式;②求 x 的取值范围;③求 y 的取值范围·一次函数1.一次函数的解析式与图象上点的坐标【用方程思想】例 15 (1)(云南省 2007)已知一次函数 y=kx+b 的图象经过点( 1, 3)、(- 2,- 3),则这个一次函数的解析式为.yy.( 2)(河南省 2007) 点 M(-2 ,k)在直线 y=2x+1 上,M 到 x 轴的距离 d=( 3)若一次函数图象过 A (2, -1)和 B 两点,其中点 B 是另一条直线 y =﹣ 1x2+ 3 与 y 轴的交点,求这个一次函数的解析式.( 4) 已知两条直线 122= x –1 的交点恰在 y 轴上, y = (m –1)x + m –5 与 y 且 y 1 随 x 增大而减小,写出 y 1 与 x 之间的函数关系式及此直线与两坐标轴的交点坐标 .( 5)直线 y = kx + b 与直线 y = 5﹣4x 平行,且与直线 y = ﹣3( x ﹣ 6)相交,交点恰在 y 轴上,求这条直线的函数解析式 .( 6)直线与 x 轴交于点 A (﹣ 4, 0),与 y 轴交于点 B ,若点 B 到 x 轴的距离为 2,求这条直线的函数解析式 .( 7)已知 y = 3x –2 的图象经过点( a ,b ),且 a + b = 6,求 a 、b 的值 .2. 一次函数中的数形结合【用数形结合思想】例 16 (1)(贵阳市课改实验区 2007)已知一次函数 y=kx+b 的图象(如图),当 x < 0 时, y 的取值范围是( A ) y > 0 (B )y < 0( C ) - 2 < y < 0 (D )y < - 2yO1 x-2( 2) (福州市 2007)已知正比例函数 y = kx ( k ≠0)过第二、四象限,则( )( A ) y 随 x 的增大而减小 ( B )y 随 x 的增大而增大( C )当 x <0 时, y 随 x 的增大而增大;当 x >0 时, y 随 x 的增大而减小( D )不论 x 如何变化, y 不变例 17 新课程标准 P36 例 11填表并观察下列两个函数的变化情况:X1234 5 Y1=50+2xY2 = 5x(1)在同一个直角坐标系中画出上面两个函数的图象,比较它们有什么不同;(2)当 x 从 1 开始增大时,预测哪一个函数的值先到达100.3.图形的移动(翻转,平移,旋转)例 18 (四川省含成都市 2007)在平面直角坐标系中,直线 y=kx+b(k,b 为常数,k≠0,b> 0)可以看成是将直线 y=kx 沿 y 轴向上平行移动 b 个单位而得到的,那么将直线y=kx 沿 x 轴向右平行移动m 个单位( m> 0),得到的直线方程是.例 19 (河南省 2007)如图甲,边长为 2 的正方形 ABCD 中,顶点 A 的坐标是(0, 2).一次函数 y = x + t 的图像 l 随 t 的不同取值变化时,位于l 的右下方由 l 和正方形的边围成的图像面积为S(阴影部分)(1)当 t 取何值时, S=3(2)在平面直角坐标系下(如图乙),画出 S 与 t 的图像。
4.与一次函数有关的实际问题例 20 (山东省潍坊课改实验区 2007)已知某山区的平均气温与该山的海拔高度的关系见下表:海拔高度(单位“米”)0 100 200 300 400平均气温(单位“°)C”22 21.5 21 20.5 20(1)若海拔高度用 x(米)表示,平均气温用 y(°C)表示,写出 y 与 x 之间的函数关系式;(2)若某种植物适宜生长在 18°C~20°C(包含 18°C,也包含 20°)的山区,请问该植物适宜种植在海拔为多少米的山区?例21 (甘肃省2007)甲、乙两人在一次赛跑中,路程s 与时间t 的关系如图所示(实线为甲的路程与时间的关系图像,虚线为乙的路程与时间的关系图像),小王根据图像得到如下四个信息,其中错误的是:..()(A)这是一次 1500 米的赛跑(B)甲、乙两人中先到达终点的是乙(C)甲、乙同时起跑(D)甲在这次赛跑中的速度为 5m/s例 22 (黄冈市 2007)某班同学在探究弹簧的长度跟外力的变化关系是,实验记录得到的相应数据如下表:砝码的质量0 50 100 150 200 250 300 400 500(x 克)指针的位置2 3 4 5 6 7 7.5 7.5 7.5(y 厘米)则 y 关于 x 的函数图像是:()(A)(B)(C)(D)例 23 (1)★★(沈阳市 2007)某市的 A 县和 B 县春季育苗,急需化肥分别为90 吨和 60 吨,该市的 C 县和 D 县分别储存化肥 100 吨和 50 吨,全部调配给A县和 B 县,已知 C、D 两县运化肥到 A 、B 两县的运费(元 /吨)如下表所示。