常见陶瓷材料性能及运用-讲义..
- 格式:ppt
- 大小:736.50 KB
- 文档页数:25
陶瓷材料及其应用【摘要】陶瓷材料在我们的生活中早已应用到了各个方面,比如塑料、木材、水泥三大传统基本材料,陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。
它具有高熔点、高硬度、高耐磨性、耐氧化等优点。
可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料。
随着社会的进步,人们对材料的要求也越来越高,这种表现不仅表现在对科学研究领域,也表现在人们的日常生活当中。
材料的进步很大程度上推动了社会的进步,而社会的需求反过来也有力的推进了材料科学的发展。
拿陶瓷材料来说,陶瓷材料已经贯穿了人类的历史,并且随着历史不停的发展,在材料科学领域崭露头角。
【关键字】陶瓷材料应用发展一、陶瓷材料概述陶瓷材料分为普通陶瓷材料和特种陶瓷材料,普通陶瓷材料采用天然原料如长石、粘土和石英等烧结而成,是典型的硅酸盐材料,主要组成元素是硅、铝、氧,这三种元素占地壳元素总量的 90%,普通陶瓷来源丰富、成本低、工艺成熟。
这类陶瓷按性能特征和用途又可分为日用陶瓷、建筑陶瓷、电绝缘陶瓷、化工陶瓷等。
特种陶瓷材料采用高纯度人工合成的原料,利用精密控制工艺成形烧结制成,一般具有某些特殊性能,以适应各种需要。
根据其主要成分,有氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、金属陶瓷等;特种陶瓷具有特殊的力学、光、声、电、磁、热等性能。
其特点有力学性能、热性能、电性能、化学性能、光学性能,根据用途不同,特种陶瓷材料可分为结构陶瓷、工具陶瓷、功能陶瓷。
二、陶瓷材料的分类随着生产与科学技术的发展.陶瓷材料及产品种类日益增多.为了便于掌握各种材例或产品的特征,通常以不同的角度加以分类。
1.按化学成分分类(1)氧化物陶瓷。
氧化物陶瓷种类繁多,在陶瓷家族中占有非常重要的地位。
最常用的氧化物陶瓷是用Al2O3、 SiO2、 MgO、 ZrO3、 CeO2, CaO. Cr2O3 及莫莱石(3Al2O3.2SiO4) 和尖晶石 (MgAl2O3)等。
第八章陶瓷材料第1节陶瓷材料概述第4讲陶瓷材料的性能特点先进陶瓷分类(按其性能和功能)结构陶瓷:作为工程结构材料使用的陶瓷功能陶瓷:具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷力学性能特点1硬度高510152025几种典型陶瓷材料的维氏硬度与不锈钢材料的对比图维氏硬度/G P a结构陶瓷的力学性能陶瓷材料硬度高→陶瓷材料耐磨性好→陶瓷材料可以制作刀具50100150200250300350400450几种典型陶瓷材料的弹性模量与不锈钢材料的对比图弹性模量/G P a力学性能特点2高弹性模量陶瓷材料高弹性模量陶瓷材料硬度弹性模量熔点变化规律具有一致性是其主晶相结合键能高低的外在反映弹性模量高→零件/构件的刚度好氧化铝机械加工精度高加工前加工中加工后不锈钢加工过程后发生挠曲变形,精度无法保证金属材料与陶瓷材料的应力-应变曲线(示意图)应力应变陶瓷金属力学性能特点3无塑性变形,断裂强度低陶瓷材料室温下拉伸时没有塑性变形→脆断人们常说的陶瓷强度,主要指它的断裂强度陶瓷材料的实际断裂强度和理论断裂强度对比材料理论值/MPa实测值/MPa理论/实测强度比值Al2O3(蓝宝石)4900063077.0Si3N4(热压)3770098038.5SiC(热压)4800093051.5 Si3N4(反应烧结)37700290130.5奥氏体型钢200003240 6.4陶瓷材料的实际断裂强度比理论强度低很多陶瓷材料实际断裂强度低的原因•存在不规则形状的气孔,相当于裂纹•内部组织结构复杂、和不均匀性2004006008001000120014001600几种典型陶瓷材料的抗弯强度抗弯强度/M P a陶瓷材料的强度,一般采用抗弯强度(弯曲强度)和抗压强度(压缩强度)表示采用三点弯曲测试抗弯强度示意图力学性能特点4低抗压强度高,抗弯强度低几种典型陶瓷材料的抗压强度抗压强度/M P a碳钢铸铁高速钢氧化铝(A479)单晶蓝宝石(SA100)金属陶瓷(TC30)01000200030004000•陶瓷材料抗压强度高,为抗拉强度的10~40倍•陶瓷材料承受压应力的能力大大超过拉应力的能力抗压强度测试示意图•陶瓷材料抗压强度比金属(碳钢)高力学性能特点5冲击韧性、断裂韧性低陶瓷材料是脆性材料冲击韧性~10kJ/m2几种材料的断裂韧性材料K IC/MPa∙m1/2不锈钢(SUS304)21045钢90球墨铸铁20~40氮化硅陶瓷 3.5~5氧化锆7-8氧化铝(99%)3-4K IC约为金属的1/60~1/100物理与化学性能1 较低的密度12345678密度/g ∙c m -3几种典型陶瓷材料的密度与钢的对比图2 熔点高一般在2000℃以上,陶瓷高温强度和高温蠕变抗力优于金属3化学稳定性高•抗氧化性优良,在1000℃高温下不会氧化•对酸、碱、盐有良好的抗蚀性4 热胀系数小24681012141618几种典型陶瓷材料的热膨胀系数与钢的对比图膨胀系数X 10-6/K40~400℃•随气孔率增加,陶瓷的热胀系数、热导率降低•多孔或泡沫陶瓷可作绝热材料20406080100120140160几种典型陶瓷材料的热导率与钢的对比图导热率W /m ∙K5 热导率受材质和气孔影响大6具有特殊性能光学,电学,声学和磁学性能结构陶瓷→功能陶瓷高硬度、耐高温、耐磨损、抗热震、耐腐蚀、抗氧化密度小弹性模量大陶瓷材料性能优势脆性大,韧性差,难加工安全可靠性低陶瓷材料性能短板避免服役过程中工况:冲击载荷、大的拉应力分析服役环境,取长补短可发挥优势工况条件:高温、高压、强腐蚀、强磨损。
陶瓷材料的力学性能高分子091 项淼学号17陶瓷材料陶瓷、金属、高分子材料并列为当代三大固体材料之间的主要区别在于化学键不同。
金属:金属键高分子:共价键(主价键)+范德瓦尔键(次价键)陶瓷:离子键和共价键。
普通陶瓷,天然粘土为原料,混料成形,烧结而成。
工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。
工程陶瓷的性能:耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。
硬度高,弹性模量高,塑性韧性差,强度可靠性差。
常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。
一、陶瓷材料的结构和显微组织1、结构特点陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。
可以通过改变晶体结构的晶型变化改变其性能。
如“六方氮化硼为松散的绝缘材料;立方结构是超硬材料”2、显微组织晶体相,玻璃相,气相晶界、夹杂(种类、数量、尺寸、形态、分布、影响材料的力学性能。
(可通过热处理改善材料的力学性能)陶瓷的分类※玻璃—工业玻璃(光学,电工,仪表,实验室用);建筑玻璃;日用玻璃※陶瓷—普通陶瓷--日用,建筑卫生,电器(绝缘),化工,多孔……特种陶瓷--电容器,压电,磁性,电光,高温……金属陶瓷--结构陶瓷,工具(硬质合金),耐热,电工……※玻璃陶瓷—耐热耐蚀微晶玻璃,光子玻璃陶瓷,无线电透明微晶玻璃,熔渣玻璃陶瓷…2. 陶瓷的生产(1)原料制备(拣选,破碎,磨细,混合)普通陶瓷(粘土,石英,长石等天然材料)特种陶瓷(人工的化学或化工原料---各种化合物如氧、碳、氮、硼化合物)(2)坯料的成形(可塑成形,注浆成形,压制成形)(3)烧成或烧结3. 陶瓷的性能(1)硬度是各类材料中最高的。
(高聚物<20HV,淬火钢500-800HV,陶瓷1000-5000HV)(2)刚度是各类材料中最高的(塑料1380MN/m2,钢207000MN/m2)(3)强度理论强度很高(E/10--E/5);由于晶界的存在,实际强度比理论值低的多。
陶瓷材料的结构与性能分析陶瓷材料是一类广泛应用于建筑、电子、航空等领域的材料,具有优异的物理和化学性质。
而想要深入了解陶瓷材料的性能表现,首先必须对其结构进行分析。
一、结晶结构陶瓷材料主要由氧化物组成,常见的有硅酸盐、氮化硅、氧化铝等。
在陶瓷材料中,原子或离子按照一定的几何排列方式组成结晶结构。
例如,硅酸盐陶瓷中的硅离子和氧离子以正方形或三角形的排列方式拼接成网络结构。
而氮化硅陶瓷则由氮离子和硅离子按照边长相等的正六边形排列形成具有大空隙的结构。
结晶结构的不同会导致陶瓷材料的性能差异,如硬度、热传导性等。
二、晶粒大小晶粒大小是陶瓷材料表面性能的重要指标之一。
晶粒的尺寸越小,材料的强度和硬度往往越高,因为小晶粒内部的晶界相对较多,在晶界上形成了许多阻碍位错运动的障碍点,从而提高了材料的抗变形能力。
因此,控制陶瓷材料的晶粒尺寸,对提高其力学性能具有重要意义。
三、杂质含量陶瓷材料中的杂质含量对其性能影响举足轻重。
杂质的存在会破坏材料的完整晶体结构,从而导致性能的下降。
例如,陶瓷材料中的铁、镉等金属离子会影响其电学性能,氮化硅材料中杂质的存在会导致其电阻率的变化。
因此,在制备陶瓷材料时,对原材料进行严格筛选和纯化,以及控制烧结工艺的条件,能够有效减少杂质含量,提高材料的性能。
四、孔洞结构孔洞是陶瓷材料中普遍存在的结构特征之一。
孔洞会影响材料的力学性能、热导率等。
例如,在陶瓷材料中,孔洞的存在可以减小材料的密度,从而提高其机械强度。
此外,孔洞还能影响热的传导、吸附等性质。
因此,对陶瓷材料的孔洞结构进行合理设计和控制,能够改善其性能,拓宽其应用范围。
五、晶界结构陶瓷材料中的晶界是由相邻晶粒之间的原子之间形成的。
晶界的存在会影响材料的力学性能、导电性能、疲劳寿命等。
在力学性能方面,晶界是位错移动的阻碍剂,增加了材料的塑性变形程度;在导电性能方面,晶界处存在能带偏移和电阻率增加现象,使材料的导电性能下降。
因此,控制晶界的结构,合理改善晶界的质量和数量,对提高陶瓷材料的性能至关重要。