运筹学课后答案
- 格式:pdf
- 大小:6.11 MB
- 文档页数:27
运筹学部分课后习题解答P47 1.1用图解法求解线性规划问题min z=2x 3x24为6x2 _ 6st ]4x1+2x2>4X i,X2 _0解:由图1可知,该问题的可行域为凸集MABC,且可知线段BA上的点都为3最优解,即该问题有无穷多最优解,这时的最优值为%=2 - 3P47 1.3用图解法和单纯形法求解线性规划问题max z=10x1 5x213为4x2乞9a )s.t」5为+2x2兰8x1, x^ 0解:由图1可知,该问题的可行域为凸集OABCO且可知B点为最优值点,即严+4卷=9斗|人3,即最优解为x」1,3(5X1 +2X2 =8 & =2 I 2丿这时的最优值为Z max = 10 1 5 -2 2原问题化成标准型为max z=10x1 5x23\ 4x2 x3 = 9 s.t <5^+2x2 +x4 =8X i,X2,X3,X4 —0z所以有—1,3 ,Z max=10 1 5I 2 丿 2 2P78 2.4已知线性规划问题:max z =2x 4x2x3x4/+3X2+x4兰82咅+x2<6彳x2+X3 +x4兰6X,+ x2+ X3<9XZX, X4 一0求:(1)写出其对偶问题;(2)已知原问题最优解为X^(2,2,410),试根据对偶理论,直接求出对偶问题的最优解。
解:(1)该线性规划问题的对偶问题为:min w =8y, 6y26y39y4\i+2y2 +y4 兰23yr H y<H yr H y^4彳y^y^iy i, y2,y3,y4—0(2)由原问题最优解为X* =(2,2,4,0),根据互补松弛性得:y1 2y2 y4 = 23y1 y2 y a y^4I y a + yU把X* = (2,2,4,0)代入原线性规划问题的约束中得第四个约束取严格不等号,即 2 2 4 =8 < 9 - y4=0y1 2y2 =2从而有+y2 +y a =4L ya =1得Y1 ,Y2 ,Y a = 1,y4 = 05 5所以对偶问题的最优解为y* =(4,3,1,0)T,最优值为W min =165 5P79 2.7考虑如下线性规划问题:min z = 60x i 40x2 80x3” 3x i + 2x2 + X3 兰24x i + X2 + 3x^ > 42x i +2X2 +2x3 兰3x i,x?,x^ >0(1)写出其对偶问题;(2)用对偶单纯形法求解原问题;解:(1)该线性规划问题的对偶问题为:max w = 2% 4y2 3y33% +4y2 +2y3 W60』2% +y2 +2y3 玄40y i 3y2 2y3 — 80[y i,y2,y^0(2)在原问题加入三个松弛变量X4,X5,X6把该线性规划问题化为标准型max z = -60旨-40X2-80X3—3x i — 2x? — X3 + X4 = -2~4x<i — x? — 3X3 + X5 ——4-2 X i — 2 X2 — 2 X3 + = _3X j "j =1川,6x* 5,?,O)T,Z max =60 540 - 80 06 3 6 3 3P81 2.12某厂生产A、B、C三种产品,其所需劳动力、材料等有关数据见下表。
《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。
CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。
DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。
CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。
DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。
CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。
CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。
运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题a)12121212min z=23466 ..424,0x xx xs t x xx x++≥⎧⎪+≥⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为最优解,即该问题有无穷多最优解,这时的最优值为min 3z=23032⨯+⨯= P47 1.3 用图解法和单纯形法求解线性规划问题a)12121212max z=10x5x349 ..528,0x xs t x xx x++≤⎧⎪+≤⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点,即112122134935282xx xx x x=⎧+=⎧⎪⇒⎨⎨+==⎩⎪⎩,即最优解为*31,2Tx⎛⎫= ⎪⎝⎭这时的最优值为max335z=101522⨯+⨯=单纯形法: 原问题化成标准型为121231241234max z=10x 5x 349..528,,,0x x x s t x x x x x x x +++=⎧⎪++=⎨⎪≥⎩ j c →10 5B CB Xb 1x2x3x4x0 3x 9 3 4 1 0 04x8[5] 2 0 1 j j C Z -105 0 0 0 3x 21/5 0 [14/5] 1 -3/5 101x8/51 2/5 0 1/5 j j C Z -1 0 -2 5 2x 3/2 0 1 5/14 -3/14 101x11 0 -1/72/7j j C Z --5/14 -25/14所以有*max 33351,,1015222Tx z ⎛⎫==⨯+⨯= ⎪⎝⎭P78 2.4 已知线性规划问题:1234124122341231234max24382669,,,0z x x x x x x x x x x x x x x x x x x x =+++++≤⎧⎪+≤⎪⎪++≤⎨⎪++≤⎪≥⎪⎩求: (1) 写出其对偶问题;(2)已知原问题最优解为)0,4,2,2(*=X ,试根据对偶理论,直接求出对偶问题的最优解。
第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。
《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。
CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。
DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。
CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。
DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。
CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。
CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。
运筹学第三版课后习题答案第一章:引论1.1 课后习题习题1a)运筹学是一门应用数学的学科,旨在解决实际问题中的决策和优化问题。
它包括数学模型的建立、问题求解方法的设计等方面。
b)运筹学可以应用于各个领域,如物流管理、生产计划、流程优化等。
它可以帮助组织提高效率、降低成本、优化资源分配等。
c)运筹学主要包括线性规划、整数规划、指派问题等方法。
习题2运筹学的应用可以帮助组织提高效率、降低成本、优化资源分配等。
它可以帮助制定最佳的生产计划,优化供应链管理,提高运输效率等。
运筹学方法的应用还可以帮助解决紧急情况下的应急调度问题,优化医疗资源分配等。
1.2 课后习题习题1运筹学方法可以应用于各个领域,如物流管理、生产计划、供应链管理、流程优化等。
在物流管理中,可以使用运筹学方法优化仓储和运输的布局,提高货物的运输效率。
在生产计划中,可以使用运筹学方法优化产品的生产数量和生产周期,降低生产成本。
在供应链管理中,可以使用运筹学方法优化订单配送和库存管理,提高供应链的效率。
在流程优化中,可以使用运筹学方法优化业务流程,提高整体效率。
习题2在物流管理中,可以使用运筹学方法优化车辆的调度和路线规划,以提高运输效率和降低成本。
在生产计划中,可以使用运筹学方法优化生产线的安排和产品的生产量,以降低生产成本和提高产能利用率。
在供应链管理中,可以使用运筹学方法优化供应链各个环节的协调和调度,以提高整体效率和减少库存成本。
在流程优化中,可以使用运筹学方法优化业务流程的排布和资源的分配,以提高流程效率和客户满意度。
第二章:线性规划基础2.1 课后习题习题1线性规划是一种数学优化方法,用于解决包含线性约束和线性目标函数的优化问题。
其一般形式为:max c^T*xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束矩阵,b是约束向量。
习题2使用线性规划方法可以解决许多实际问题,如生产计划、供应链管理、资源分配等。
运筹学课后答案
3.1 与一般线性规划的数学模型相比,运输问题的数学模型具有什么特征
? 答: 1、运输问题一定有有限最优解。
2、约束系数只取0或1。
3、约束系数矩阵的每
列有两个1,而且只有两个
1。
前m 行中有一个1,或n 行中有一个1。
4、对于产销平衡的运输问题,所有的约束都取等式。
3.2 运输问题的基可行解应满足什么条件?将其填入运输表中时有什么体现?并说明在迭代计算过程中
对它的要求。
解:运输问题基可行解的要求是基变量的个数等于m+n-1。
填入表格时体现在数字格的个数也应该等于m+n-1。
在迭代过程中,要始终保持数字格的个数不变。
3.3 试对给出运输问题初始基可行解的西北角法、最小元素法和Vogel 法进行比较,分析给出的解之质量不同的原因。
解:用西北角法可以快速得到初始解,但是由于没有考虑运输价格,效果不好;最小元
素法从最小的运输价格入手,一开始效果很好,但是到了最后因选择余地较少效果不好;
Vogel 法从产地和销地运价的级差来考虑问题,总体效果很好,但是方法较复杂。
3.4 详细说明用位势法(对偶变量法)求检验数的原理。
解:原问题的检验数也可以利用对偶变量来计算
:其中,ui 和vj 就是原问题约束对应的对偶变量。
由于原问题的基变量的个数等于m+n-1。
所以相应的检验数就应该等于0。
即有:
由于方程有m+n-1个,而变量有m+n 个。
所以上面的方程有无穷多个解。
任意确定一个变量的值都可以通过方程求出一个解。
然后再利用这个解就可以求出非基变量的检验数了。
3.5 用表上作业法求解运输问题时,在什么情况下会出现退化解?当出现退化解时应如何处理?
解:当数字格的数量小于m+n-1时,相应的解就是退化解。
如果出现了退化解,首先找到同时划去的行和列,然
后在同时划去的行和列中的某个空格中填入数字
0。
只要数字格的数量保持在m+n-1个的水平即可。
3.6 一般线性规划问题具备什么特征才能将其转化为运输问题求解,请举例说明。
n
j m i v u c j i ij ij ,,2,1;,2,1)(n
j m i v u c j i ij ,,2,1;,2,10)(
解:如果线性规划问题有“供”和“需”的关系,并且有相应的“费用”,就可以考虑将线性规划问题转
成运输问题求解。
例如,生产满足需求的问题。
3.7 试判断表3-30和表3-31中给出的调运方案可否作为表上作业法迭代时的基可行解?为什么?
答:都不是。
数字格的数量不等于m+n-1。
3.8 表3-32和表3-33分别给出了各产地和各销地的产量和销量,以及各产地至各销地的单位运价,试用表上作业法求最优解。
3.9 试求出表3-34给出的产销不平衡运输问题的最优解。
3.10 某市有三个面粉厂,它们供给三个面食加工厂所需的面粉。
各面粉厂的产量、各面食加工厂加工面
粉的能力、各面食加工厂和各面粉厂之间的单位运价,均表示于表3-35中。
假定在第1,2和3面食加工厂制作单位面粉食品的利润分别为12元、16元和11元,试确定使总效益最大的面粉分配计划(假定面粉厂和面食加工厂都属于同一个主管单位)。
3.11 表3-36示出一个运输问题及它的一个解:
试问:
(1)表中给出的解是否为最优解?请用位势法进行检验。
答:是最优解。
(2)如价值系数c24由1变为3,所给的解是否仍为最优解?若不是,请求出最优解。
答:原来的解不是最优解。
新的最优解是:
x12=3,x13=5,x21=8,x22=2,x33=1,x34=3,其他变量为0 。
(3)
若所有价值系数均增加1,最优解是否改变?为什么? 答:不会改变。
因为检验数不变。
(4)
若所有价值系数均乘以2,最优解是否改变?为什么? 答:最优解不变。
因为检验数不变。
(5)写出该运输问题的对偶问题,并给出其对偶问题的最优解。
3.12 1,2,3三个城市每年需分别供应电力320,250和350单位,由I ,Ⅱ两个电站提供,它们的最大
供电量分别为400个单位和450个单位,单位费用如表3—37所示。
由于需要量大于可供量,决定城市
1的供应量可减少0~30单位,城市2的供应量不变,城市
3的供应量不能少于270单位,试求总费用最低的分配方案(将可供电量用完)。
3.13 试写出本章例5转运问题的数学模型。
解:已知 a1=10,a2=40,a3 = a4 = a5 = 0 b1= b2= b3
=0,b4=30,b5=20 Q =50下面就是相应的模型: MIN Z= 4 X(1,1)+ 5 X(1,2)+ 3 X(1,3)+ 2 X(1,4)+ 100X(1, 5) + 5 X(2,1)+ X(2,2)+2 X(2,3)+100 X(2,4) + 4 X(2, 5)
+ 3 X(3,1)+2X(3,2)+3 X(3,3)+5 X(3, 4) + 5 X( 3, 5)
+ 2 X(4,1)+100X(4,2)+5 X(4,3)+ 3 X(4,4)+6 X( 4, 5)
+ 100X(5,1)+4X(5,2)+5X(5,3)+6 X( 5, 4) +5 X( 5, 5)
2]-X(1,1) + X(1,2) + X(1,3) + X(1,4) + X(1,5) = 10
3] X(2,1) - X(2,2) + X(2,3) + X(2,4) + X(2,5) = 40
4] X(3,1) + X(3,2) - X(3,3) + X(3,4) + X(3,5) = 0
5] X(4,1) + X(4,2) + X(4,3) - X(4,4) + X(4,5) = 0
6] X(5,1) + X(5,2) + X(5,3) + X(5,4) - X(5,5) = 0
7]-X(1,1) + X(2,1) + X(3,1) + X(4,1) + X(5,1) = 0
8] X(1,2) - X(2,2) + X(3,2) + X(4,2) + X(5,2) = 0
9] X(1,3) + X(2,3) - X(3,3) + X(4,3) + X(5,3) = 0
10]X(1,4) + X(2,4) + X(3,4) - X(4,4) + X(5,4) = 30
11]X(1,5) + X(2,5) + X(3,5) + X(4,5) - X(5,5) = 20
1,5,2,1,
0,0,1,,2,1;,2,1,,,,2,1;,
2,1max 432132111
v v v v u u u n
j m i v u n j m i c v u v b u a Z j i ij j i n
j j j m i i i 最优解是:无约束解:对偶问题如下:。