傅里叶级数
- 格式:doc
- 大小:1.22 MB
- 文档页数:24
傅里叶级数公式傅里叶级数展开傅里叶级数收敛性的计算公式傅里叶级数公式的计算公式提供了一种将任意周期函数表示为一组正弦和余弦函数的和的方法。
这种表示方法在信号处理、图像处理等领域具有重要应用。
在本文中,将详细介绍傅里叶级数展开和收敛性的计算公式。
一、傅里叶级数展开傅里叶级数展开是将周期为T的函数f(t)表示为一组三角函数的和。
傅里叶级数展开的计算公式如下:f(t) = a0 + Σ (an*cos(nωt) + bn*sin(nωt)),其中a0、an和bn分别为系数,ω为角频率,n为正整数。
根据这个公式,我们可以将任意周期函数表示为一组正弦和余弦函数的和。
傅里叶级数展开的关键是计算系数a0、an和bn,这里不再赘述具体的推导过程。
二、傅里叶级数收敛性的计算公式傅里叶级数的收敛性是指在何种条件下,傅里叶级数能够无限接近原函数f(t)。
傅里叶级数的收敛性可以通过计算系数a0、an和bn来确定。
1. 正弦级数的收敛性对于奇函数,即满足f(-t)=-f(t)的函数,其傅里叶级数只包含正弦函数。
对于奇函数f(t),其傅里叶级数的计算公式为:f(t) = Σ (bn*sin(nωt)),其中bn的计算公式为:bn = (2/T) * ∫[0,T] {f(t)*sin(nωt)} dt。
当函数f(t)满足一定的条件时,傅里叶级数对奇函数收敛。
这些条件包括函数f(t)在一个周期内有有限个有界不连续点,并且在这些点上的左右极限存在。
2. 余弦级数的收敛性对于偶函数,即满足f(-t)=f(t)的函数,其傅里叶级数只包含余弦函数。
对于偶函数f(t),其傅里叶级数的计算公式为:f(t) = a0/2 + Σ (an*cos(nωt)),其中a0和an的计算公式为:a0 = (2/T) * ∫[0,T] {f(t)} dt,an = (2/T) * ∫[0,T] {f(t)*cos(nωt)} dt。
同样地,当函数f(t)满足一定的条件时,傅里叶级数对偶函数收敛。
什么是傅里叶级数和傅里叶变换,两者的区别与联系傅里叶级数和傅里叶变换都是将信号从时域转换到频域的数学工具。
傅里叶级数:傅里叶级数是针对周期函数的,它用一组正交函数将周期信号表示出来。
具体来说,所有周期信号都可以分解为不同频率的各次谐波分量。
这意味着周期波都可分解为n次谐波之和。
傅里叶变换:傅里叶变换则是用来处理非周期函数的,它可以用一组正交函数将非周期信号表示出来。
与傅里叶级数不同的是,非周期信号可以看作不同频率的余弦分量叠加,其中频率分量可以是从0到无穷大任意频率,而不是像傅里叶级数一样由离散的频率分量组成。
傅里叶级数和傅里叶变换都是数学工具,用于将信号从时域转换到频域。
但它们之间存在明显的区别和联系:1. 本质不同:傅里叶级数是周期信号的另一种时域表达方式,可以看作是正交级数,即不同频率的波形的叠加。
而傅里叶变换是完全的频域分析,它可以将非周期信号转换为频域表示。
简而言之,傅里叶级数是用一组正交函数将周期信号表示出来,而傅里叶变换是用一组正交函数将非周期信号表示出来。
2. 适用范围不同:傅里叶级数主要适用于对周期性现象做数学上的分析。
而傅里叶变换可以看作傅里叶级数的极限形式,也可以看作是对周期现象进行数学上的分析,同时也适用于非周期性现象的分析。
3. 周期性不同:傅里叶级数是一种周期变换,它以三角函数为基对周期信号的无穷级数展开。
而傅里叶变换是一种非周期变换,它可以将非周期信号转换为频域表示。
4. 联系:傅里叶级数可以视作傅里叶变换的特例。
当周期信号的周期趋于无穷大时,傅里叶级数可以取极限得到傅里叶变换。
此外,无论是傅里叶级数还是傅里叶变换,都是为了将信号从时域转到频域。
傅里叶级数和傅里叶变换都是强大的数学工具,用于分析和处理信号,但它们的应用范围和性质有所不同。
傅里叶数的定义式
傅里叶级数是一种非常重要的数学概念,它能准确描述事物的细微特征,一般
用来表达平滑的自变量函数。
傅里叶数,是指任意一个实函数f(x),当它可以展
开成一系列正弦函数和余弦函数的无穷级数形式,即
f(x) = a_0 + \sum_{k=1}^{\infty}\left(a_k \cos kx+b_k\sin kx \right),
称为这个函数的Fourier级数。
a_0为常数项,a_k和b_k称为系数,用来表
示正弦函数和余弦函数的幅度,k称为频率,表示周期的数量。
它不仅能准确的表
示出一个函数及它的特征,而且具有十分优美的美学感受。
傅里叶级数的准确度在各个研究领域都有着广泛的运用,在科学技术上准确性、廉价性、可靠性和多领域性都是值得它被广泛使用的补充。
比如经典力学1中引入了不惯性系统的分析和计算,2亚贝拉计算可以通过傅里叶级数来实现,有着重要
的创新意义;从基本物理装潢到地理、几何图形等,甚至医学诊断都是它的可实现的应用场景。
此外,傅立叶级数的可容纳量大,内容全面,支持大幅度计算,准确率高,可以作为大量、复杂功能的基础性计算工具。
总之,傅里叶级数是一种重要的数学概念,无论从准确性、廉价性、可靠性和
多领域性来讲,它都可以作为一种用于研究各种函数的表征。
它的实用性已经被成功的应用在科学计算领域,推荐给更多的读者快速和有效的理解、掌握傅里叶级数,发展自己的专业特长,让这种数学概念在我们的实践中实现更大的潜力。
傅里叶级数的定理傅里叶级数是一种将周期函数表示为三角函数的级数展开形式的数学工具。
它是由法国数学家傅里叶在18世纪提出的,被广泛应用于物理学、工程学和信号处理等领域。
傅里叶级数的定理提供了一种将任意周期函数分解为正弦和余弦函数的方法,使得我们可以更好地理解和分析周期性的现象。
傅里叶级数的定理可以简单地表述为:任意一个周期为T的函数f(x)可以表示为一系列正弦和余弦函数的线性组合,即f(x) = a0 + Σ(an*cos(nωx) + bn*sin(nωx))其中an和bn是傅里叶系数,表示了函数f(x)中各个频率分量的振幅,ω=2π/T是角频率。
a0是直流分量,对应于频率为0的分量。
傅里叶级数的定理是基于正交函数的思想而来。
正交函数是指在某个区间上两两内积为0的函数。
在傅里叶级数中,正弦和余弦函数是互相正交的,因此可以通过内积运算来确定各个傅里叶系数的值。
傅里叶级数的定理在实际应用中具有重要意义。
首先,它可以将复杂的周期函数分解为一系列简单的正弦和余弦函数,使得我们能够更好地理解函数的频域特性。
其次,傅里叶级数的定理为信号处理提供了一种便捷的方法,可以对信号进行频谱分析和滤波处理。
此外,傅里叶级数还被广泛应用于图像处理、音频处理和通信系统等领域。
傅里叶级数的定理具有一些重要的性质。
首先,对于一个具有奇对称性或偶对称性的函数,其傅里叶级数只包含正弦函数或余弦函数。
其次,傅里叶级数的收敛性得到了严格的数学证明,即对于一个光滑的函数,其傅里叶级数可以收敛到原函数。
此外,傅里叶级数还满足线性性质,即两个函数的傅里叶级数之和等于它们的傅里叶级数之和。
傅里叶级数的定理虽然强大,但也有一些限制。
首先,傅里叶级数只适用于周期函数,对于非周期函数需要进行适当的处理才能使用傅里叶级数展开。
其次,傅里叶级数的展开系数需要通过积分计算,对于一些复杂的函数可能无法得到解析解,需要使用数值方法进行近似计算。
傅里叶级数的定理为我们理解和分析周期函数提供了一种有效的工具。
傅里叶级数的基本概念及其应用傅里叶级数是一种将周期函数表示为正弦和余弦函数的无穷级数的方法。
在物理、工程学、计算机科学、信号处理和其他领域中,傅里叶级数的应用非常广泛。
一、傅里叶级数的计算方法假设f(x)是一个周期为2π的函数,即对于所有x,都有f(x+2π)=f(x)。
那么我们可以将f(x)表示为以下形式的傅里叶级数:f(x)=a0/2 + ∑[n=1→∞] an*cos(nx) + bn*sin(nx)其中,an和bn是系数,具体计算方法如下:an=1/π * ∫[0→2π] f(x)cos(nx) dxbn=1/π * ∫[0→2π] f(x)sin(nx) dx可以看到,傅里叶级数是一个从1到无穷大的无穷级数。
它由一个常数项a0/2和一系列正弦和余弦函数组成。
系数an和bn是根据函数f(x)在一个周期内的值计算而来。
二、傅里叶级数的应用傅里叶级数具有广泛的应用,以下是其中的几个例子:1. 信号处理在信号处理中,傅里叶级数被用来将一个周期性的信号分解成一系列正弦和余弦函数的和。
这些函数描述了信号在频域上的频率分量,从而使得信号可以被更容易地分析和处理。
2. 振动分析傅里叶级数还可以用来描述和分析振动。
例如,在调音中,傅里叶级数可以将任何一个音调分解成一组正弦和余弦函数。
这些函数描述了声音在频域上的频率成分,从而使得人们可以更好地理解和分析音调和音乐。
3. 电路分析在电路分析中,傅里叶级数可以用来分析周期性的电路信号。
例如,在交流电路中,傅里叶级数可以将一个周期性的电压或电流信号表示为一组正弦和余弦函数的和。
这些函数描述了信号在频域上的频率分量,从而使得工程师可以更好地理解和分析电路性能。
三、傅里叶级数的扩展除了傅里叶级数之外,还有许多基于原始傅里叶级数的扩展方法。
这些扩展方法不仅可以将非周期性函数表示为一组正弦和余弦函数的和,还可以通过傅里叶变换将非周期性信号表示为连续频率分量的积分。
这些方法被广泛地应用于信号处理、傅里叶光学、图像处理等领域。
9.5 傅里叶级数9.5.1 三角级数 三角函数系的正交性在自然界和工程技术中周期现象是经常出现的,如振动、电磁波等,当用函数来描述这些现象时出现的就是周期函数.描述简谐振动的正弦函数)sin(ϕω+=t A y 是一种简单而又为人们所熟悉的周期函数,其中y 表示动点的位置,t 表示时间,A 为振幅,ω为角频率,ϕ为初相.周期为ωπ2.现在类似于将函数展开成幂级数,我们也想将周期函数展开成由简单的三角函数组成的级数.具体的说,希望将以⎪⎭⎫⎝⎛=ωπ2T 的周期函数)(t f 表示为∑∞=++=10),sin()(n n nt n AA t f ϕω(1)其中),3,2,1(,,0 =n A A n n ϕ都是常数. 在利用三角恒等式,变形为∑∞=++=10);sin cos cos sin ()(n n n n nt n A t n AA t f ωϕωϕ令x t A b A a A a n n n n n n ====ωϕϕ,cos ,sin ,200,则得到级数∑∞=++10).sin cos (2n n nnx b nx aa(2)称(2)式的级数为三角级数,其中),3,2,1(,,0 =n b a a n n 都是常数.称三角函数系 ,sin ,cos ,,2sin ,2cos ,sin ,cos ,1nx nx x x x x(3)在区间],[ππ-上正交,就是指在三角函数系(3)中任何不同的两个函数的乘积在区间],[ππ-上的积分等于零,即⎰-==ππ),3,2,1(0cos n nxdx, ⎰-==ππ),3,2,1(0sin n nxdx, ⎰-==ππ),3,2,1,(0cos sin n k nxdxkx ,⎰-≠==ππ),,3,2,1,(0cos cos n k n k nxdxkx ,⎰-≠==ππ),,3,2,1,(0sin sin n k n k nxdxkx .,2),3,2,1(cos,sin222πππππππππ⎰⎰⎰---====dx n nxdx nxdx 19.5.2 以2π为周期的函数的傅里叶级数设)(x f 是周期为π2的周期函数,且能展开成三角级数:∑∞=++=10).sin cos (2)(n k kkx b kx aa x f(4)我们进一步假设级数(4)可以逐项积分.在此假设条件下我们讨论 ,,,,,,,1100n n b a b a b a 与)(x f 的关系. 由三角函数系的正交性,有0022)(a a dx x f ππππ=⋅=⎰-即得.)(10⎰-=πππdx x f a以nx cos 乘(4)两端,再从π-到π逐项积分,同样由三角函数系的正交性我们得到,,2,1,cos )( ==⎰-n a nxdx x f n πππ即,,2,1,cos )(1==⎰-n nxdx x f a n πππ同理可得,,2,1,sin )(1==⎰-n nxdx x f b n πππ由于当0=n 时,n a 的表达式正好给出0a ,因此,已得结果可以合并写成⎪⎪⎩⎪⎪⎨⎧====⎰⎰--,,2,1,sin )(1,,2,1,0,cos )(1 n nxdx x f b n nxdx x f a n n ππππππ(5)这样,不论)(x f 能否表示为三角函数,只要)(x f 在]-ππ,[上可积,就可按公式(5)计算出n a 和n b ,称n a 和n b 为函数)(x f 的傅里叶(Fourier)系数,将这些系数代入(4)式右端,所得的三角级数∑∞=++10).sin cos (2n n nnx b nx aa(6)叫做函数)(x f 的傅里叶级数. 那么,)(x f 在怎样的条件下,它的傅里叶级数不仅收敛,而且收敛于)(x f ?定理(收敛定理,狄利克雷(Dirichlet)充分条件) 设)(x f 是周期为π2的周期函数,如果它满足:(1) 在一个周期内连续或只有有限个第一类间断点, (2) 在一个周期内至多只有有限个极值点, 则)(x f 的傅里叶级数收敛,并且 当x 是)(x f 的连续点时,级数收敛于)(x f ;当x 是)(x f 的间断点时,级数收敛于)]()([21+-+x f x f .⎭⎬⎫⎩⎨⎧+==+-)]()([21)(|x f x f x f x C ,在C 上就成立)(x f 的傅里叶级数展开式)(x f =∑∞=++10)sin cos (2n n nnx b nx aa ,.C x ∈(7)例1 设)(x f 是周期为π2的周期函数,它在),[ππ-上的表达式为⎩⎨⎧<≤<≤--=.0,1,0,1)(ππx x x f将)(x f 展开成傅里叶级数.解 所给函数满足收敛定理的条件,它在点),2,1,0( ±±==k k x π处不连续,在其他点处连续,从而由收敛定理知道)(x f 的傅里叶级数收敛,并且当πk x =时级数收敛于,0211=+-当πk x ≠时级数收敛于)(x f .和函数的图形如图9-1所示图9-1计算傅里叶级数如下:⎪⎩⎪⎨⎧===--=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡=⋅+-====⋅+-==-----⎰⎰⎰⎰⎰⎰.,6,4,2,0,,5,3,1,4])1(1[1cos 1cos 1sin 11sin)1(1sin )(1);,2,1,0(0cos 11cos )1(1cos )(10000n n n n n nx x nx nxdxnxdx nxdxx f b n nxdxnxdx nxdx x f a nn n ππππππππππππππππππππ将求得的系数代入(7)式,就得到)(x f 的傅里叶级数的展开式为).,2,.0;()12sin(1213sin 31sin 4)( πππ±±≠+∞<<-∞⎥⎦⎤⎢⎣⎡+--++=x x x k k x x x f 例2 设)(x f 是周期为π2的周期函数,它在],[ππ-上的表达式为⎩⎨⎧<≤<≤-=.0,0,0,)(ππx x x x f将)(x f 展开成傅里叶级数.解 所给函数满足收敛定理的条件,它在点),2,1,0()12( ±±=+=k k x π处不连续,在其他点处连续,从而由收敛定理知道)(x f 的傅里叶级数收敛,并且当π)12(+=k x 时级数收敛于.2202)()(ππππ-=-=-++-f f在连续点))12((π+≠k x x 处收敛于)(x f .和函数的图形如图9-2所示.图9-2⎪⎩⎪⎨⎧===-=⎥⎦⎤⎢⎣⎡+===---⎰⎰;,6,4,2,0,,5,3,1,2)cos 1(1cos sin 1cos 1cos )(12220n n n n n n nx n nx x nxdxx nxdx x f a n ππππππππππ;2211)(120ππππππππ-=⎥⎦⎤⎢⎣⎡===---⎰⎰x xdx dx x f a.)1(cos sin cos 1sin1sin )(1120nnn n nx n nx x nxdxx nxdx x f b n n +----=-=⎥⎦⎤⎢⎣⎡+-===⎰⎰ππππππππ将求得的系数代入(7)式,得到)(x f 的傅里叶级数展开式为).,3,;(5sin 515cos 524sin 413sin 313cos 322sin 21sin cos 24)(22 ππππππ±±≠+∞<<-∞-⎪⎭⎫⎝⎛++-⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛++-=x x x x x x x x x x x f如果函数)(x f 只定义在],[ππ-且满足收敛定理的条件,则)(x f 也可以展开成傅里叶级数,只要在),[ππ-或],(ππ-外补充函数的定义,使它拓广成周期为π2的周期函数)(x F .按这种方式拓广函数的定义域的过程称为周期延拓.再将)(x F 展开成傅里叶级数.最后限制x 在),(ππ-内,此时)()(x f x F ≡,这样便得到)(x f 的傅里叶级数展开式.根据收敛定理,这级数在区间端点π±=x 处收敛于2)()(+-+ππf f .例3 将函数⎩⎨⎧≤≤<≤--=ππx x x x x f 0,,0,)(展开成傅里叶级数.解 所给函数在区间],[ππ-上满足收敛定理的条件,并且拓广成周期函数时,它在每一点x 处都连续(图9-3),因此拓广的周期函数的傅里叶级数在],[ππ-上收敛于)(x f .πππππππππππ2020cos sin 1cos sin 1cos 1cos )(1cos )(1⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡+-=+-==---⎰⎰⎰n nx n nx x n nx n nx x nxdxx nxdx x nxdx x f a n⎪⎩⎪⎨⎧==-=-=;,6,4,2,0,,5,3,1,4)1(c o s 222n n n n n πππ图9-3 ;21211)(1)(12200ππππππππππππ=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=+-==---⎰⎰⎰x x xdxdx x dx x f a).,3,2,1(0sin cos 1sin cos 1sin 1sin)(1sin )(120200 ==⎥⎦⎤⎢⎣⎡+-+⎥⎦⎤⎢⎣⎡+--=+-==---⎰⎰⎰n n nx n nxx n nx n nx x nxdxx nxdx x nxdxx f b n πππππππππππ将求得的系数代入(6)式,得到)(x f 的傅里叶级数展开式为)(5cos 513cos 31cos 2)(22ππππ≤≤-⎪⎭⎫ ⎝⎛+++4-=x x x x x f .利用这个展开式,我们可以求出几个特殊级数的和.当0=x 时,0)0(=f ,于是又这个展开式得出.513118222+++=π设,4131211222++++=σ,4131211,614121,851311222322222221 +-+-=+++=⎪⎪⎭⎫⎝⎛=+++=σσπσ因为.44212σσσσ+==所以.243212πσσ==,624822221πππσσσ=+=+=又.1264222213πππσσσ=-=-=正弦级数和余弦级数当)(x f 为奇函数时,nx x f cos )(是奇函数,nx x f sin )(是偶函数,故).,3,2,1(sin )(2),,2,1,0(0====⎰n nxdxx f b n a n n ππ(8)即知奇函数的傅里叶级数是只含有正弦项的正弦级数.sin 1∑∞=n nnx b(9)当)(x f 为偶函数时,nx x f cos )(是偶函数,nx x f sin )(是奇函数,故).,3,2,1(0),,2,1,0(cos )(2====⎰n b n nxdx x f a n n ππ(10)即知偶函数的傅里叶级数是只含有余弦项的余弦级数.cos 210∑∞=+n nnx ba (11)例 4 设)(x f 是周期为π2的周期函数,它在),[ππ-上的表达式为x x f =)(.将)(x f 展开成傅里叶级数. 解 首先所给函数满足收敛定理的条件,它在点),2,1,0()12( ±±=+=k k x π处不连续,因此)(x f 的傅里叶级数在点π)12(+=k x 处收敛于,02)(2)()(=-+=-++-ππππf f在连续点))12((π+≠k x x 处收敛于)(x f .和函数的图形如图9-4所示图9-4其次若不计),2,1,0()12( ±±=+=k k x π,则)(x f 是周期为π2的奇函数.显然,此时(8)式仍成立.按公式(8)有),2,1,0(0 ==n a n ,而ππππππ20sin cos sin sin )(⎥⎦⎤⎢⎣⎡+-2=2=2=⎰⎰n nx n nx x nxdxx nxdx x f b n).,3,2,1()1(2cos 21=-=-=+n n n nn π将求得的n b 代入正弦级数(9),得)(x f 的傅里叶级数展开式为).,3,;(sin )1(3sin 312sin 21sin 2)(1ππ±±≠∞<<-∞⎪⎪⎭⎫ ⎝⎛+-+-+-=+x x nx n x x x x f n 对于定义在区间],0[π上并且满足收敛定理的条件的函数)(x f ,我们在开区间)0,(π-内补充函数)(x f 的定义,得到定义在],(ππ-上的函数)(x F ,使它在),(ππ-上成为奇函数(偶函数).按这种方式拓广函数定义域的过程称为奇延拓(偶延拓).然后将奇延拓(偶延拓)后的函数展开成傅里叶级数,这个级数必定是正弦级数(余弦级数).再限制x 在],0(π上,此时)()(x f x F ≡,这样便得到)(x f 的正弦级数(余弦级数)展开式.例6 将函数1)(+=x x f )0(π≤≤x 分别展开成正弦级数和余弦级数.解 先求正弦级数.为此对函数)(x f 进行奇延拓(图9-5).按公式(8)有图9-5 图9-6⎪⎪⎩⎪⎪⎨⎧=-=+⋅=+-=⎥⎦⎤⎢⎣⎡++-=+==⎰⎰.,6,4,2,2,,5,3,1,22)cos )1(1(2sin cos )1(2sin )1(2sin )(220n nn nn n n nx n nx x nxdxx nxdx x f b n πππππππππππ将求得的n b 代入正弦级数(9),得⎥⎦⎤⎢⎣⎡+-++-+=+ x x x x x 4sin 43sin )2(312sin 2sin )2(21πππππ)0(π<<x 在端点0=x 及π=x 处,级数的和显然为零,它不代表原来函数)(x f 的值.再求余弦级数,为此对对函数)(x f 进行偶延拓(图9-6).按公式(10)有⎪⎩⎪⎨⎧=-==-=⎥⎦⎤⎢⎣⎡++=+=⎰.,5,3,1,4,,6,4,2,0)1(cos 2cos sin )1(2cos )1(22230n n n n n n nx n nx x nxdxx a n πππππππ222)1(220+=⎥⎦⎤⎢⎣⎡+=+=⎰πππππx xdx x a ;将求得的n a 代入余弦级数(11),得⎪⎭⎫⎝⎛+++-+=+ x x x x 5cos 513cos 31cos 412122ππ)0(π≤≤x .9.5.3 周期为l 2的周期函数的傅里叶级数定理 设周期为l 2的周期函数)(x f 满足收敛定理的条件,则它的傅里叶级数展开式为∑∞=∈⎪⎭⎫ ⎝⎛++=10)(,sin cos 2)(n nn C x l x n b l x n a a x f ππ (1)其中⎪⎪⎭⎪⎪⎬⎫====⎰⎰--).,3,2,1(sin )(1),2,1,0(cos)(1lln ll n n dx l xn x f lb n dx lxn x f l a ππ(2))]}()([21)(|{+-+==x f x f x f x C当)(x f 为奇函数时,∑∞=∈=1),(sin)(n n C x lx n b x f π (3)其中).,3,2,1(sin)(20⎰==l n n dx lx n x f lb π (4)当)(x f 为偶函数时,∑∞=∈+=10),(cos2)(n n C x lx n a a x f π (5)其中).,2,1,0(cos)(20⎰==l n n dx lx n x f la π (6)证 作变量代换lxz π=,于是区间l x l ≤≤-就变换成ππ≤≤-z .设函数)()()(z F lzf x f ==π,从而)(z F 是周期为π2的周期函数,并且它满足收敛定理的条件,将)(z F 展开成傅里叶级数:∑∞=++=10),sin cos (2)(n n nnz b nz aa z F 其中.sin)(1,cos )(1⎰⎰--==ππππππnzdz z F b nzdz z F a n n在以上式子中令lxz π=,并注意到)()(x f z F =,于是有∑∞=⎪⎭⎫ ⎝⎛++=10,sin cos 2)(n nn l x n b l x n a a x f ππ 而且⎰⎰--==lln lln dx lx n x f lb dx lx n x f la ππsin)(1,cos)(1.类似地,可以证明定理的其余部分.例7 设)(x f 是周期为4的周期函数,它在)2,2[-上的表达式为⎩⎨⎧<≤<≤-=20,,02,0)(x k x x f (常数).0≠k将)(x f 展开成傅里叶级数.解 这时2=l ,按公式(2)有;21021);0(02sin 2cos 2120202020k kdx dx a n x n n kdx xn k a n =+=≠=⎥⎦⎤⎢⎣⎡==⎰⎰⎰-πππ⎪⎩⎪⎨⎧===-=⎥⎦⎤⎢⎣⎡-==⎰.,6,4,2,0,,5,3,1,2)cos 1(2cos 2sin21220n n n kn n k x n n k dx xn k b n ππππππ 将求得的系数n n b a ,代入(1)式,得.25sin 5123sin 312sin22)(⎪⎭⎫⎝⎛++++= x x x k k x f ππππ ),4,2,0;( ±±≠+∞<<-∞x x)(x f 的傅里叶级数的和函数的图形如图9-7所示.图9-79.5.4 在[-l , l ]上有定义的函数的傅里叶展开定义在[-l , l ]上的函数f (x ),可以通过延拓而成为一个在数轴上有对于的一个以2l 为周期的函数F (x ),从而可以展开成傅立叶级数,然后再将自变量限制回(-l , l ),即得f (x )的傅立叶展开式。