钟罩式气体流量标准装置
- 格式:pdf
- 大小:707.37 KB
- 文档页数:32
钟罩式气体流量标准装置
钟罩式气体流量标准装置是一种用于校准气体流量测量仪表的设备,其原理是
利用钟罩内气体流动产生的压差来确定气体流量,从而实现对流量测量仪表的准确校准。
本文将介绍钟罩式气体流量标准装置的工作原理、结构特点以及使用注意事项。
首先,钟罩式气体流量标准装置的工作原理是基于贝努利方程和连续方程。
当
气体通过钟罩时,由于钟罩内截面积的变化,气体流速发生改变,从而产生了静压和动压的变化。
通过测量钟罩两侧的压差,可以计算出气体流量,进而实现对流量测量仪表的准确校准。
其次,钟罩式气体流量标准装置的结构特点主要包括钟罩、差压传感器、温度
传感器、压力传感器等组成部分。
钟罩通常采用金属材料制成,具有一定的流线型设计,以减小气体流动时的阻力和湍流效应。
差压传感器用于测量钟罩两侧的压差,温度传感器和压力传感器则用于对气体的温度和压力进行实时监测,从而保证测量结果的准确性和可靠性。
最后,使用钟罩式气体流量标准装置时需要注意以下几点。
首先,应选择适合
的钟罩尺寸和流量范围,以确保测量的准确性。
其次,在使用过程中应注意保持装置的清洁和完好,避免灰尘和杂质对测量结果造成影响。
另外,定期对装置进行校准和维护是十分必要的,以确保其长期稳定的工作性能。
综上所述,钟罩式气体流量标准装置是一种用于校准气体流量测量仪表的重要
设备,其工作原理基于贝努利方程和连续方程,具有结构简单、测量精度高的特点。
在使用时,需要注意选择合适的尺寸和流量范围,保持装置的清洁和完好,并定期进行校准和维护,以确保其稳定可靠的工作性能。
计量标准技术报告计量标准名称钟罩式气体流量标准装置(0.2级)计量标准负责人建标单位名称填写日期目录一、建立计量标准的目的………………………………………………………………… ( )二、计量标准的工作原理及其组成………………………………………………………( )三、计量标准器及主要配套设备…………………………………………………………( )四、计量标准的主要技术指标……………………………………………………………( )五、环境条件………………………………………………………………………………( )六、计量标准的量值溯源和传递框图……………………………………………………( )七、计量标准的稳定性考核………………………………………………………………( )八、检定或校准结果的重复性试验…………………………………………………………( )九、检定或校准结果的不确定度评定………………………………………………( )十、检定或校准结果的验证………………………………………………………………( ) 十一、结论…………………………………………………………………………………( ) 十二、附加说明……………………………………………………………………………( )六、计量标准的量值溯源和传递框图注:应当提供《计量标准的稳定性考核记录》。
注:应当提供《检定或校准结果的重复性试验记录》。
即合成方差由三个不确定度分量组成,它们是:燃气表读数V m 所引入的不确定度,燃气表分辨力V m 所引入的不确定度,以及通过燃气表气体体积V ref 测量所引入的不确定度。
(1) 燃气表读数V m 所引入的不确定度分量由于被检燃气表为数字显示,故读数本身不引入任何误差,即u (V m )=0,于是所引入的不确定度分量为:0)V (u V E)E (u m m1=∂∂=(2) 燃气表分辨力V m 所引入的不确定度分量被检表的分辨力为0.2 L ,每一个读数可能包含的最大误差为±0.1 L ,分辨力所引入的误差应满足距形分布,于是V m 的不确定度为:L 0577.03L 1.0)V δ(u m ==对应的灵敏系数c 2为:1ref m 2L 01.0L1001V 1V δE c -===∂∂=于是所引入的不确定度分量为:41m m21077.5L 0577.0L 01.0)V δ(u V δE)E (u --⨯=⨯=∂∂=(3) 气体体积V ref 所引入的不确定度分量已经得到u (V ref )=0.128 L ,对应的灵敏系数c 3为:1242ref m m ref 3L 01.0L10L100V V δV V E c -==+=∂∂=于是所引入的不确定度分量为:31ref ref31028.1L 128.0L 01.0)V (u V E)E (u --⨯=⨯=∂∂=6.示值误差E 测量不确定度分量汇总表和合成标准不确定度十、检定或校准结果的验证采用比对法。
钟罩式气体流量标准装置
钟罩式气体流量标准装置是一种用于校准气体流量仪表的标准装置,其原理是利用钟罩内气体流动的特性来实现流量的精确测量。
该装置通常由钟罩、压力控制装置、温度控制装置、流量测量装置等部分组成,能够提供稳定、准确的气体流量标准。
在钟罩式气体流量标准装置中,钟罩起到了关键的作用。
钟罩是一种特殊形状的容器,其内部空间与外部环境隔离,通过控制内部压力和温度来实现气体流动的稳定。
钟罩内的气体流动受到外部环境的影响较小,能够提供相对独立的流量标准环境。
压力控制装置用于控制钟罩内的压力,通常采用精密的压力调节阀和传感器来实现对内部压力的精确控制。
通过调节压力控制装置,可以实现不同范围的气体流量标准。
温度控制装置则用于控制钟罩内的温度,通常采用恒温器或者热电偶等装置来实现对内部温度的精确控制。
温度对气体流动的影响较大,因此温度控制装置对于保证流量标准的稳定性至关重要。
流量测量装置用于实时监测钟罩内气体的流量,通常采用流量计或者质量流量计来进行测量。
通过对流量的精确测量,可以实现对气体流量标准的准确校准。
钟罩式气体流量标准装置具有精度高、稳定性好、适用范围广等特点,广泛应用于气体流量仪表的校准和检定工作中。
在工业生产、科研实验等领域都有着重要的应用价值。
总之,钟罩式气体流量标准装置是一种重要的气体流量标准装置,其稳定、准确的流量标准能够为气体流量仪表的校准和检定提供可靠保障,具有广阔的应用前景和市场需求。
钟罩式气体流量标准装置结构和理论基础1.钟罩装置的结构原理钟罩式气体流量标准装置的结构如图2.1所示,它主要由钟罩、液槽、平衡锤和补偿机构组成。
按钟罩升降的传动方式,钟罩装置可分成机械传动式和气动式,一般大钟罩采用气动式;按液槽内是否有干槽,钟罩装置可分成湿式和干式两种[1]。
图2.1 钟罩式气体流量标准装置结构Fig.2.1 Structure of the bell prover gas calibration facility钟罩式气体流量标准装置是以经过标定的钟罩有效容积为标准容积的计量仪器,当钟罩下降时,钟罩内的气体经过试验管道排往被检表,以钟罩排出的气体标准体积来校验流量仪表。
为了保证在一次校验中,气体以恒定的流量排出钟罩,钟罩内应该有一个恒定的压力源,它是利用钟罩的重量超过平衡锤质量的常数而产生的(所以也叫钟罩余压),并利用补偿机构使得余压不随钟罩浸入液槽中的深度而改变,从而保证了钟罩内工作压力的恒定。
所以,钟罩式气体流量标准装置本身就是一个恒压源并能给出标准容积的装置。
当需要不同的工作压力时,可通过增减平衡锤的砝码来实现,平衡锤的砝码加得越多,钟罩内的工作压力就越低。
补偿机构是为了补偿钟罩内压力受密封液浮力影响的机构,目前常见的有链条式补偿机构、杠杆式补偿机构和象限式补偿机构等几种,国内钟罩装置主要用象限式补偿机构。
2.钟罩装置检定系统的理论基础钟罩装置检定系统的气体参数有[5]:Vz ——钟罩内部排出气体体积,单位L 。
Vz 是钟罩排出气体的标准体积,通过光电编码器测得钟罩下降距离,后经过计算可得到Vz 。
Tz ——钟罩内部气体温度,单位K 。
15.273+=tz Tz ,tz 为温度传感器测得的摄氏温度。
Pz ——钟罩内部气体压力,单位Pa 。
Pa pz Pz +=,pz 为压力传感器测得的压力,Pa 为标准大气压,101325=Pa Pa ,要使钟罩装置测量更加精确,还应该测量环境的大气压力。
一标段:钟罩式四表位燃气表检定装置技术规格1、钟罩式气体流量标准装置的技术参数:1.1 精度等级:0.5%;1.2 流量范围:100L鈡罩:(0.5-6 )m3/h ,20L钟罩(0.0 16-1.2 )m3/h 。
★1.3 压力波动:≤30Pa;1.4 工作压力;1.6k Pa 满足4工位燃气表检定需要;★1.5 鈡罩的水槽、鈡罩筒、排气管等均采用优质不锈钢材料制造,永不生锈,且表面抛光;★1.6 鈡罩的提升方式为:恒温动力气体提升。
其提升原理:将空气压缩机排出的气体经过调压,恒温处理后,输送到钟罩内,避免了进入钟罩内的气体与室内气体温度不同,使检定结果更准确。
1.7 钟罩有关参数表:2.四工位夹表校验台的技术参数:★2.1 夹表方式:气动夹表、夹表力可调;能夹持、检定现在市场所普遍使用的膜式燃气表,也应能夹持、检定超声燃气表。
2.2 夹表数量:4块表串联;★2.3 表前管路压力损失:大流量下:≤20Pa;小流量下:≤2Pa;2.4 夹表定位:有夹表定位功能,夹表接头本身具有定位功能;2.5 可以联接100L鈡罩两台、20L鈡罩一台,一次装夹即可完成所有流量点的检定。
★3、双鈡罩组合切换系统:;3.1 采用独有技术将两台鈡罩联接起来3.2 两台鈡罩实现无扰动切换;3.3 保证两台鈡罩压力、波动等指标一致;4、检定控制系统:燃气表自动控制系统由PLC、各种模块、时间控制单元、电脑、打印机、压力传感器等组成。
符合《JJG577-2012》计量检定规程。
系统功能如下:控制系统与微机联机工作的功能:完成单点单次的气体流量表检定,实现对二台(100L一台,20L一台)钟罩的提升、检测、下降、停止的控制可以用来检定至少4台的容积式流量表(如燃气表)设定脉冲当量、仪表系数预置被检表类型、被检表数量、检表管线预置每次检定的提升脉冲数、检定容积实现双鈡罩的平滑转换显示钟罩提升或下降的脉冲数(容积)显示被检表示值流量,及流经被检表的实际累积流量记录检测时间,并自动计算气体瞬时流量,可以方便地做流量调节可以检测两点温度,多(或五)点压力,实现温度、压力补偿功能,显示被检表的压力损失,使其参与修正计算。
钟罩式气体流量计标准装置的结构和工作原理图1是钟罩式气体流量标准装置为计量标准器的燃气表检定示意图。
它具有准确度高、重复性好、操作简单易学、量传检定简捷、价格低廉、维护费用少等许多优点。
配套计量设备为计时器、测压仪器、测温仪器,辅助设备为进气阀门和出气阀门、流量设定器及试验管道等部件。
图1 燃气表检定示意图钟罩式气体流量标准装置的结构有多种,但主要结构基本相同,只是某个部件或某个环节上有差异。
在这里为了叙述方便,首先介绍一种比较典型的钟罩式气体流量标准装置的结构和工作原理,然后按照其部件和环节的不同再介绍一些其他种类的钟罩装置。
图2 钟罩式(三罩式)气体流量标准装置结构图如图2所示,钟罩是一个倒置着放在液槽内的容器,上部封闭,下部开口。
液槽内放有水或不易挥发的、低黏度的油作为密封液体,此时可动的钟罩和固定的液槽形成一个容积可变的密封空腔,使得钟罩对大气密闭。
装置上有一根导气管,一端通到钟罩的内部,中间穿过液槽底部和密封液体,一端与试验管道相连接。
试验管道上装有阀门和被检的流量计。
为了使钟罩垂直地上升和下降而不晃动,钟罩两边装有导向滑轮,两边的立柱上装有导轨,滑轮沿导轨上下滚动;钟罩内也有等角分布的三个滑轮,沿导气管或立柱上下滚动。
为了调节钟罩内的压力,在钟罩上部系一条柔绳,柔绳经过定滑轮,与配重物相连,配重物的重量是可调的。
钟罩在上升和下降过程中,由于浸没于液体中的深度在变化,使液体对钟罩的浮力产生变化,为了使钟罩在上升和下降过程中始终保持内压力不变,用压力补偿机构来补偿浮力的变化。
温度计和压力计分别测量钟罩内和被检流量计处的温度和压力。
钟罩上装有标尺,标尺上有上挡板和下挡板,钟罩两挡板之间的容积是已知的。
在液槽上装有光电发信器,光电发信器与计时器和被检流量计的脉冲计数器相连,控制计时和计数。
鼓风机作为气源,用来向钟罩内充气使钟罩上升。
液位计用来指示液槽内的液位。
三、钟罩式气体流量标准装置的工作原理钟罩式气体流量标准装置是以空气为介质,对气体流量计进行检定的标准设备。
智能型钟罩式气体流量标准装置的使用注意事项近几年,随着检定技术的不断更新,智能型钟罩式气体流量标准装置,已经取代了传统钟罩式气体流量标准装置。
其为由传统钟罩式气体流量标准装置和计算机控制器相连接的新型检定装置,大大提高了检定效率。
作为一种新设备,在检定过程中仪器仪表世界网技术员的一些体会,提出几点应注意的问题,希望对大家能有所帮助。
标准装置的工作原理钟罩式气体流量标准装置,是以空气为介质,对气体流量计进行检测的标准设备。
装置由可动的钟罩和固定的液槽,形成一个容积可变的密封空腔,钟罩下降过程中,通过压力补偿机构,使其内部气体压力保持一定值,不随钟罩浸入密封液体中的深度而变化。
以钟罩内的有效容积为标准,当钟罩下降时,钟罩内气体经实验管道排出,排往被检仪表,以钟罩内排出的气体容积比较被检仪表转动的体积数,从而确定被检仪表的精度。
标准装置密封性的影响钟罩式气体流量标准装置在进行检定前,必须要检查整个管路是否漏气。
如果标准装置存在漏气现象,则钟罩内气体不能完全通过被检表,部分气体经由漏气处排出,由JJG577-2005《膜式燃气表检定规程》中示值误差计算公式:其中,δ——单次测量的示值误差,%;Vm——燃气表的示值,dm3;Vref——通过燃气表的气体实际值,dm3;Vm变小,检定得出的误差比实际的偏小,从而影响对被检仪表的判定。
一般可通过下面的方法检验装置是否漏气:将检定台所有表位装夹上燃气表,提升钟罩并记录当前钟罩标尺所在位置,静止一段时间后,观察钟罩标尺所在位置是否变化,如果下降,则说明装置存在漏气现象。
可在以下几处查找:①燃气表装夹处、管道接口处、阀门和连接测量压力的差压式传感器的橡胶管。
这4处可用肥皂水涂抹观察,是否有气泡产生判定;②管道出气端的电磁阀。
在将出气口端的流量调节器关闭情况下,排除上述4处仍出现漏气的话,则管道出气端的电磁阀有可能存在问题。
电磁阀的损坏或进入异物都会造成漏气。
如果有颗粒物体通过管道进入电磁阀,可将电磁阀内部拆开,把异物清除干净即可。
尺寸法钟罩式气体流量标准装置校准和测量能力评定1.概述1.1测量依据:JJG165-2005《钟罩式气体流量标准装置》1.2测量标准:主要设备二等标准金属量器组表1. 实验室的计量标准器和配套设备1.3被测对象:表2. 被测钟罩式气体流量流量标准装置1.4测量方法:升起钟罩稳定后,标记出上、中、下截面位置,用直径尺分别对上、中、下截面进行各三次(共九次)直径测量di。
连续6次测上下挡板量高度Hi,然后测量标尺体积Vsc(L)以及上下挡板高度钟罩排出体积VT(L),进而得出实际体积。
2.数学模型(1)式中:V——钟罩标准容积,L;——平均直径,mm;——钟罩该段上下挡板间平均高度,mm;θ——钟罩内气体温度,℃;α1——钟罩标尺材料的线膨胀系数,1/℃;α2——钟罩材料的线膨胀系数,1/℃;α4——测H用的测高仪或尺子材料的线膨胀系数,1/℃;α4——直径尺的线膨胀系数1/℃。
若|20-θi|<5℃内时,可认为:(2)3.不确定度传播率:由(2)式计算灵敏度系数:(dm2)(dm2)4.标准不确定度评定4.1 钟罩直径的测量标准不确定度4.1.1上、中、下三段九次测量直径di所产生的A类测量标准不确定度:(测量9次,即n=9)4.1.2测量使用的直径尺引入的B类标准不确定度:使用Ⅱ级直径尺其(0. 3+0. 2 L)mm ,包含因子k=2由此可得:mm4.1.3合成直径测量的标准不确定度:4.2该段(或上下挡板)高度测量标准不确定度4.2.1测量该段高度6次所产生的A类标准不确定度:(测量6次,即n=6)4.2.2测量Hi使用的钢直尺引入的B类标准不确定度:测量使用的钢直尺最大误差为:0.2mm,则有:mm=0.1mm4.2.3合成高度测量的标准不确定度:4.3测量标尺体积Vsc的标准不确定度:(L) (3)式中:e——标尺的厚度,mm;B——标尺宽度,mm。
由于尺寸法测量200L以上的钟罩,该项测量结果不确定度可忽略不计,则有u(Vsc)=0。