钟罩式气体流量标准装置的
- 格式:ppt
- 大小:196.50 KB
- 文档页数:13
钟罩式气体流量标准装置
钟罩式气体流量标准装置是一种用于校准气体流量测量仪表的设备,其原理是
利用钟罩内气体流动产生的压差来确定气体流量,从而实现对流量测量仪表的准确校准。
本文将介绍钟罩式气体流量标准装置的工作原理、结构特点以及使用注意事项。
首先,钟罩式气体流量标准装置的工作原理是基于贝努利方程和连续方程。
当
气体通过钟罩时,由于钟罩内截面积的变化,气体流速发生改变,从而产生了静压和动压的变化。
通过测量钟罩两侧的压差,可以计算出气体流量,进而实现对流量测量仪表的准确校准。
其次,钟罩式气体流量标准装置的结构特点主要包括钟罩、差压传感器、温度
传感器、压力传感器等组成部分。
钟罩通常采用金属材料制成,具有一定的流线型设计,以减小气体流动时的阻力和湍流效应。
差压传感器用于测量钟罩两侧的压差,温度传感器和压力传感器则用于对气体的温度和压力进行实时监测,从而保证测量结果的准确性和可靠性。
最后,使用钟罩式气体流量标准装置时需要注意以下几点。
首先,应选择适合
的钟罩尺寸和流量范围,以确保测量的准确性。
其次,在使用过程中应注意保持装置的清洁和完好,避免灰尘和杂质对测量结果造成影响。
另外,定期对装置进行校准和维护是十分必要的,以确保其长期稳定的工作性能。
综上所述,钟罩式气体流量标准装置是一种用于校准气体流量测量仪表的重要
设备,其工作原理基于贝努利方程和连续方程,具有结构简单、测量精度高的特点。
在使用时,需要注意选择合适的尺寸和流量范围,保持装置的清洁和完好,并定期进行校准和维护,以确保其稳定可靠的工作性能。
钟罩式气体流量标准装置
钟罩式气体流量标准装置是一种用于校准气体流量仪表的标准装置,其原理是利用钟罩内气体流动的特性来实现流量的精确测量。
该装置通常由钟罩、压力控制装置、温度控制装置、流量测量装置等部分组成,能够提供稳定、准确的气体流量标准。
在钟罩式气体流量标准装置中,钟罩起到了关键的作用。
钟罩是一种特殊形状的容器,其内部空间与外部环境隔离,通过控制内部压力和温度来实现气体流动的稳定。
钟罩内的气体流动受到外部环境的影响较小,能够提供相对独立的流量标准环境。
压力控制装置用于控制钟罩内的压力,通常采用精密的压力调节阀和传感器来实现对内部压力的精确控制。
通过调节压力控制装置,可以实现不同范围的气体流量标准。
温度控制装置则用于控制钟罩内的温度,通常采用恒温器或者热电偶等装置来实现对内部温度的精确控制。
温度对气体流动的影响较大,因此温度控制装置对于保证流量标准的稳定性至关重要。
流量测量装置用于实时监测钟罩内气体的流量,通常采用流量计或者质量流量计来进行测量。
通过对流量的精确测量,可以实现对气体流量标准的准确校准。
钟罩式气体流量标准装置具有精度高、稳定性好、适用范围广等特点,广泛应用于气体流量仪表的校准和检定工作中。
在工业生产、科研实验等领域都有着重要的应用价值。
总之,钟罩式气体流量标准装置是一种重要的气体流量标准装置,其稳定、准确的流量标准能够为气体流量仪表的校准和检定提供可靠保障,具有广阔的应用前景和市场需求。
钟罩式气体流量标准装置结构和理论基础1.钟罩装置的结构原理钟罩式气体流量标准装置的结构如图2.1所示,它主要由钟罩、液槽、平衡锤和补偿机构组成。
按钟罩升降的传动方式,钟罩装置可分成机械传动式和气动式,一般大钟罩采用气动式;按液槽内是否有干槽,钟罩装置可分成湿式和干式两种[1]。
图2.1 钟罩式气体流量标准装置结构Fig.2.1 Structure of the bell prover gas calibration facility钟罩式气体流量标准装置是以经过标定的钟罩有效容积为标准容积的计量仪器,当钟罩下降时,钟罩内的气体经过试验管道排往被检表,以钟罩排出的气体标准体积来校验流量仪表。
为了保证在一次校验中,气体以恒定的流量排出钟罩,钟罩内应该有一个恒定的压力源,它是利用钟罩的重量超过平衡锤质量的常数而产生的(所以也叫钟罩余压),并利用补偿机构使得余压不随钟罩浸入液槽中的深度而改变,从而保证了钟罩内工作压力的恒定。
所以,钟罩式气体流量标准装置本身就是一个恒压源并能给出标准容积的装置。
当需要不同的工作压力时,可通过增减平衡锤的砝码来实现,平衡锤的砝码加得越多,钟罩内的工作压力就越低。
补偿机构是为了补偿钟罩内压力受密封液浮力影响的机构,目前常见的有链条式补偿机构、杠杆式补偿机构和象限式补偿机构等几种,国内钟罩装置主要用象限式补偿机构。
2.钟罩装置检定系统的理论基础钟罩装置检定系统的气体参数有[5]:Vz ——钟罩内部排出气体体积,单位L 。
Vz 是钟罩排出气体的标准体积,通过光电编码器测得钟罩下降距离,后经过计算可得到Vz 。
Tz ——钟罩内部气体温度,单位K 。
15.273+=tz Tz ,tz 为温度传感器测得的摄氏温度。
Pz ——钟罩内部气体压力,单位Pa 。
Pa pz Pz +=,pz 为压力传感器测得的压力,Pa 为标准大气压,101325=Pa Pa ,要使钟罩装置测量更加精确,还应该测量环境的大气压力。
一标段:钟罩式四表位燃气表检定装置技术规格1、钟罩式气体流量标准装置的技术参数:1.1 精度等级:0.5%;1.2 流量范围:100L鈡罩:(0.5-6 )m3/h ,20L钟罩(0.0 16-1.2 )m3/h 。
★1.3 压力波动:≤30Pa;1.4 工作压力;1.6k Pa 满足4工位燃气表检定需要;★1.5 鈡罩的水槽、鈡罩筒、排气管等均采用优质不锈钢材料制造,永不生锈,且表面抛光;★1.6 鈡罩的提升方式为:恒温动力气体提升。
其提升原理:将空气压缩机排出的气体经过调压,恒温处理后,输送到钟罩内,避免了进入钟罩内的气体与室内气体温度不同,使检定结果更准确。
1.7 钟罩有关参数表:2.四工位夹表校验台的技术参数:★2.1 夹表方式:气动夹表、夹表力可调;能夹持、检定现在市场所普遍使用的膜式燃气表,也应能夹持、检定超声燃气表。
2.2 夹表数量:4块表串联;★2.3 表前管路压力损失:大流量下:≤20Pa;小流量下:≤2Pa;2.4 夹表定位:有夹表定位功能,夹表接头本身具有定位功能;2.5 可以联接100L鈡罩两台、20L鈡罩一台,一次装夹即可完成所有流量点的检定。
★3、双鈡罩组合切换系统:;3.1 采用独有技术将两台鈡罩联接起来3.2 两台鈡罩实现无扰动切换;3.3 保证两台鈡罩压力、波动等指标一致;4、检定控制系统:燃气表自动控制系统由PLC、各种模块、时间控制单元、电脑、打印机、压力传感器等组成。
符合《JJG577-2012》计量检定规程。
系统功能如下:控制系统与微机联机工作的功能:完成单点单次的气体流量表检定,实现对二台(100L一台,20L一台)钟罩的提升、检测、下降、停止的控制可以用来检定至少4台的容积式流量表(如燃气表)设定脉冲当量、仪表系数预置被检表类型、被检表数量、检表管线预置每次检定的提升脉冲数、检定容积实现双鈡罩的平滑转换显示钟罩提升或下降的脉冲数(容积)显示被检表示值流量,及流经被检表的实际累积流量记录检测时间,并自动计算气体瞬时流量,可以方便地做流量调节可以检测两点温度,多(或五)点压力,实现温度、压力补偿功能,显示被检表的压力损失,使其参与修正计算。
尺寸法钟罩式气体流量标准装置校准和测量能力评定1.概述1.1测量依据:JJG165-2005《钟罩式气体流量标准装置》1.2测量标准:主要设备二等标准金属量器组表1. 实验室的计量标准器和配套设备1.3被测对象:表2. 被测钟罩式气体流量流量标准装置1.4测量方法:升起钟罩稳定后,标记出上、中、下截面位置,用直径尺分别对上、中、下截面进行各三次(共九次)直径测量di。
连续6次测上下挡板量高度Hi,然后测量标尺体积Vsc(L)以及上下挡板高度钟罩排出体积VT(L),进而得出实际体积。
2.数学模型(1)式中:V——钟罩标准容积,L;——平均直径,mm;——钟罩该段上下挡板间平均高度,mm;θ——钟罩内气体温度,℃;α1——钟罩标尺材料的线膨胀系数,1/℃;α2——钟罩材料的线膨胀系数,1/℃;α4——测H用的测高仪或尺子材料的线膨胀系数,1/℃;α4——直径尺的线膨胀系数1/℃。
若|20-θi|<5℃内时,可认为:(2)3.不确定度传播率:由(2)式计算灵敏度系数:(dm2)(dm2)4.标准不确定度评定4.1 钟罩直径的测量标准不确定度4.1.1上、中、下三段九次测量直径di所产生的A类测量标准不确定度:(测量9次,即n=9)4.1.2测量使用的直径尺引入的B类标准不确定度:使用Ⅱ级直径尺其(0. 3+0. 2 L)mm ,包含因子k=2由此可得:mm4.1.3合成直径测量的标准不确定度:4.2该段(或上下挡板)高度测量标准不确定度4.2.1测量该段高度6次所产生的A类标准不确定度:(测量6次,即n=6)4.2.2测量Hi使用的钢直尺引入的B类标准不确定度:测量使用的钢直尺最大误差为:0.2mm,则有:mm=0.1mm4.2.3合成高度测量的标准不确定度:4.3测量标尺体积Vsc的标准不确定度:(L) (3)式中:e——标尺的厚度,mm;B——标尺宽度,mm。
由于尺寸法测量200L以上的钟罩,该项测量结果不确定度可忽略不计,则有u(Vsc)=0。
钟罩式气体流量标准装置的工作原理
钟罩式气体流量标准装置是以空气为介质,对气体流量计进行检定的标准设备。
它是一种比较经典的气体流量标准装置,在压力不高、流量不大的情况下,装置使用起来是比较简单的。
因此,在国内气体流量计量领域得到广泛的应用。
钟罩内定容定压的气体,经实验管线流经被检采样器,以钟罩流出气体的容积值与被检采样器的指示值进行对比,实现对被检采样器的检定和校准。
钟罩式气体流量标准装置工作原理是由可动的钟罩和固定的液槽构成一个容积可变的密封空腔。
钟罩下降过程中通过压力补偿机构,使其内部气体压力保持一个定值,不随钟罩浸入密封液体中的深度而变化。
钟罩两挡板之间的容积是固定的,测出两挡板先后通过光电发讯器所经历的时间,可计算出瞬时流量。
检定过程中,用温度计和压力计测量出钟罩内气体温度θ、表压力ρ'、被检流量计处的气体温θm、表压力ρ'm。
由于钟罩两档板之间的体积已预先通过检定确定下来(即在20℃和零表压力下的容积)VN,检定时钟罩的容积为:
V=VS[1+(2αB+αSC)(θ-20)] (1)
式中:V——检定条件下钟罩的容积;VS——钟罩的标准容积;α B ——钟罩材料的膨胀系数;αSC——标尺的线膨胀系数;θ——检定时的温度。
钟罩式装置用气体最好是室内空气,用专用气源须对进入钟罩的气体给予一定的恒温时间,钟罩内的气体压力应不偏离规定值。
钟罩式气体流量标准装置钟罩式气体流量标准装置是一种用于测量气体流量的装置,它采用了一种独特的设计,能够精确地测量气体的流量,为工业生产和科学研究提供了重要的数据支持。
本文将介绍钟罩式气体流量标准装置的工作原理、结构特点以及应用领域。
首先,我们来了解一下钟罩式气体流量标准装置的工作原理。
它利用了流体力学的原理,通过测量气体通过装置时对装置产生的压力差来确定气体的流量。
在装置内部,气体流经一个特定形状的钟罩,当气体通过钟罩时,会产生压力差,通过测量这个压力差的大小,就可以确定气体的流量。
这种设计能够有效地减小气体流动时的阻力,从而提高了测量的精度。
其次,钟罩式气体流量标准装置的结构特点也是其优越性能的重要保障。
它通常由气体进口、钟罩、压力传感器、数据采集系统等部件组成。
其中,钟罩的设计非常关键,它的形状和尺寸需要经过精确的计算和实验验证,以确保气体流过时产生的压力差能够准确地反映流量的大小。
同时,压力传感器和数据采集系统能够实时监测和记录气体流量的数据,为后续的分析和应用提供了重要的支持。
最后,我们来看一下钟罩式气体流量标准装置的应用领域。
由于其高精度、稳定性和可靠性,它被广泛应用于工业生产和科学研究中。
在工业生产中,它可以用于监测和控制各种气体的流量,保障生产过程的稳定性和安全性。
在科学研究中,它可以用于实验室的气体流量测量,为科研人员提供准确的数据支持。
综上所述,钟罩式气体流量标准装置是一种重要的气体流量测量装置,它的精准测量能力和稳定性使其在工业生产和科学研究中得到了广泛的应用。
随着科学技术的不断进步,相信钟罩式气体流量标准装置将会在更多领域展现出其优越性能,为人类的生产和生活带来更多的便利和进步。
钟罩式气体流量标准装置
1 用途:
空气、水蒸气及氯化氰三元混合气体专用流量计校准。
2 数量:
50L:一套; 100L:一套
3 技术参数要求:
3.1准确度等级:0.2级
满足JJG165—2005 《钟罩式气体流量标准装置》检定规程要求
3.2 主要配置:
3.2.1钟罩气体计量器
材质:不锈钢
液槽:双筒环形截面式
密封液:5号工业白油
余压:50L ≥1000Pa 100L ≥2000Pa
压力波动:≤20 Pa
3.2.2 钟罩提升方式
气动提升
3.2.3传感控制系统
光电式发讯装置;
光电旋转编码器;
计时器:起、停应由钟罩上的光电发讯器发出的信号控制。
计时器准确度应优于测量时间的0.1%,分辨力≤0.01s
气控阀(电磁阀);
温湿度传感器.(0~50) ℃,最大允许误差:±0.1℃;
(0~100)%RH;最大允许误差:3%RH;
压力变送器;
差压变送器;
钟罩内应有上、下两个测温、测湿点。
3.2.4显示装置
显示钟罩内压力、温度、湿度;被检流量计压力、温度、湿度;标态时瞬时流量(被检表压差、流量)等参数。
3.2.5电脑、打印机
打印输出日期、标准排气量、检测点压力、温度。
3.3 环境条件:
工作温度:(20±5)℃,钟罩上下两侧温点温度差≤0.2℃;
相对湿度:(30 ~80)%;
大气压力:(80~106)kPa。
钟罩式标准气体流量标准装置工作原理
钟罩式标准气体流量标准装置是一种用于测量气体流量的设备。
它的工作原理如下:
1. 气体进入装置:气体首先通过管道进入装置。
在装置的进气口处设有一个调流管,用于控制气体的流量。
2. 流量计量:气体通过进气口进入钟罩内部。
钟罩内部有一个流量计,用于测量通过装置的气体流量。
流量计可以采用多种原理,例如浮子流量计、涡轮流量计等。
3. 控制压力:为了保持气体流量的稳定,装置内部设有一个控制阀门和一个压力传感器。
当装置内部的压力超过设定值时,控制阀门会自动调节气体的流量,以保持压力稳定。
4. 标准化:装置会根据标准流量进行校准和标定,以确保测量的流量值准确可靠。
5. 数据显示和记录:装置通常会配备一个数据显示屏,用于显示和记录测量的气体流量值。
可以通过连接计算机或其他数据采集系统,对测量结果进行进一步的处理和分析。
总之,钟罩式标准气体流量标准装置通过控制气体流量、测量压力和标定校准等步骤,实现对气体流量的准确测量和控制。
钟罩式气体流量标准装置钟罩式气体流量标准装置是一种用于测量气体流量的装置,它通常由钟罩、流量计、压力计、温度计等部件组成。
在工业生产中,准确测量气体流量对于保证生产质量和安全非常重要。
因此,钟罩式气体流量标准装置作为一种精密的仪器设备,具有广泛的应用价值。
首先,钟罩式气体流量标准装置的工作原理是基于质量守恒定律和伯努利定律。
当气体通过钟罩时,由于流动速度增加,静压就会降低。
通过测量这一压降,结合气体的密度和温度,就可以计算出气体的流量。
因此,钟罩式气体流量标准装置能够准确地测量各种气体的流量,具有高精度和可靠性。
其次,钟罩式气体流量标准装置具有多种优点。
首先,它适用于各种气体的测量,包括蒸汽、空气、氮气、氧气等。
其次,它具有较大的测量范围和高精度,能够满足不同工况下的流量测量需求。
此外,钟罩式气体流量标准装置结构简单,维护方便,使用寿命长,能够在恶劣的工业环境下稳定工作。
因此,它被广泛应用于化工、石油、冶金、电力等行业中。
除此之外,钟罩式气体流量标准装置的使用也需要注意一些问题。
首先,安装时需要保证流体的进口和出口处没有任何阻力,以确保流体能够自由流动。
其次,需要定期对装置进行校准和维护,以保证测量的准确性和稳定性。
此外,在使用过程中需要注意避免振动和冲击,防止对装置造成损坏。
综上所述,钟罩式气体流量标准装置作为一种重要的流量测量设备,在工业生产中具有广泛的应用前景。
它的高精度、可靠性和稳定性,使其成为工业自动化和智能化的重要组成部分。
随着工业技术的不断发展,钟罩式气体流量标准装置将会更加智能化、便捷化,为工业生产提供更加精准的流量测量和控制。
计量标准技术报告计量标准名称钟罩式气体流量标准装置(0.2级)计量标准负责人建标单位名称填写日期目录一、建立计量标准的目的………………………………………………………………… ( )二、计量标准的工作原理及其组成………………………………………………………( )三、计量标准器及主要配套设备…………………………………………………………( )四、计量标准的主要技术指标……………………………………………………………( )五、环境条件………………………………………………………………………………( )六、计量标准的量值溯源和传递框图……………………………………………………( )七、计量标准的稳定性考核………………………………………………………………( )八、检定或校准结果的重复性试验…………………………………………………………( )九、检定或校准结果的不确定度评定………………………………………………( )十、检定或校准结果的验证………………………………………………………………( ) 十一、结论…………………………………………………………………………………( ) 十二、附加说明……………………………………………………………………………( )六、计量标准的量值溯源和传递框图注:应当提供《计量标准的稳定性考核记录》。
注:应当提供《检定或校准结果的重复性试验记录》。
即合成方差由三个不确定度分量组成,它们是:燃气表读数V m 所引入的不确定度,燃气表分辨力V m 所引入的不确定度,以及通过燃气表气体体积V ref 测量所引入的不确定度。
(1) 燃气表读数V m 所引入的不确定度分量由于被检燃气表为数字显示,故读数本身不引入任何误差,即u (V m )=0,于是所引入的不确定度分量为:0)V (u V E)E (u m m1=∂∂=(2) 燃气表分辨力V m 所引入的不确定度分量被检表的分辨力为0.2 L ,每一个读数可能包含的最大误差为±0.1 L ,分辨力所引入的误差应满足距形分布,于是V m 的不确定度为:L 0577.03L 1.0)V δ(u m ==对应的灵敏系数c 2为:1ref m 2L 01.0L1001V 1V δE c -===∂∂=于是所引入的不确定度分量为:41m m21077.5L 0577.0L 01.0)V δ(u V δE)E (u --⨯=⨯=∂∂=(3) 气体体积V ref 所引入的不确定度分量已经得到u (V ref )=0.128 L ,对应的灵敏系数c 3为:1242ref m m ref 3L 01.0L10L100V V δV V E c -==+=∂∂=于是所引入的不确定度分量为:31ref ref31028.1L 128.0L 01.0)V (u V E)E (u --⨯=⨯=∂∂=6.示值误差E 测量不确定度分量汇总表和合成标准不确定度十、检定或校准结果的验证采用比对法。