串接双容水箱液位PID整定实验
- 格式:doc
- 大小:279.00 KB
- 文档页数:4
《过程控制系统设计》课程实验报告2018年5月9日实验二双容水箱液位PID控制实验一、实验目的1、学习双容水箱液位PID 控制系统的组成和原理;2、进一步熟悉PID 的调节规律;3、进一步熟悉PID 控制器参数的整定方法。
二、实验设备1、四水箱实验系统DDC 实验软件;2、PC 机(Window XP 操作系统);3、CS4000型过程控制实验装置。
三、实验原理1、控制系统的组成及原理单回路调节系统,一般是指用一个控制器来控制一个被控对象,其中控制器只接收一个测量信号,其输出也只控制一个执行机构。
双容水箱液位PID 控制系统也是一种单回路调节系统,典型的双容水箱液位控制系统如图 1 所示:图 1 双容水箱液位PID 控制系统的方框图在双容水箱液位PID 控制系统中,以液位为被控量。
其中,测量电路主要功能是测量对象的液位并对其进行归一化等处理;PID 控制器是整个控制系统的核心,它根据设定值和测量值的偏差信号来进行调节,从而控制双容水箱的液位达到期望的设定值。
3、PID 控制器参数的实验整定方法双容水箱液位PID 控制器参数整定,是为了得到某种意义下的最佳过渡过程。
我们这里选用较通用的“最佳”标准,即在阶跃扰动作用下,先满足需要的衰减率,然后尽量协调准确性和快速性要求。
四、实验内容在手动情况下进入初始稳态(如图3),然后根据水箱的实际液位情况进行了一次下水箱阶跃响应测试,最终达到平衡状态,如图4所示。
根据两点法求K、T、τ参数,并用响应曲线法整定出对应的控制器参数。
将整定好的参数投入设备,进行闭环自动控制,并微调参数,记录分析控制系统的响应曲线。
图2 现场接线图图3 建立工作点图4 下水箱阶跃响应测试曲线五、数据记录由图4的阶跃响应曲线,根据两点法求出K、T、τ参数,并用响应曲线法整定出对应的控制器参数P、Ti,绘图及计算过程如图5所示。
图5 响应曲线法整定参数设置完PID参数(Kc=1/P=1/0.7=1.43,Ti=8.52min×60=514.8s),手动切自动,修改设定值(SV=13),最终达到平衡状态,如图6所示。
双容水箱液位定值控制系统实验双容水箱液位定值控制系统一、实验目的1( 通过实验,进一步了解双容对象的特性。
2( 掌握调节器参数的整定与投运方法。
3( 研究调节器相关参数的改变对系统动态性能的影响。
二、实验设备1( THJ-2型高级过程控制系统装置。
2( 计算机、上位机MCGS组态软件、RS232-485转换器1只、串口线1根3( 万用表一只三、实验原理本实验系统以中水箱与下水箱为被控对象,下水箱的液位高度为系统的被图6-1 双容液位定值控制系统结构图控制量。
基于系统的给定量是一定值,要求被控制量在稳态时等于给定量所要求的值,所以调节器的控制规律为PI或PID。
本系统的执行元件既可采用电动调节阀,也可用变频调速磁力泵。
如果采用电动调节阀作执行元件,则变频调速磁图6-2 双容液位定值控制系统方框图力泵支路中的手控阀F2-4或F2-5打开时可分别作为中水箱或下水箱的扰动。
图6-1为实验系统的结构图,图6-2为控制系统的方框图。
四、实验内容与步骤1( 图6-1所示,完成实验系统的接线。
2( 接通总电源和相关仪表的电源。
3( 打开阀F1-1、 F1-2、F1-7、F1-10和F1-11,且使F1-10的开度大于F1-11的开度。
4( 用实验四(上册)中所述的临界比例度法或4:1衰减振荡法整定调节器的相关参数。
5( 设置系统的给定值后,用手动操作调节器的输出,控制电动调节阀给中水箱打水,待中水箱液位基本稳定不变且下水箱的液位等于给定值时,把调节器切换为自动,使系统投入自动运行状态。
6( 启动计算机,运行MCGS组态软件软件,并进行下列实验:1)当系统稳定运行后,突加阶跃(给定量增加5%,15%),观察并记录系统的输出响应曲线。
2)待系统进入稳态后,启运变频器调速的磁力泵支路,分别适量改变阀F2-4或阀F2-5的开度(加扰动),观察并记录被控制量液位的变化过程。
7.通过反复多次调节PI的参数,使系统具有较满意的动态性能指标。
实验三双容液位定值控制实验原理:本实验以中水箱与下水箱串联作为被控对象,下水箱的液位高度为系统的被控制量。
要求下水箱液位稳定至给定量,将压力传感器LT3检测到的下水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制下水箱液位的目的。
实验系统控制方框图如下所示:图3-1 双容液位定值控制系统方框图实验内容一:观察系统在PI控制参数下的动态响应曲线1、按要求设定参数,液位给定值SV=80mm,PI参数为P=20,I=60。
2、设置好系统的给定值后,用手动操作AI智能调节仪的输出,通过电动调节阀给上水箱打水,待其液位达到给定量所要求的值,且基本稳定不变时,把输出切换为自动,使系统投入自动运行状态。
其总貌图如下图所示:图3-2 双容液位定值控制系统总貌图上图曲线中所示,恒定不变的曲线线为下水箱液位的设定值,上面一条曲线为下水箱液位的的测量值,下面一条曲线为中水箱液位的测量值。
3、 观察系统在设定的控制参数下的动态响应曲线,如下图所示:图3-3 双容液位定值控制系统动态响应曲线由上图可知,其最大测量值为PV max =119.35mm ,由此可得出其最大超调量δ=(119.35-80)/80*100%,δ=50% 。
又由实时数据知:t 1=09:59:15,t 2=10:04:43则其上升时间t =t 2-t 1=328s 。
由以上可知,该双容控制系统的动态响应不如单容液位定值控制系统的动态响应,并且,在双容定值控制系统中,系统的响应还有一定的滞后,其滞后时间为T=94s 。
分析以上现象可得出以下的结论:本实验中被测对象由两个不同容积的水箱相串联组成,故称其为双容对象。
根据前一实验单容水箱液位定值控制的原理,可知双容水箱数学模型是两个单容水箱数学模型的乘积,即双容水箱的数学模型可用一个二阶惯性环节来描述:G(s)=G 1(s)G 2(s)=)1s T )(1s T (K 1s T k 1s T k 212211++=+⨯+ (3-1) 式中K =k 1k 2,为双容水箱的放大系数,T 1、T 2分别为两个水箱的时间常数。
实验五双容水箱液位调节阀控制5.1 实验目的了解双容液位控制的构成环节,调节阀的工作原理,熟悉上位机组态王的组态及通讯。
通过实验,掌握双容液位PID参数的整定。
5.2 实验要求1、实验前需熟悉实验的设备装置以及管路构成。
2、熟悉仪表装置,如检测单元、控制单元、执行单元等。
3、用响应曲线法求取PID参数,以4:1标准衰减振荡作为指标,整定出最佳的比例度、积分时间和微分时间。
5.3 实验设备及系统组成1、实验设备:A3000对象系统(1)泵:工作电源220VAC。
(2)变频器:工作电源220VAC,控制信号4-20mA,输出电源0-220VAC。
(3)电动调节阀:工作电源24VAC,控制信号2.10VDC,阀门开度0.100%。
(4)液位传感器:输出信号4-20mA,量程为0-50cm。
2、系统组成双容下水箱液位PID控制流程图如图5.1所示图5.1双容下水箱液位调节阀PID单回路控制3、测点清单测点清单如表5.1所示:表5.1 双容下水箱液位调节阀PID单回路控制测点清单水介质由泵P102箱V104中加压获得压头,经由调节阀FV101进入水箱V102,经QV117流向V103,通过挡板QV116回流至水箱V104而形成水循环;其中,水箱V103的液位由LT103测得,用调节挡板QV116的开启程度来模拟负载的大小。
本例为定值自动调节系统,FV101为操纵变量,LT103为被控变量,采用PID调节来完成。
需要全打开的手阀:QV102、QV107;需要全关闭的手阀:QV103、QV104、QV105、QV109;挡板开度:QV1170.8cm。
QV1160.5cm。
5.4 操作步骤和调试1、编写控制器算法程序,下装调试;编写测试组态工程,连接控制器,进行联合调试。
2、在现场对象上,选择管路,打开或关闭相应手阀。
3、在控制柜上,将IO面板的下水箱液位输出连接到AI0,IO面板的电动调节阀控制端连到A O0。
双容水箱液位串级PID控制实验一、实验目的1、进一步熟悉PID调节规律2、学习串级PID控制系统的组成和原理3、学习串级PID控制系统投运和参数整定二、实验设备1、四水箱实验系统DDC实验软件2、PC机(Window 2000 Professional 操作系统)三、实验原理1、控制系统的组成及原理一个控制器的输出用来改变另一个控制器的设定值,这样连接起来的两个控制器称为“串级”控制器。
两个控制器都有各自的测量输入,但只有主控制器具有自己独立的设定值,只有副控制器的输出信号送给被控对象,这样组成的系统称为串级控制系统。
本仿真系统的双容水箱串级控制系统如下图所示:图17-1 本仿真系统的双容水箱串级控制系统框图串级控制器术语说明主变量:y1称主变量。
使它保持平稳使控制的主要目的副变量:y2称副变量。
它是被控制过程中引出的中间变量副对象:上水箱主对象:下水箱主控制器:PID控制器1,它接受的是主变量的偏差e1,其输出是去改变副控制器的设定值副控制器:PID控制器2,它接受的是副变量的偏差e2,其输出去控制阀门副回路:处于串级控制系统内部的,由PID控制器2和上水箱组成的回路主回路:若将副回路看成一个以主控制器输出r2为输入,以副变量y2为输出的等效环节,则串级系统转化为一个单回路,即主回路。
串级控制系统从总体上看,仍然是一个定值控制系统,因此,主变量在干扰作用下的过渡过程和单回路定值控制系统的过渡过程具有相同的品质指标。
但是串级控制系统和单回路系统相比,在结构上从对象中引入一个中间变量(副变量)构成了一个回路,因此具有一系列的特点。
串级控制系统的主要优点有:1)副回路的干扰抑制作用发生在副回路的干扰,在影响主回路之前即可由副控制器加以校正2)主回路响应速度的改善副回路的存在,使副对象的相位滞后对控制系统的影响减小,从而改善了主回路的相应速度3)鲁棒性的增强串级系统对副对象及控制阀特性的变化具有较好的鲁棒性4)副回路控制的作用副回路可以按照主回路的需要对于质量流和能量流实施精确的控制由此可见,串级控制是改善调节过程极为有效的方法,因此得到了广泛的应用。
青岛科技大学实验报告年月日姓名专业班级同组者课程实验项目:双容水箱液位单回路控制投运及PID参数整定一、实验目的1.学习和使用组态软件MCGS。
2.学习和使用PLC的编程和通讯功能。
3.掌握调节器参数的整定方法。
4.研究调节器相关参数的改变对系统动态性能的影响。
5.在实验平台上实现简单的控制方案。
二、实验设备1.THJ-2型高级过程控制系统装置。
2.计算机、上位机MCGS组态软件、RS232-485转换器1只、串口线1根3.万用表一只三、实验原理本实验系统以上水箱与中水箱为被控对象,中水箱的液位高度为系统的被控制量。
基于系统的给定量是一定值,要求被控制量在稳态时等于给定量所要求的值,所以调节器的控制规律为PI或PID。
本系统的执行元件既可采用电动调节阀,也可用变频调速磁力泵。
图2双容液位定值控制系统方框图四、实验内容与步骤1、接好实验线路。
2、接通总电源和相关仪表的电源。
3、把调节器设置于手动位置,改变其手动输出值,使中水箱的液位处于某一平衡位置(一般为水箱的中间位置)。
4、在上位机监控界面中设定PID参数,在PID扩展参数中设定控制器的正反作用。
5、当系统输出稳定时,由手动切换到自动,保证系统投运的无扰动切换。
6、使系统的给定值作阶跃跳变(3—5cm),使中水箱的液位由原平衡状态开进入另一个平衡状态。
反复调节PID 始变化,经过一定的调节时间后,液位h2参数使系统输出曲线的衰减比为4:1。
7、打印历史曲线。
五、实验要求请给出实验的调节过程及调节参数,并附上历史曲线,分析实验结果,总结PI参数变化对系统输出的影响。
双容水箱液位定值控制系统实验报告实验目的:通过搭建双容水箱液位定值控制系统,了解液位控制的基本原理和方法,掌握PID控制器在液位控制中的应用。
实验器材:1.液位控制综合实验台2.电子积分器PID控制器3.水泵4.液位传感器5.两个水箱6.电压表和电流表实验步骤:1.将两个水箱放在实验台上,一个用作上升水箱,一个用作下降水箱。
2.将水泵安装在上升水箱中,并通过输水管连接两个水箱。
3.将液位传感器安装在上升水箱和下降水箱中,并将其连接到电子积分器PID控制器。
4.将电子积分器PID控制器连接到电源,并连接电压表和电流表来监测相应的电压和电流。
5.打开水源,使用电子积分器PID控制器调节水泵的运行方式和水泵的转速。
6.观察液位传感器的反馈信号,并根据反馈信号调整PID控制器的参数,使得液位保持在设定值附近。
7.记录不同设定值下液位的控制效果,并分析数据。
8.关闭水源,停止实验。
实验结果:根据实验数据,可以观察到双容水箱液位控制系统的控制效果。
当设定值改变时,PID控制器能够调整水泵的运行方式和水泵的转速,以使得液位保持在设定值附近。
实验结果表明,在合适的PID控制器参数设置下,液位的稳定性和控制精度较高。
实验分析:在双容水箱液位定值控制系统中,PID控制器起到了关键作用。
P项(比例项)根据液位的偏差来调节水泵的转速,I项(积分项)根据液位的积累偏差来调整水泵的运行方式,D项(微分项)根据液位的变化速度来预测液位的变化趋势。
通过PID控制器的联合作用,可以实现对液位的稳定控制。
从实验结果分析可以看出,PID控制器的参数设置非常重要。
当P参数过大或过小时,会导致液位振荡或调节速度缓慢;当I参数过大或过小时,会导致液位超调或稳态误差;当D参数过大时,系统可能产生过冲。
因此,需要根据具体的系统要求和实验条件来合理设置PID控制器的参数。
结论:通过搭建双容水箱液位定值控制系统,并对其进行实验研究,我们可以了解液位控制的基本原理和方法,掌握PID控制器在液位控制中的应用。
垂直双容过程液位控制实验报告书实验名称:姓名:班级:学号:指导老师:实验2.1双容液位单回路PID 控制一、实验目的1、实验前需熟悉双容液位控制模型的特点。
2、熟悉仪表装置,如检测单元、控制单元、执行单元等。
3、用单回路PID 控制方法,整定出最佳的比例度、积分时间和微分时间。
二、实验流程水介质由泵U101(P101)从水箱V104 中加压获得压头,QV113、经水箱V102、QV114、水箱V101、阀QV116,回流至水箱V104 而形成水循环,负荷的大小通过手阀QV116来调节;其中,水箱V101 的液位由液位变送器LT101 测得。
三、实验结果1、给定阶跃后效果如图2、干扰测试效果如图收集试验数据:P:5.00 I:1.0 D:0.00,准备与串级控制实验结果进行比较。
实验2.2双容液位串级控制一、实验目的1、了解双容液位串级控制工作原理。
2、通过实验,掌握串级控制系统的投运、控制器参数的整定方法。
3、组建串级回路,并测量两类干扰下的控制效果。
二、实验流程水介质由泵U101(P101)从水箱V104 中加压获得压头,QV113、经水箱V102、QV114、水箱V101、阀QV116,回流至水箱V104 而形成水循环,负荷的大小通过手阀QV116来调节;其中,水箱V101 的液位由液位变送器LT101 测得。
其中,水箱V101 的液位由液位变送器LT101 测得,水箱V102 的液位由液位变送器LT102 测得。
三、实验结果1、给定阶跃后系统如图2、干扰后效果如图记录数据P:5.00 I:1.00 D:0.00四、实验结果与思考1、本次串级实验中主、副控制器正反作用如何确定?因为水位和水流量成正比,故为正作用调节器,K0为正。
又因为,系统停止工作时,应关闭水阀,故应为气开式,K V2也为正,为保证副回路为负反馈,故K V2也为正。
同理,主回路为保证负反馈,K C1也为正。
2、结合本次实验情况,分析串级控制比单回路控制质量高的原因。
二〇一三年六月毕业设计说明书学生姓名 :徐伟华学院 :化工学院系别 :过程装备与控制工程系专业 :过程装备与控制工程班级 :过控 09-4班指导教师 :张祯琳摘要我的毕业设计题目是串接双容水箱液位 PID 组态及研究,本题目研究的是以MCGS 系统为平台,采用 PID 控制的算法对双容水箱的液位进行控制,首先在 MCGS 组态软件做一个可控界面,进行可视化操作,找出控制质量指标比较好的调节规律。
单回路控制系统解决了工艺生产过程自动化中大量的参数定值控制问题, 但是单回路控制系统往往不能满足双容对象控制的生产工艺要求。
而串级控制系统是改善双容对象控制质量的有效方法之一, 在过程控制中得到广泛的应用。
本实验正是利用串级控制对双容水箱液位进行研究, 解决滞后大、过渡时间长等问题。
本说明书详细介绍了过程控制理论领域的诸多知识, 其中包括 AE2000A 型过程控制实验对象系统的介绍, MCGS 全中文工控组态软件的介绍,全中文控制系统软件内容的使用,双容水箱串级控制实验组态软件的开发,实验的研发过程, PID 调节,实验结果分析和问题的解答等。
在巩固专业基本内容的同时, 还要能够将计算机自动测试、控制、自动化等方面的知识有机结合在一起,进一步丰富知识结构,掌握控制理论的基本内容, 立足于理论和实际的联系。
关键词 :串级控制系统; PID调节; MCGS组态软件AbstractMy graduation project iscascade double capacitywater boxliquid level PID configuration and research ,the study of this subject is MCGS system as a platform, adaptive PID control algorithm on the dual-tank liquid level control, first of all In MCGS configuration software to make a controlled interface to visualize the process. Identify indicators of good quality control regulation law.Single-loop control system solves a lot of craft production process automation control parameter value, but often a single loop control system can not meet the dual capacity of production process control objects. The cascade control system is to improve the quality of two-capacity object effective method of control, in process control is widely used. This experiment is the use of cascade control of the dual-tank water level studies to address the delay large, long transition issues.This manual process that includes a lot of knowledge in the field of process control theory was introduced in detail,including the type of AE2000A process control experiment object system,the MCGS all of Chinese industrial control configuration software,the use of the content of the control system software in Chinese, double letwater tank cascade control research and development process, in the process of PID regulation, the analysis of results and the solution of problem.Elements in the consolidation of the professional, we must also be able to automatic computer testing, control, automation and other organic combination of knowledge, to further enrich their knowledge structure, to master the basic elements of control theory, based on the theory and practice links.Key words:Cascade control systems; PID regulator; MCGS configuration software 目录引言 (1)第一章实验简介 ................................................. - 2 -1.1 实验题目 (2)1.2 选题来源 ................................... 错误!未定义书签。
题目4 串接双容水箱液位PID整定实验
一、课程设计主要任务及要求
1、通过实验进一步了解双容水箱液位的特性。
2、应用动态特性参数法和经验法景象双容水箱液位控制系统调节器参数的整定。
3、分析P、PI和PID三种调节器分别对液位系统的控制作用。
二、实验设备
1. THJ-FCS型高级过程控制系统实验装置。
2. 计算机及相关软件。
三、实验原理
本实验以上水箱与中水箱串联作为被控对象,中水箱的液位高度为系统的被控制量。
要求中水箱液位稳定至给定量,将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制调节阀的开度,以达到控制中水箱液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。
调节器的参数整定可采用本章第一节所述任意一种整定方法。
本实验系统结构图和方框图如图3-10所示。
图3-10 双容液位定值控制系统
(a)结构图(b)方框图
四、实验控制系统流程图
本实验控制系统的流程图如图3-11所示。
图3-11 验控制系统的流程图
上水箱液位检测信号LT1为标准的模拟信号,直接传送到SIEMENS的模拟量输入模块SM331,SM331和分布式I/O模块ET200M直接相连,ET200M挂接到PROFIBUS-DP 总线上,PROFIBUS-DP总线上挂接有控制器CPU315-2 DP(CPU315-2 DP为PROFIBUS-DP总线上的DP主站),这样就完成了现场测量信号到CPU的传送。
本实验的执行机构为带PROFIBUS-PA通讯接口的阀门定位器,挂接在PROFIBUS-PA 总线上,PROFIBUS-PA总线通过LINK和COUPLER组成的DP链路与PROFIBUS-DP 总线交换数据,PROFIBUS-DP总线上挂接有控制器CPU315-2 DP,这样控制器CPU315-2 DP发出的控制信号就经由PROFIBUS-DP总线到达PROFIBUS-PA总线来控制执行机构阀门定位器。
五、实验内容与步骤
本实验选择上水箱和中水箱串联作为双容对象(也可选择中水箱和下水箱)。
实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-6全开,将上水箱出水阀门F1-9、中水箱出水阀门F1-10开至适当开度(要求阀F1-9稍大于阀F1-10),其余阀门均关闭。
1、接通控制柜和控制台电源电源,并启动磁力驱动泵和空压机。
2、打开作上位控制的PC机,点击“开始”菜单,选择弹出菜单中的“SIMATIC”选
项,再点击弹出菜单中的“WINCC”,再选择弹出菜单中的“WINCC CONTROL CENTER 5.0”,进入WINCC资源管理器,打开组态好的上位监控程序,点击管理器工具栏上的“激活(运行)”按钮,进入的实验主界面。
3、鼠标左键点击实验项目“串接双容水箱液位PID整定实验”,系统进入正常的测试状态,呈现的实验界面如图3-12所示。
图3-12 实验界面
在实验界面的左边是实验流程图,右边是参数整定,下面一排六个切换功能键
4、在上位机监控界面中点击“手动”,并将设定值和输出值设置为一个合适的值,此操作可通过设定值或输出值旁边相应的滚动条或输出输入框来实现。
5、启动磁力驱动泵,磁力驱动泵上电打水,适当增加/减少输出量,使上水箱的液位平衡于设定值。
6、按经验法或动态特性参数法整定PI调节器的参数,并按整定后的PI参数进行调节器参数设置。
7、待液位稳定于给定值后,将调节器切换到“自动”控制状态,待液位平衡后,加干扰:突增(或突减)设定值的大小,使其有一个正(或负)阶跃增量的变化;干扰均要求扰动量为控制量的5%~15%,干扰过大可能造成水箱中水溢出或系统不稳定。
加入干扰后,水箱的液位便离开原平衡状态,经过一段调节时间后,水箱液位稳定至新的设定值(采用
后面两种干扰方法仍稳定在原设定值),观察计算机记录此时的设定值、输出值和参数,液位的响应过程曲线将如图3-13所示。
图3-13 液位的响应过程曲线
8、分别适量改变调节器的P及I参数,重复步骤7,通过实验界面下边的按钮切换观察计算机记录不同控制规律下系统的阶跃响应曲线。
9、分别用P、PI、PID三种控制规律重复步骤4~8,通过实验界面下边的按钮切换观察计算机记录不同控制规律下系统的阶跃响应曲线。
六、设计报告要求
1、画出双容水箱液位定值控制实验的结构框图。
2、用实验方法确定调节器的相关参数,写出整定过程。
3、根据实验数据和曲线,分析系统在阶跃扰动作用下的静、动态性能。
4、比较不同PI参数对系统的性能产生的影响。
5、分析P、PI、PID三种控制方式对本实验系统的作用。