2018重庆中考数学第18题专题复习及详解二
- 格式:doc
- 大小:6.91 MB
- 文档页数:8
2018年重庆市中考数学试卷(A 卷)答案及解析一、选择题 (本大题12个小题,每小题4分,共48分。
)1.2的相反数是 A .2-B .12-C.12D .2【答案】A【解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解 【点评】本题考查了相反数的定义,属于中考中的简单题2.下列图形中一定是轴对称图形的是A.B.C.D.【答案】D【解析】A40°的直角三角形不是对称图形;B 两个角是直角的四边形不一定是轴对称图形;C 平行四边形是中心对称图形不是轴对称图形;D 矩形是轴对称图形,有两条对称轴【点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大,考生主要注意看清楚题目要求。
3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是 A.企业男员工 B.企业年满50岁及以上的员工 C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工【答案】C【解析】A 调查对象只涉及到男性员工;B 调查对象只涉及到即将退休的员工;D 调查对象只涉及到新进员工【点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单题。
4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A .12B .14C .16D .18 【答案】C 【解析】40°直角三角形四边形平行四边形矩形∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
类型一根据实际问题分析函数图象行程问题各自路程与时间的函数图象1. (2017哈尔滨)周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的是( )A. 小涛家离报亭的距离是900 mB. 小涛从家去报亭的平均速度是60 m/minC. 小涛从报亭返回家中的平均速度是80 m/minD. 小涛在报亭看报用了15 min第1题图2. (2017聊城)端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙两队在500米的赛道上,所划行的路程y(m)与时间x(min)之间的函数关系如图所示.下列说法错误的是( )A. 乙队比甲队提前0.25 min到达终点B. 当乙队划行110 m时,此时落后甲队15 mC. 0.5 min后,乙队比甲队每分钟快40 mD. 自1.5 min开始,甲队若要与乙队同时到达终点,甲队的速度需提高到255 m/min第2题图3. (2017锦州)已知A,B两地相距10千米,上午9:00甲骑电动车从A地出发到B地,9:10乙开车从B地出发到A地,甲、乙两人距A地的距离y(千米)与甲所用的时间x(分)之间的关系如图所示,则乙到达A地的时间为________.第3题图4. 一辆货车从A地匀速驶往相距350 km的B地,当货车行驶1小时经过途中的C地时,一辆快递车恰好从C地出发以另一速度匀速驶往B地,当快递车到达B地后立即掉头以原来的速度匀速驶往A 地.(货车到达B 地,快递车到达A 地后分别停止运动)行驶过程中两车与B 地间的距离y (单位:km )与货车从出发所用的时间x (单位:h )间的函数关系如图所示.则货车到达B 地后,快递车再行驶________h 到达A 地.第4题图5. 快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早12小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y (千米)与所用时间x (小时)之间的函数图象如图所示,快车开始返回之后,经过________小时两车相距100千米的路程.第5题图6. (2017重庆指标到校卷)周末,小华骑自行车从家里出发到植物园游玩,从家出发0.5 h后,因自行车损坏修理了一段时间,而后按原速前往植物园,小华离家43h 后,爸爸开车沿相同的路线前往植物园,如图是他们离家的路程y (km )与小华离家时间x (h )的函数关系图象.已知爸爸开车的速度是小华骑车速度的3倍,若爸爸比小华早10 min 到达植物园,则从小华家到植物园的路程是________km .第6题图7. (2017随州)在一条笔直的公路上有A 、B 、C 三地,C 地位于A 、B 两地之间.甲车从A 地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地,在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C 地的距离y (km )与甲车行驶时间t (h )之间的函数关系如图所示. 下列结论:①甲车出发2 h 时,两车相遇;②乙车出发1.5 h 时,两车相距170 km ;③乙车出发257h 时,两车相遇;④甲车到达C 地时,两车相距40 km .其中正确的是________.(填写所有正确结论的序号).第7题图两者之间的距离与时间的函数图象8. (2017重庆巴蜀模拟)一次越野赛跑中,当小明跑了1600米时,小刚跑了1450米,此后两人分别以另一速度跑完全程,两人到达终点时均停止跑步,如图,折线图表示改变速度后两人之间的距离y(米)与改变速度后跑步所用的时间x(秒)之间的函数关系图象,则这次越野赛跑的全程为________米.第8题图9. (2018原创)一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离s(km)与慢车行驶时间t(h)之间的函数图象如图所示,则快车到达甲地时,慢车距离甲地________km.第9题图10. (2017重庆南开模拟)已知A、B两港航程为60 km,甲船从A港出发顺流匀速驶向B 港,同时乙船从B港出发逆流匀速驶向A港.行至某刻,甲船发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港,这样甲乙两船同时到达各自目的地.若甲、乙两船在静水中的速度相同,两船之间的距离s(km)与行驶时间t(h)之间的函数图象如图所示,则水流速度为________km/h.第10题图11. (2018原创)甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发前往距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.若丙也从甲出发的地方沿相同的方向骑自行车行驶,且与甲的速度相同,当甲追上乙后45秒时,丙也追上乙,则丙比甲晚出发________秒.第11题图12. (2017重庆西大附中月考)在我校刚刚结束的缤纷体育节上,初三年级参加了60米迎面接力比赛.假设每名同学在跑步过程中是匀速的,且交接棒的时间忽略不计,如图是A、B两班的路程差y(米)与比赛开始至A班先结束第二棒的时间x(秒)之间的函数图象.则B 班第二棒的速度为________米/秒.第12题图13. (2017重庆巴蜀月考)快车和慢车同时从甲地出发,以各自的速度匀速向乙地行驶,快车到达乙地后停留了45分钟,立即按原路以另一速度匀速返回,直至与慢车相遇.已知慢车的速度为60千米/时,两车之间的距离y(千米)与两车行驶时间x(小时)之间的函数图象如图所示,则快车从乙地返回时的速度为________千米/时.第13题图14. (2018原创)甲、乙两车分别从A、B两地同时出发匀速相向而行,大楼C位于AB之间,甲与乙相遇在AC中点处,然后两车立即掉头,以原速原路返回,直到各自回到出发点.设甲、乙两车距大楼C的距离之和为y(千米),甲车离开A地的时间为t(小时),y与t的函数图象如图所示,则第21小时时,甲乙两车之间的距离为________千米.第14题图15. 已知“成渝”两地相距350千米,现有一直达高铁往返于两城市之间,该高铁每次到达成都、重庆后均需停留1小时再重新出发.暑假期间,重庆市铁路局计划在同线路上临时加开一辆慢速直达旅行专列.在试运行期间,该旅行专列与高铁同时从重庆出发,在整个行驶过程中,两车均保持各自速度匀速行驶,经过3.75小时两车第一次相遇.已知两车之间的距离y(千米)与行驶时间x(小时)之间的部分函数关系如图所示,当两车第二次相遇时,该旅行专列共行驶了________千米.第15题图16. (2017重庆一中一模)为了锻炼身体,强健体魄,小明和小强约定每天在两家之间往返长跑20分钟.两家正好在同一直线道路边上,某天小明和小强从各自的家门口同时出发,沿两家之间的直线道路按各自的速度匀速往返跑步,已知小明的速度大于小强的速度.在跑步的过程中,小明和小强两人之间的距离y(米)与他们出发的时间x(分钟)之间的关系如图所示,在他们3次相遇中,离小明家最近那次相遇距小明家________米.第16题图其他问题1. 我市某小区实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中,正确的个数有( )①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③当x=4时,甲、乙两队所挖管道长度相同;④甲队比乙队提前2天完成任务.A. 1个B. 2个C. 3个D. 4个第1题图2. (2017重庆育才二模)有一个装有进、出水管的容器,先只开进水管,3分钟后,同时打开进、出水管,当容器注满水后,关闭进水管,只打开出水管,直至把容器内水全部放完.在整个过程中容器内水量y(升)与时间x(分钟)之间的函数关系如图所示,那么容器的容积为________升.第2题图答案行程问题1.D【解析】A.由纵坐标看出小涛家离报亭的距离是1200 m, 故A不符合题意;B.由横坐标看出小涛去报亭用时15分钟,∴小涛从家去报亭的平均速度是80 m/min,故B不符合题意;C.易得返回时的解析式为y=-60x+3000,当y=1200时,x=30,由横坐标看出返回时的时间是50-30=20 min,∴返回时的速度是1200÷20=60 m/min,故C不符合题意;D.由横坐标看出小涛在报亭看报用了30-15=15 min,故D符合题意.2.D【解析】由题意知,选项A正确;易求y甲=200x,y乙=⎩⎪⎨⎪⎧160x (0<x≤0.5)240x -40(0.5<x≤2.25),当乙队划行110 m 时,所用时间为58 min ,代入甲的解析式得y 甲=125,125-110=15,故B 正确;由乙的解析式可知,0.5 min 后,乙队每分钟比甲队快40 m ,故C 正确;1.5 min 时,甲跑300 m ,若同时到达终点,则用的速度应为500-3002.25-1.5≈266.7 m /min ,故D 错误.所以选D .3. 9:20 【解析】∵甲30分走完全程10千米,∴甲的速度是13千米/分钟,由图中看出两人在走了5千米时相遇,那么甲此时用了15分钟,则乙用了(15-10)分钟,∴乙的速度为5÷5=1千米/分钟,∴乙走完全程需要时间为10÷1=10分钟,∴此时的时间应加上乙先前迟出发的10分,∴现在的时间为9点20.故答案为9:20.4. 11340【解析】由函数图象可知,(1,270)表示货车行驶1 h 时距B 地的距离为270 km ,则货车行驶速度为:(350-270)÷1=80 km /h ;再由函数图象可知,在货车行驶4 h 时,与快递车返回途中相遇,设快递车速度为t km /h ,由题意得(4-1)(80+t )=270×2,解得t =100 km /h ;货车到B 地的时间为35080=358h ,所以,当货车到达B 地后,快递车要到达A 地还需要的时间为350+270100-358-1=11340h . 5. 13【解析】由函数图象可知,快车从出发至回到甲地,共用时间3.5 h ,则慢车到达甲地用时3.5-0.5=3 h ,甲乙两地相距180 km ,所以慢车的速度为180÷3=60 km /h ,快车的速度为60×2=120 km /h ,快车在乙地停留的时间为3.5-180×2120=0.5 h ,设快车开始返回之后t h 两车相距100 km ,由题意可得,60(180120+0.5+t )-120t =100,解得t =13,所以快车开始返回之后,经过13h 两车相距100 km . 6. 30 【解析】如解图,第6题解图小明骑车速度:10÷0.5=20 km /h ,爸爸驾车速度:20×3=60 km /h ,设直线BC 解析式为y =20x +b 1,把点B (1,10)代入得b 1=-10,∴y =20x -10,设直线DE 解析式为y =60x+b 2,把点D (43,0)代入得b 2=-80 ∴y =60x -80,∴⎩⎪⎨⎪⎧y =20x -10y =60x -80,解得⎩⎪⎨⎪⎧x =1.75y =25,∴交点F (1.75,25),设从爸爸追上小华的地点到植物园路程为n (km ),由题意得n 20-n 60=16,解得n =5,∴从家到乙地的路程为5+25=30(km ).7. ②③④ 【解析】由函数图像可知A 地距离C 地240 km ,B 地距离C 地200 km ,甲从A 地到达C 用时4 h ,乙从B 地到C 地用时2.5 h ,所以甲车的速度=240÷4=60 km /h ,乙车的速度=200÷(3.5-1)=80 km /h .设甲车出发后x 小时两车相遇,根据题意得60x +80(x -1)=240+200,解得x =357.所以甲车出发357h 后两车相遇,故①错误;当乙车出发1.5 h 时,乙车行驶的距离=80×1.5=120 km ,甲车行驶的距离=60×(1.5+1)=150 km ,两车的距离=440-120-150=170 km ,故②正确;乙车出发时间=甲车出发时间-1=357-1=257h ,故③正确;甲车到达C 地时,乙车从C 地向A 地又行驶了0.5 h ,所以两车的距离=0.5×80=40 km ,故④正确.8. 1750 【解析】设变速后小明的速度为a 米/秒,小刚的速度为b 米/秒,则⎩⎪⎨⎪⎧100b -100a =15050b =200a ,解得⎩⎪⎨⎪⎧a =0.5b =2,全程为1450+150×2=1750米. 9. 60 【解析】快车的速度为560÷7=80 km /h ,慢车的速度为560÷4-80=60 km /h ,快车到达甲地时,慢车距离甲地的距离为(80-60)×(7-4) =60 km .10. 2 【解析】设甲、乙两船在静水中的速度为x km /h ,水流速度为y km /h .由题意:⎩⎪⎨⎪⎧3.5(x -y )+2.5(x +y )-(x -y )=603.5(x -y )x +y =60-3.5(x -y )x -y ,解得⎩⎪⎨⎪⎧x =12y =2,故水流速度为2 km /h . 11. 15 【解析】由图可知:①50秒时,甲追上乙,②300秒时,乙到达目的地,∴乙的速度为:1300-100300=4(米/秒),设甲的速度为x 米/秒,则50x -50×4=100,解得x =6,设丙比甲晚出发a 秒,则(50+45-a )×6=(50+45)×4+100,解得a =15,则丙比甲晚出发15秒.12. 9 【解析】A 班第一棒的速度为60÷8=7.5(米/秒),B 班第一棒的速度为7.5-12÷8=6(米/秒),B 班第一棒到达终点的时间为60÷6=10(秒),A 班第二棒的速度为6+(16-12)÷(10-8) =8(米/秒),A 班第二棒到达终点的时间为8+60÷8=15.5(秒),B 班第二棒的速度为8+(16-10.5)÷(15.5-10) =9(米/秒).13. 90 【解析】设快车从甲地到乙地的速度为a 千米/时,则3(a -60)=120,解得a =100,则甲、乙两地之间的距离为3×100=300(千米);快车返回时距离慢车的距离为300-60 (3+4560)=75(千米),设快车从乙地返回甲地的速度是b 千米/小时,根据题意得:(60+b )[414-(3+4560)]=75,解得b =90,则快车从乙地返回甲地的速度是90千米/小时. 14. 1350 【解析】设AC 中点为E .观察函数图象可知:乙车从B 到C 需用4小时,从C到E 需用20-42=8(小时),甲从A 到E 需要12小时,∵点E 为AC 的中点,乙的速度不变,∴AE =CE =2BC (如解图所示),∵2CE =1440(千米),∴AE =720(千米),BE =1080(千米),∴甲的速度为720÷12=60(千米/小时),乙的速度为1080÷12=90(千米/小时).当第21小时时,甲乙两车之间的距离为(60+90)×(21-12)=1350(千米).第14题解图15. 275 【解析】由图象可知:高铁1.75小时时,由重庆到达成都,速度为350÷1.75=200(千米/小时),设旅行专列的速度为a千米/小时,则 3.75a+200×(3.75-1)=350×2,解得a=40,350÷40=8.75(小时),高铁:第一次去成都:1.75小时,休息1小时;第一次返回:2.75+1.75=4.5小时,休息1小时;第二次去成都:5.5+1.75=7.25<8.75,设当两车第二次相遇时,该旅行专列共行驶了b千米,则200×(b40-5.5)=b,解得b=275,则当两车第二次相遇时,该旅行专列共行驶了275千米.16. 300 【解析】如解图,第16题解图由图可知,两人相距2400米,在①段上,两人相向而行5分钟后,两人第一次相遇,在②段上两人背向而行,8分钟时,小明首先到达小强家,所以小明的速度为2400÷8=300米/分钟,则小强的速度为2400÷5-300=180米/分钟,③段末表示小强到达小明家往回返,④段表示小强小明相向而行,第二次相遇,⑤段表示第二次相遇后小明继续往家的方向跑,小强相反,⑥段表示小明到家后往回返,此时和小强同向,然后第三次相遇.所以第二次相遇时距离小明家最近,此时,两人跑步的时间为2400×3÷(300+180)=15分钟,则小明距家2400×2-300×15=300米.其他问题1. D 【解析】由图象可得,甲队每天挖600÷6=100米,故①正确;乙队开挖两天后,每天挖(500-300)÷(6-2)=50米,故②正确;当甲乙挖的管道长度相等时,100x =300+(x -2)×50,解得x =4,故③正确;甲队比乙队提前完成的天数为(600-300)÷50+2-6=2(天),故④正确.2. 30 【解析】由题意知进水速度为15÷3=5(升/分钟),设出水速度为a 升/分钟,则容器的容量为15×5-(15-3)a =75-12a ,由函数图象可知75-12a =(23-15)a ,解得a =154,所以容器的容量为75-12×154=30(升).。
2018年中考数学专题复习卷: 二次根式一、选择题1.下列计算正确的是()A. B. C. D.2.下列四个数中,是负数的是( )A. B. C. D.3.函数y= 中自变量x的取值范围是()A. x≥-1且x≠1B. x≥-1C. x≠1D. -1≤x<14.下列各式化简后的结果为3 的是()A. B. C. D.5.下列计算正确的是()A. a5+a2=a7B. × =C. 2-2=-4D. x2·x3=x66.计算|2﹣|+|4﹣|的值是()A. ﹣2B. 2C. 2 ﹣6D. 6﹣27.计算之值为何()A. 5B. 33C. 3D. 98.下列运算正确的是()A. B. C. D.9.已知,则代数式的值是()A. 0B.C.D.10.如果(0<x<150)是一个整数,那么整数x可取得的值共有()A. 3个B. 4个C. 5个D. 6个11.化简为()A. 5﹣4B. 4 ﹣lC. 2D. 112.下列计算:①;②;③;④.其中正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题13.函数y=的自变量x的取值范围是________.14.计算:=________.15.计算:________。
16.当x=2时,二次根式的值为________.17.计算的结果是________.18.计算(+1)2016(﹣1)2017=________.19.已知实数a在数轴上的位置如图所示,化简的结果是________.20.若实数a、b满足|a+2|+ =0,则=________.21.计算:=________.22.观察下列等式:第1个等式:a1= = ﹣1,第2个等式:a2= = ﹣,第3个等式:a3= =2﹣,第4个等式:a4= = ﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n=________;(2)a1+a2+a3+…+a n=________.三、解答题23.24.计算:()﹣1﹣6cos30°﹣()0+ .25.在平面直角坐标系中,点P(- ,-1)到原点的距离是多少?26.若b为实数,化简|2b-1|- 。
初中数学中考复习考点知识与题型专题讲解专题18多边形【知识要点】多边形的相关知识:➢在平面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相邻两边组成的角叫做它的内角。
多边形的边与它邻边的延长线组成的角叫做外角。
➢连接多边形不相邻的两个顶点的线段叫做多边形的对角线。
➢一个n边形从一个顶点出发的对角线的条数为(n-3)条,其所有的对角线条数为2)3(nn凸多边形:画出多边形的任何一条边所在的直线,如果多边形的其它边都在这条直线的同侧,那么这个多边形就是凸多边形。
正多边形:各角相等,各边相等的多边形叫做正多边形。
(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立)⏹多边形的内角和➢n边形的内角和定理:n边形的内角和为(n−2)∙180°➢n边形的外角和定理:多边形的外角和等于360°,与多边形的形状和边数无关。
【考点题型】考点题型一多边形截角后的边数问题【解题思路】多边形减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.典例1.(2018·云南昭通市模拟)把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16 B.17 C.18 D.19【答案】A【详解】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形.故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选A.变式1-1.(2019·宁波市一模)把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形【答案】A【解析】当剪去一个角后,剩下的部分是一个四边形,则这张纸片原来的形状可能是四边形或三角形或五边形,不可能是六边形.故选A.考点题型二计算多边形的周长【解题思路】考查多边形的周长,解题在于掌握计算公式典例2.(2020·隆化县模拟)下列图形中,周长不是32 m的图形是( ) A.B.C.D.【答案】B【提示】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.变式2-1.(2017·海南中考模拟)如图,□ABCD纸片,∠A=120°,AB=4,BC=5,剪掉两个角后,得到六边形AEFCGH ,它的每个内角都是120°,且EF=1,HG=2,则这个六边形的周长为( )A.12 B.15 C.16 D.18【答案】B【解析】如图,分别作直线AB、BC、HG的延长线和反向延长线使它们交于点B、Q、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF 的每一个外角的度数都是60°. ∴△APH 、△BEF 、△DHG 、△CQG 都是等边三角形.∴EF=BE=BF=1,DG=HG=HD=2.∴FC=5-1=4,AH=5-2= 3,CG=CD-DG=4−2=2.∴六边形的周长为1+3+3+2+2+4=15.故选B.考点题型三 计算网格中的多边形面积【解题思路】利用分割法即可解决问题典例3.(2019·辽宁葫芦岛市模拟)如图是边长为1的正方形网格,A 、B 、C 、D 均为格点,则四边形的面积为()A .7B .10C .152D .8【答案】A 【提示】利用分割法即可解决问题.【详解】解:S 四边形ABCD =3×4﹣12×2×1×2﹣12×1×3×2=12﹣5=7,故选:A . 变式3-1.(2020·山东烟台市模拟)如图,在边长为1的小正方形网格中,△ABC 的三个顶点均在格点上,若向正方形网格中投针,落在△ABC 内部的概率是()A .12B .14C .38 D .516【答案】D【提示】用正方形的面积减去四个易求得三角形的面积,即可确定△ABC 面积,用△ABC 面积除以正方形的面积即可.【详解】解:正方形的面积=4×4=16,三角形ABC 的面积=11116434221222-⨯⨯-⨯⨯-⨯⨯=5, 所以落在△ABC 内部的概率是516, 故选D .变式3-2.(2019·江西九年级零模)如图,在边长为1的小正方形网格中,小正方形的顶点叫格点,以格点为顶点的多边形叫格点多边形图中①,②,③,④四个格点多边形的面积分别记为1234,,,,S S S S 下列说法正确的是()A .12S SB .23S S =C .124S S S +=D .134S S S +=【答案】B 【提示】根据题意判断格点多边形的面积,依次将1234S S S S 、、、计算出来,再找到等量关系.【详解】观察图形可得12342.5,3,3,6,S S S S ====∴23234,6S S S S S =+==,故选:B .考点题型四 计算多边形对角线条数【解题思路】熟记n边形从一个顶点出发可引出(n-3)条对角线是解答此题的关键.典例4.(2017·山东济南市·中考真题)一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是()A.12 B.13 C.14 D.15【答案】C【解析】解:根据题意,得:(n﹣2)•180=360°×2+180°,解得:n=7.则这个多边形的边数是7,七边形的对角线条数为7(73)2⨯-=14,故选C.变式4-1.(2018·山东济南市·中考模拟)若凸n边形的每个外角都是36°,则从一个顶点出发引的对角线条数是()A.6B.7C.8D.9【答案】B【解析】360°÷36°=10,10−3=7.故从一个顶点出发引的对角线条数是7.故选:B.变式4-2.(2020·莆田市二模)从n边形的一个顶点出发可以连接8条对角线,则n=()A.8 B.9 C.10 D.11【答案】D【提示】根据n边形从一个顶点出发可引出(n-3)条对角线,可得n-3=8,求出n的值即可.【详解】解:由题意得:n-3=8,解得n=11,故选:D.变式4-3.(2020·湖南长沙市模拟)已知一个正n边形的每个内角为120°,则这个多边形的对角线有()A.5条B.6条C.8条D.9条【答案】D【提示】多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n﹣3,即可求得对角线的条数.【详解】解:∵多边形的每一个内角都等于120°,∴每个外角是60度,则多边形的边数为360°÷60°=6,则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有6﹣3=3条.∴这个多边形的对角线有12(6×3)=9条,故选:D.变式4-4.(2019·广东茂名市·中考模拟)若一个多边形从同一个顶点出发可以作5条对角线,则这个多边形的边数为()A.6 B.7 C.8 D.9【答案】C【提示】可根据n边形从一个顶点引出的对角线有n-3条,即可求解.【详解】解:设这个多边形的边数为n,则n-3=5,解得n=8,故这个多边形的边数为8,故选:C.变式4-5.(2019·河北模拟)过某个多边形的一个顶点的所有对角线,将这个多边形分成7个三角形,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【答案】D【提示】根据n边形从一个顶点出发可引出(n-3)条对角线,可组成n-2个三角形,依此可得n的值.【详解】解:设这个多边形是n边形,由题意得,n-2=7,解得:n=9,即这个多边形是九边形,故选:D.考点题型五多边形内角和问题【解题思路】考查多边形的内角和公式,解题关键是牢记多边形的内角和公式.典例5.(2018·山东济宁市·中考真题)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )A.60°B.65°C.55°D.50°【答案】A【解析】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选A.变式5-1.(2019·甘肃庆阳市·中考真题)如图,足球图片正中的黑色正五边形的内角和是( ).A .180°B .360°C .540°D .720°【答案】C 【提示】根据多边形内角和公式2180()n -⨯︒即可求出结果.【详解】解:黑色正五边形的内角和为:5218540(0)-⨯︒=︒,故选C .变式5-2.(2019·湖南湘西土家族苗族自治州·中考真题)已知一个多边形的内角和是1080°,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形【答案】D【提示】根据多边形的内角和=(n ﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n ,∴(n ﹣2)•180°=1080°,解得n =8.故选D.考点题型六 正多边形内角和问题【解题思路】掌握并能运用多边形内角和公式是解题的关键典例6.(2020·湖南怀化市·中考真题)若一个多边形的内角和为1080°,则这个多边形的边数为()A .6B .7C .8D .9 【答案】C【提示】设这个多边形的边数为n ,由n 边形的内角和等于180°(n ﹣2),即可得方程180(n﹣2)=1080,解此方程即可求得答案:n=8.故选C.变式6-1.(2020·湖北宜昌市·中考真题)游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行.成功的招数不止一招,可助我们成功的一招是().A.每走完一段直路后沿向右偏72°方向行走B.每段直路要短C.每走完一段直路后沿向右偏108°方向行走D.每段直路要长【答案】A【提示】根据题意可知封闭的图形是正五边形,求出正五边形内角的度数即可解决问题.【详解】根据题意可知,从起点走五段相等直路之后回到起点的封闭图形是正五边形,∵正五边形的每个内角的度数为:(52)1801085-⨯︒=︒∴它的邻补角的度数为:180°-108°=72°,因此,每走完一段直路后沿向右偏72°方向行走,故选:A.变式6-2.(2020·河北中考真题)正六边形的一个内角是正n边形一个外角的4倍,则n= _________.【答案】12【提示】先根据外角和定理求出正六边形的外角为60°,进而得到其内角为120°,再求出正n边形的外角为30°,再根据外角和定理即可求解.【详解】解:由多边形的外角和定理可知,正六边形的外角为:360°÷6=60°,故正六边形的内角为180°-60°=120°,又正六边形的一个内角是正n边形一个外角的4倍,∴正n边形的外角为30°,∴正n边形的边数为:360°÷30°=12.故答案为:12.变式6-3.(2020·福建中考真题)如图所示的六边形花环是用六个全等的直角三角形拼成 等于_______度.的,则ABC【答案】30【提示】先证出内部的图形是正六边形,求出内部小正六边形的内角,即可得到∠ACB 的度数,根据直角三角形的两个锐角互余即可求解.【详解】解:由题意六边形花环是用六个全等的直角三角形拼成,可得BD=AC,BC=AF,∴CD=CF,同理可证小六边形其他的边也相等,即里面的小六边形也是正六边形,∴∠1=()1621801206-⨯︒=︒, ∴∠2=180°-120°=60°, ∴∠ABC=30°, 故答案为:30.考点题型七 截角后的内角和问题【解题思路】剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个是解决本题的关键.典例7.(2020·五莲县一模)一个正方形被截掉一个角后,得到一个多边形,这个多边形的内角和是( ) A .360° B .540°C .180°或360°D .540°或360°或180°【答案】D【提示】剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解. 【详解】n 边形的内角和是(n ﹣2)•180°,边数增加1,则新的多边形的内角和是(4+1﹣2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4﹣2)×180°=360°, 所得新的多边形的边数减少1,则新的多边形的内角和是(4﹣1﹣2)×180°=180°, 因而所成的新多边形的内角和是540°或360°或180°, 故选D .变式7-1.(2020·河北九年级其他模拟)一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是( ) A .17 B .16C .15D .16或15或17【答案】D【详解】多边形的内角和可以表示成()2180n -⋅︒ (3n ≥且n 是整数),一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条, 根据()21802520,n -⋅︒=解得:n=16, 则多边形的边数是15,16,17. 故选D .变式7-2.(2020·贵州铜仁市·九年级零模)一个多边形切去一个角后得到的另一个多边形的内角和为900︒,那么原多边形的边数为() A .6或7或8 B .6或7C .7或8D .7【答案】A【提示】首先求得内角和为900°的多边形的边数,即可确定原多边形的边数.【详解】解:设内角和为900°的多边形的边数是n ,则(n-2)•180°=900°,解得:n=7, 如图,有如下几种切法,则原多边形的边数为6或7或8.故选:A .考点题型八 正多边形的外角问题【解题思路】解决问题的关键是掌握多边形的外角和等于360度. 典例8.(2020·江苏无锡市·中考真题)正十边形的每一个外角的度数为() A .36︒ B .30 C .144︒ D .150︒【答案】A【提示】利用多边形的外角性质计算即可求出值.【详解】解:360°÷10=36°,故选:A.变式8-1.(2020·江苏扬州市·中考真题)如图,小明从点A出发沿直线前进10米到达点B,向左转45︒后又沿直线前进10米到达点C,再向左转45︒后沿直线前进10米到达点D……照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米【答案】B【提示】根据题意,小明走过的路程是正多边形,先用360°除以45°求出边数,然后再乘以10米即可.【详解】解:∵小明每次都是沿直线前进10米后再向左转45︒,∴他走过的图形是正多边形,边数n=360°÷45°=8,∴小明第一次回到出发点A时所走的路程=8×10=80米.故选:B.变式8-2.(2020·湖南娄底市·中考真题)正多边形的一个外角为60°,则这个多边形的边数为()A.5 B.6 C.7 D.8【答案】B【提示】根据正多边形的外角和以及一个外角的度数,求得边数.【详解】解:正多边形的一个外角等于60°,且外角和为360°,则这个正多边形的边数是:360°÷60°=6,故选:B.考点题型九多边形外角和的实际应用【解题思路】典例9.(2020·湖北黄冈市·中考真题)如果一个多边形的每一个外角都是36°,那么这个多边形的边数是()A.7 B.8 C.9 D.10【答案】D【提示】根据多边形的外角的性质,边数等于360°除以每一个外角的度数.【详解】∵一个多边形的每个外角都是36°,∴n=360°÷36°=10.故选D.变式9-1.(2020·山东德州市·中考真题)如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°……照这样走下去,他第一次回到出发点A 时,共走路程为()A.80米B.96米C.64米D.48米【答案】C【提示】根据多边形的外角和即可求出答案.【详解】解:根据题意可知,他需要转360÷45=8次才会回到原点,所以一共走了8×8=64米.故选:C考点题型十多边形内角和与外角和的综合应用【解题思路】熟悉多边形的内角和公式:n边形的内角和是(n-2)×180°;多边形的外角和是360度.典例10.(2020·西藏中考真题)一个多边形的内角和是外角和的4倍,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C【提示】利用多边形的内角和公式及外角和定理列方程即可解决问题.【详解】设这个多边形的边数是n,则有(n-2)×180°=360°×4,所有n=10.故选C.变式10-1.(2020·陆丰市模拟)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【答案】C【提示】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.变式10-2.(2020·中江县模拟)已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是()A.8 B.9 C.10 D.12【答案】A【解析】试题提示:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A.变式10-3.(2020·西宁市模拟)一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A.5B.6C.7D.8【答案】C【解析】解:设这个多边形的边数是n,根据题意得,(n-2)•180°=2×360°+180°,n=7.故选C.考点题型十一平面镶嵌【解题思路】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.典例11.下列多边形中,不能够单独铺满地面的是()A.正三角形B.正方形C.正五边形D.正六边形【答案】C【提示】由镶嵌的条件知,在一个顶点处各个内角和为360°.【详解】∵正三角形的内角=180°÷3=60°,360°÷60°=6,即6个正三角形可以铺满地面一个点,∴正三角形可以铺满地面;∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;∵正五边形的内角=180°-360°÷5=108°,360°÷108°≈3.3,∴正五边形不能铺满地面;∵正六边形的内角=180°-360°÷6=120°,360°÷120°=3,即3个正六边形可以铺满地面一个点,∴正六边形可以铺满地面.故选C.变式11-1小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可能...是()A.正三角形B.正方形C.正五边形D.正六边形【答案】C【提示】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360,则说明能够进行平面镶嵌;反之则不能.【详解】解:因为用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,所以小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是正五边形.故选:C变式11-2.能够铺满地面的正多边形组合是()A.正六边形和正方形B.正五边形和正八边形C.正方形和正八边形D.正三角形和正十边形【答案】C【解析】A、正六边形的每个内角是120°,正方形的每个内角是90°,120m+90n=360°,显然n取任何正整数时,m不能得正整数,故不能铺满;B、正五边形每个内角是180°-360°÷5=108°,正八边形每个内角为135度,135m+108n=360°,显然n取任何正整数时,m不能得正整数,故不能铺满;C、正方形的每个内角为90°,正八边形的每个内角为135°,两个正八边形和一个正方形刚好能铺满地面;D、正三角形每个内角为60度,正十边形每个内角为144度,60m+144n=360°,显然n取任何正整数时,m不能得正整数,故不能铺满.故选C.变式11-3下列边长相等的正多边形能完成镶嵌的是()A.2个正八边形和1个正三角形B.3个正方形和2个正三角形C.1个正五边形和1个正十边形D.2个正六边形和2个正三角形【答案】D【提示】只需要明确几个几何图形在一点进行平铺就是几个图形与这一点相邻的所有内角之和等于360°即可。
2018年重庆市中考数学试卷(A 卷)答案及解析一、选择题 (本大题12个小题,每小题4分,共48分。
)1.2的相反数是 A .2- B .12-C .12D .2【答案】A【解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解 【点评】本题考查了相反数的定义,属于中考中的简单题2.下列图形中一定是轴对称图形的是A.B.C.D.【答案】D【解析】A40°的直角三角形不是对称图形;B 两个角是直角的四边形不一定是轴对称图形;C 平行四边形是中心对称图形不是轴对称图形;D 矩形是轴对称图形,有两条对称轴【点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大,考生主要注意看清楚题目要求。
3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是 A.企业男员工 B.企业年满50岁及以上的员工 C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工【答案】C【解析】A 调查对象只涉及到男性员工;B 调查对象只涉及到即将退休的员工;D 调查对象只涉及到新进员工【点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单题。
4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A .12B .14C .16D .18【答案】C 【解析】40°直角三角形四边形平行四边形矩形∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
2018年重庆市中考数学试卷---全面解析版一.选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1、在-6,0,3,8这四个数中,最小的数是(A)A、-6B、0C、3D、8考点:有理数大小比较.专题:计算题.分析:根据正数大于0,0大于负数,正数大于负数,两负数绝对值大的反而小,解答即可.解答:解:∵8>3>0>-6,∴最小的数是-6.故选A.点评:本题考查了有理数大小的比较,熟记:正数大于0,0大于负数,正数大于负数,两负数绝对值大的反而小.2、计算(a3)2的结果是(C)A、aB、a5C、a6D、a9考点:幂的乘方与积的乘方.专题:计算题.分析:根据幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)计算即可.解答:解:(a3)2=a3×2=a6.故选C.点评:本题考查了幂的乘方,注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.3、下列图形中,是中心对称图形的是(B)A、B、C、D、考点:中心对称图形.专题:数形结合.分析:根据中心对称图形的定义来判断:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解答:解:A、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;B、将此图形绕某一点旋转180度正好与原来的图形重合,所以这个图形是中心对称图形;C、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;D、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形.故选B.点评:本题主要考查中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.4、如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于(D)A、60°B、50°C、45°D、40°考点:平行线的性质.分析:根据三角形的内角和为180°,即可求出∠D的度数,再根据两直线平行,内错角相等即可知道∠BAD 的度数.解答:解:∵∠C=80°,∠CAD=60°,∴∠D=180°-80°-60°=40°,∵AB∥CD,∴∠BAD=∠D=40°.故选D.点评:本题考查了三角形的内角和为180°,以及两直线平行,内错角相等的性质,难度适中.5、下列调查中,适宜采用抽样方式的是(A)A、调查我市中学生每天体育锻炼的时间B、调查某班学生对“五个重庆”的知晓率C、调查一架“歼20”隐形战机各零部件的质量D、调查广州亚运会100米参赛运动员兴奋剂的使用情况考点:全面调查与抽样调查.专题:应用题.分析:调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析.普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式;当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.解答:解:A、调查我市中学生每天体育锻炼的时间,适合抽样调查,B、调查某班学生对“五个重庆”的知晓率,采用全面调查,C、调查一架“歼20”隐形战机各零部件的质量,采用全面调查,D、调查广州亚运会100米参赛运动员兴奋剂的使用情况,采用全面调查,故选A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查,比较简单.6、如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于(B)A、60°B、50°C、40°D、30°考点:圆周角定理.分析:在等腰三角形OCB中,求得两个底角∠OBC、∠0CB的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A的度数并作出选择.解答:解:在△OCB中,OB=OC(⊙O的半径),∴∠OBC=∠0CB(等边对等角);∵∠OCB=40°,∠C0B=180°-∠OBC-∠0CB,∴∠COB=100°;又∵∠A= ∠C0B(同弧所对的圆周角是所对的圆心角的一半),∴∠A=50°,故选B.点评:本题考查了圆周角定理:同弧所对的圆周角是所对的圆心角的一半.解题时,借用了等腰三角形的两个底角相等和三角形的内角和定理.7、已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是(D)A、a>0B、b<0C、c<0D、a+b+c>0考点:二次函数图象与系数的关系.专题:数形结合.分析:根据抛物线的开口方向判断a 的正负;根据对称轴在y 轴的右侧,得到a ,b 异号,可判断b 的正负;根据抛物线与y轴的交点为(0,c),判断c 的正负;由自变量x=1得到对应的函数值为正,判断a+b+c 的正负.解答:解:∵抛物线的开口向下,∴a <0;又∵抛物线的对称轴在y 轴的右侧, ∴a ,b 异号, ∴b >0;又∵抛物线与y 轴的交点在x 轴上方, ∴c >0,又x=1,对应的函数值在x 轴上方, 即x=1,y=ax 2+bx+c=a+b+c >0; 所以A ,B ,C 选项都错,D 选项正确. 故选D .点评:本题考查了抛物线y=ax 2+bx+c (a≠0)中各系数的作用:a >0,开口向上,a <0,开口向下;对称轴为x=-,a ,b 同号,对称轴在y 轴的左侧;a ,b 异号,对称轴在y 轴的右侧;抛物线与y 轴的交点为(0,c ),c >0,与y 轴正半轴相交;c <0,与y 轴负半轴相交;c=0,过原点.8、为了建设社会主义新农村,我市积极推进“行政村通畅工程”.张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间的道路改造.下面能反映该工程尚未改造的道路里程y (公里)与时间x (天)的函数关系的大致图象是(D )A 、B 、C 、D 、考点:函数的图象.专题:数形结合.分析:根据y随x的增大而减小,即可判断选项A错误;根据施工队在工作了一段时间后,因暴雨被迫停工几天,即可判断选项B错误;根据施工队随后加快了施工进度得出y随x的增大减小得比开始的快,即可判断选项C、D的正误.解答:解:∵y随x的增大而减小,∴选项A错误;∵施工队在工作了一段时间后,因暴雨被迫停工几天,∴选项B错误;∵施工队随后加快了施工进度,∴y随x的增大减小得比开始的快,∴选项C错误;选项D正确;故选D.点评:本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键.9、下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑥个图形中平行四边形的个数为(C)A、55B、42C、41D、29考点:规律型:图形的变化类.专题:规律型.分析:由于图②5个=1+2+2,图③11个=1+2+3+2+3,图④19=1+2+3+4+2+3+4,由此即可得到第⑥个图形中平行四边形的个数.解答:解:∵图②平行四边形有5个=1+2+2,图③平行四边形有11个=1+2+3+2+3,图④平行四边形有19=1+2+3+4+2+3+4,∴图⑥的平行四边形的个数为1+2+3+4+5+6+2+3+4+5+6=41.故选C.点评:本题是一道根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.10、如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(C)A、1B、2C、3D、4考点:翻折变换(折叠问题);全等三角形的判定与性质;勾股定理.专题:几何综合题.分析:根据翻折变换的性质和正方形的性质可证△ABG≌△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面积比较即可.解答:解:①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;②正确.因为:EF=DE= CD=2,设BG=FG=x,则CG=6-x.在直角△ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,解得x=3.所以BG=3=6-3=GC;③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°-∠FGC=∠GFC+∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误.过F作FH⊥DC,∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴= ,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为:= = ,∴S△FGC=S△GCE-S△FEC= ×3×4- ×4×(×3)= ≠3.故选C.点评:本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.二.填空题:(本大题6个小题,每小题4分,共24分)11、据第六次全国人口普查结果显示,重庆常住人口约为2880万人.将数2880万用科学记数法表示为万.考点:科学记数法—表示较大的数.专题:数字问题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2880万用科学记数法表示为2.88×103.故答案是:2.88×103.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12、如图,△ABC中,DE∥BC,DE分别交边AB、AB于D、E两点,若AD:AB=1:3,则△ADE与△ABC 的面积比为.考点:相似三角形的判定与性质.分析:根据相似三角形的面积比等于相似比的平方直接得出答案.解答:解:∵△ABC中,DE∥BC,∴△ADE∽△ABC,相似比为AD:AB=1:3,∴△ADE与△ABC的面积比为:1:9.故答案为:1:9.点评:此题主要考查了相似三角形的性质,根据相似比性质得出面积比是解决问题的关键.13、在参加“森林重庆”的植树活动中,某班六个绿化小组植树的棵数分别是:10,9,9,10,11,9.则这组数据的众数是.考点:众数.专题:计算题.分析:众数是一组数据中出现次数最多的数据,有时众数可以不止一个.解答:解:在这一组数据中9是出现次数最多的,故众数是9;故答案为9.点评:本题为统计题,考查众数定义.如果众数的概念掌握得不好,就会出错.14、在半径为的圆中,45°的圆心角所对的弧长等于.考点:弧长的计算.专题:计算题.分析:根据弧长公式l= 把半径和圆心角代入进行计算即可.解答:解:45°的圆心角所对的弧长= =1.故答案为1.点评:本题考查了弧长公式:l= (n为圆心角的度数,R为半径).15、有四张正面分别标有数学-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为a,则使关于x的分式方程有正整数解的概率为.考点:概率公式;解分式方程.专题:计算题.分析:易得分式方程的解,看所给4个数中,能使分式方程有整数解的情况数占总情况数的多少即可.解答:解:解分式方程得:x= ,能使该分式方程有正整数解的只有0(a=1时得到的方程的根为增根),∴使关于x的分式方程有正整数解的概率为.故答案为:.点评:考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到使分式方程有整数解的情况数是解决本题的关键.16、某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了朵.考点:三元一次方程组的应用.专题:应用题.分析:题中有两个等量关系:甲种盆景所用红花的朵数+乙种盆景所用红花的朵数+丙种盆景所用红花的朵数=2900朵,甲种盆景所用紫花的朵数+丙种盆景所用紫花的朵数=3750朵.据此可列出方程组,设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆,用含x的代数式分别表示y、z,即可求出黄花一共用的朵数.解答:解:设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆.由题意,有,由①得,3x+2y+2z=580③,由②得,x+z=150④,把④代入③,得x+2y=280,∴2y=280-x⑤,由④得z=150-x⑥.∴4x+2y+3z=4x+(280-x)+3(150-x)=730,∴黄花一共用了:24x+12y+18z=6(4x+2y+3z)=6×730=4380.故黄花一共用了4380朵.点评:本题考查了三元一次方程组在实际生活中的应用.解题的关键是发掘等量关系列出方程组,难点是将方程组中的其中一个未知数看作常数,用含有一个未知数的代数式表示另外两个未知数,然后代入所求黄花的代数式.二.解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤)17、|-3|+(-1)2018×(π-3)0- + .考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:先算出-3的绝对值是3,-1的奇数次方仍然是-1,任何数(0除外)的0次方都等于1,然后按照常规运算计算本题.解答:解:原式=3+(-1)×1-3+4=3点评:本题考查了绝对值、零指数幂、负整数指数幂、立方根的运算.18、解不等式2x-3<,并把解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.专题:计算题.分析:先去分母,再去括号、移项、合并同类项,系数化为1,求出不等式的解集,再在数轴上表示出来即可.解答:解:3(2x-3)<x+16x-9<x+15x<10x<2∴原不等式的解集为x<2,在数轴上表示为:点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.19、如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.考点:全等三角形的判定与性质;平行线的判定.专题:证明题.分析:根据已知条件得出△ACB≌△DEF,即可得出∠ACB=∠DFE,再根据内错角相等两直线平行,即可证明BC∥EF.解答:证明:∵AF=DC,∴AC=DF,又∵AB=DE,∠A=∠D,∴△ACB≌△DEF,∴∠ACB=∠DFE,∴BC∥EF.点评:本题考查了两直线平行的判定方法,内错角相等,两直线平行,难度适中.20、为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)考点:作图—应用与设计作图.专题:作图题.分析:易得M在AB的垂直平分线上,且到C的距离等于AB的一半.解答:解:作AB的垂直平分线,以点C为圆心,以AB的一半为半径画弧交AB的垂直平分线于点M即可.点评:考查设计作图;得到点M是AB的垂直平分线与以点C为圆心,以AB的一半为半径的弧的交点是解决本题的关键.四.解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤21、先化简,再求值:,其中x满足x2-x-1=0.考点:分式的化简求值.专题:计算题.分析:先通分,计算括号里的,再把除法转化成乘法进行约分计算.最后根据化简的结果,可由x2-x-1=0,求出x+1=x2,再把x2=x+1的值代入计算即可.解答:解:原式= ×= ×= ,∵x2-x-1=0,∴x2=x+1,∴= =1.点评:本题考查了分式的化简求值.解题的关键是注意对分式的分子、分母因式分解,除法转化成下乘法.22、如图,在平面直角坐标系x0y中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(6,n).线段OA=5,E为x轴上一点,且sin∠AOE= .(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积.考点:反比例函数综合题.专题:综合题.分析:(1)过点A作AD⊥x轴于D点,由sin∠AOE= ,OA=5,根据正弦的定义可求出AD,再根据勾股定理得到DO,即得到A点坐标(-3,4),把A(-3,4)代入y= ,确定反比例函数的解析式为y=- ;将B(6,n)代入,确定点B点坐标,然后把A点和B点坐标代入y=kx+b(k≠0),求出k和b.(2)先令y=0,求出C点坐标,得到OC的长,然后根据三角形的面积公式计算△AOC的面积即可.解答:解:(1)过点A作AD⊥x轴于D点,如图,∵sin∠AOE= ,OA=5,∴sin∠AOE= = = ,∴AD=4,∴DO= =3,而点A在第二象限,∴点A的坐标为(-3,4),将A(-3,4)代入y= ,得m=-12,∴反比例函数的解析式为y=- ;将B(6,n)代入y=- ,得n=-2;将A(-3,4)和B(6,-2)分别代入y=kx+b(k≠0),得,解得,∴所求的一次函数的解析式为y=- x+2;(2)在y=- x+2中,令y=0,即- x+2=0,解得x=3,∴C点坐标为(0,3),即OC=3,∴S△AOC= •AD•OC= •4•3=6.点评:本题考查了点的坐标的求法和点在图象上,点的横纵坐标满足图象的解析式;也考查了正弦的定义、勾股定理以及三角形面积公式.23、为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.考点:条形统计图;扇形统计图;列表法与树状图法.专题:计算题;图表型.分析:(1)根据留守儿童有4名的占20%,可求得留守儿童的总数,再求得留守儿童是2名的班数;(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,列出树状图可得出来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率.解答:解:(1)该校班级个数为4÷20%=20(个),只有2名留守儿童的班级个数为:20-(2+3+4+5+4)=2(个),该校平均每班留守儿童的人数为:=4(名),补图如下:;(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,有树状图可知,共有12中等可能的情况,其中来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率为:= .点评:本题是一道统计题,考查了条形统计图和扇形统计图,及树状图的画法,是重点内容,要熟练掌握.24、如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.(1)求EG的长;(2)求证:CF=AB+AF.考点:梯形;全等三角形的判定与性质;直角三角形斜边上的中线;勾股定理.专题:证明题;几何综合题.分析:(1)根据BD⊥CD,∠DCB=45°,得到∠DBC=∠DCB,求出BD=CD=2,根据勾股定理求出BC=2,根据CE⊥BE,点G为BC的中点即可求出EG;(2)在线段CF上截取CH=BA,连接DH,根据BD⊥CD,BE⊥CD,推出∠EBF=∠DCF,证出△ABD ≌△HCD,得到AD=BD,∠ADB=∠HDC,根据AD∥BC,得到∠ADB=∠DBC=45°,推出∠ADB=∠HDB,证出△ADF≌△HDF,即可得到答案.解答:(1)解:∵BD⊥CD,∠DCB=45°,∴∠DBC=45°=∠DCB,∴BD=CD=2,在Rt△BDC中BC= =2 ,∵CE⊥BE,点G为BC的中点,∴EG= BC= .答:EG的长是.(2)证明:在线段CF上截取CH=BA,连接DH,∵BD⊥CD,BE⊥CE,∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,∵∠EFB=∠DFC,(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足函数关系式p1=0.1x+1.1(1≤x≤9,且x取整数)10至12月的销售量p2(万件)与月份x满足函数关系式p2=-0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9901,982=9604,972=9409,962=9216,952=9025)考点:二次函数的应用;一元二次方程的应用;一次函数的应用.专题:应用题;分类讨论.分析:(1)把表格(1)中任意2点的坐标代入直线解析式可得y1的解析式.把(10,730)(12,750)代入直线解析式可得y2的解析式,;(2)分情况探讨得:1≤x≤9时,利润=P1×(售价-各种成本);10≤x≤12时,利润=P2×(售价-各种成本);并求得相应的最大利润即可;(3)根据1至5月的总利润1700万元得到关系式求值即可.解答:解:(1)设y1=kx+b,则,解得,∴y1=20x+540(1≤x≤9,且x取整数);设y2=ax+b,则,解得,∴y2=10x+630(10≤x≤12,且x取整数);(2)设去年第x月的利润为W万元.1≤x≤9,且x取整数时,W=P1×(1000-50-30-y1)=-2x2+16x+418=-2(x-4)2+450,∴x=4时,W最大=450万元;10≤x≤12,且x取整数时,W=P2×(1000-50-30-y2)=(x-29)2,∴x=10时,W最大=361万元;∵450万元>361万元,∴这个最大利润是450万元;(3)去年12月的销售量为-0.1×12+2.9=1.7(万件),今年原材料价格为:750+60=810(元)今年人力成本为:50×(1+20%)=60元.∴5×[1000×(1+a%)-810-60-30]×1.7(1-0.1×a%)=1700,设t=a%,整理得10t2-99t+10=0,解得t= ,∵9401更接近于9409,∴≈97,∴t1≈0.1,t2≈9.8,∴a1≈10或a2≈980,∵1.7(1-0.1×a%)≥1,∴a≈10.答:a的整数解为10.点评:本题综合考查了一次函数和二次函数的应用;根据二次函数的最值及相应的求值范围得到一定范围内的最大值是解决本题的易错点;利用估算求得相应的整数解是解决本题的难点.26、如图,矩形ABCD中,AB=6,BC=2 ,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存大,求出对应的t的值;若不存在,请说明理由.考点:相似三角形的判定与性质;根据实际问题列二次函数关系式;等腰三角形的性质;等边三角形的性质;矩形的性质;解直角三角形.专题:代数几何综合题;动点型;分类讨论.分析:(1)当边FG恰好经过点C时,∠CFB=60°,BF=3-t,在Rt△CBF中,解直角三角形可求t的值;(2)按照等边△EFG和矩形ABCD重叠部分的图形特点,分为0≤t<1,1≤t<3,3≤t<4,4≤t<6四种情况,分别写出函数关系式;(3)存在.当△AOH是等腰三角形时,分为AH=AO=3,HA=HO,OH=OA三种情况,分别画出图形,根据特殊三角形的性质,列方程求t的值.解答:解:(1)当边FG恰好经过点C时,∠CFB=60°,BF=3-t,在Rt△CBF中,BC=2 ,tan∠CFB= ,即tan60= ,解得BF=2,即3-t=2,t=1,∴当边FG恰好经过点C时,t=1;(2)当0≤t<1时,S=2 t+4 ;当1≤t<3时,S=- t2+3 t+ ;当3≤t<4时,S=-4 t+20 ;当4≤t<6时,S= t2-12 t+36 ;(3)存在.理由如下:在Rt△ABC中,tan∠CAB= = ,∴∠CAB=30°,又∵∠HEO=60°,∴∠HAE=∠AHE=30°,∴AE=HE=3-t或t-3,1)当AH=AO=3时,(如图②),过点E作EM⊥AH于M,则AM= AH= ,在Rt△AME中,cos∠MAE═ ,即cos30°= ,∴AE= ,即3-t= 或t-3= ,∴t=3- 或t=3+ ,2)当HA=HO时,(如图③)则∠HOA=∠HAO=30°,又∵∠HEO=60°,∴∠EHO=90°,EO=2HE=2AE,又∵AE+EO=3,∴AE+2AE=3,AE=1,即3-t=1或t-3=1,∴t=2或t=4;3)当OH=OA时,(如图④),则∠OHA=∠OAH=30°,∴∠HOB=60°=∠HEB,∴点E和点O重合,∴AE=3,即3-t=3或t-3=3,t=6(舍去)或t=0;综上所述,存在5个这样的t值,使△AOH是等腰三角形,即t=3- 或t=3+ 或t=2或t=4或t=0.点评:本题考查了特殊三角形、矩形的性质,相似三角形的判定与性质,解直角三角形的有关知识.关键是根据特殊三角形的性质,分类讨论.。
2018年重庆市中考数学试卷-答案重庆市2018年初中学业⽔平暨⾼中招⽣考试(A 卷)数学答案解析第Ⅰ卷⼀、选择题 1.【答案】A【解析】根据题意,2(2)0+-=,∴2的相反数是-2,故选A. 【考点】相反数的概念. 2.【答案】D【解析】A 中的直⾓三⾓形不是轴对称图形;B 中的直⾓梯形不是轴对称图形;C 中的平⾏四边形是中⼼对称图形,不是轴对称图形;D 中的矩形是轴对称图形,故选D.【提⽰】判断⼀个图形是不是轴对称图形,要将这个图形沿某条直线对折,对折的两部分能完全重合,则这个图形是轴对称图形,常见的轴对称图形有线段、⾓、等腰三⾓形、菱形、矩形、正⽅形、圆、正多边形等。
【考点】轴对称图形的概念. 3.【答案】C【解析】根据题意,采取随机抽取的⽅法进⾏调查⽐较全⾯,结果也会⽐较真实有效,故选C. 【提⽰】选择抽取样本的恰当的⽅法是解答本题的关键. 【考点】调查中的样本选择. 4.【答案】C【解析】由题可知,每增加⼀个图案则增加2个三⾓形,∴第○n 个图案中有42(1)n +-个三⾓形,∴第⑦个图案中有16个三⾓形,故选C. 【考点】探索规律. 5.【答案】C【解析】根据题意可知两个三⾓形相似,设最长边为x cm ,则592.5x=,解得 4.5x =,即这个三⾓形的最长边为4.5 cm ,故选C .【提⽰】理解相似三⾓形的性质是解答本题的关键. 【考点】相似三⾓形的性质. 6.【答案】D【解析】平⾏四边形的对⾓线互相平分⽽不垂直,∴命题A 不正确;矩形的对⾓线相等且互相平分⽽不垂直,∴命题B 不正确;菱形的对⾓线互相垂直平分⽽不相等,∴命题C 不正确;正⽅形的对⾓线互相垂直平分且相等,∴命题D 正确,故选D.【提⽰】掌握特殊四边形的对⾓线的性质是解答本题的关键. 【考点】命题的判断. 7.【答案】B【解析】24255223==<∴<<,,,即在2和3之间,故选B .【考点】⼆次根式的运算、估算⽆理数. 8.【答案】C【解析】根据题意,当输⼊33x y ==,时,2021512y x y ∴+=≥,≠;当输⼊42x y =-=-,时,20,22012y x y ∴-=<≠;当输⼊24x y ==,时,20,212y x y ∴+=≥;当输⼊42x y ==,时,20,22012y x y ∴+=≥≠,故选C.【提⽰】根据y 的范围分情况求值是解答本题的关键。
2018年重庆市中考数学试卷(a 卷)(答案+解析)2018年重庆市中考数学试卷(A 卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面。
都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(4分)2的相反数是( )A .﹣2B .﹣12C .12D .22.(4分)下列图形中一定是轴对称图形的是( )A .B .C .D .直角三角形四边形平行四边形矩形3.(4分)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是( ) A .企业男员工B .企业年满50岁及以上的员工C .用企业人员名册,随机抽取三分之一的员工D .企业新进员工4.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .185.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为( ) A .3cmB .4cmC .4.5cmD .5cm6.(4分)下列命题正确的是( ) A .平行四边形的对角线互相垂直平分 B .矩形的对角线互相垂直平分 C .菱形的对角线互相平分且相等D .正方形的对角线互相垂直平分7.(4分)估计(2√30﹣√24)•√16的值应在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间8.(4分)按如图所示的运算程序,能使输出的结果为12的是( )A .x =3,y =3B .x =﹣4,y =﹣2C .x =2,y =4D .x =4,y =214.(4分)如图,在矩形ABCD 中,AB =3,AD =2,以点A 为圆心,AD 长为半径画弧,交AB 于点E ,图中阴影部分的面积是 (结果保留π).15.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为 .16.(4分)如图,把三角形纸片折叠,使点B 、点C 都与点A 重合,折痕分别为DE 、FG ,得到∠AGE =30°,若AE =EG =2√3厘米,则△ABC 的边BC 的长为 厘米.17.(4分)A ,B 两地相距的路程为240千米,甲、乙两车沿同一线路从A 地出发到B 地,分别以一定的速度匀速行驶.甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B 地.甲、乙两车相距的路程y (千米)与甲车行驶时间x (小时)之间的关系如图所示,求乙车修好时,甲车距B 地还有 千米.18.(4分)为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A ,B ,C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是 .(商品的利润率=商品的售价−商品的成本价商品的成本价×100%)三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。