2
∴购买 B 型瓶的个数是 5- x 为正整数时的值,故 A 成立;
3
由上可知,购买 A 型瓶的个数为 0 个或 3 个或 6 个,
∴购买 A 型瓶的个数最多为 6 个,故 B 成立;
2
①当 0≤x<3 时,y=5x+6× 5- x =x+30.
3
∵k=1>0,∴y 随 x 的增大而增大,
∴当 x=0 时,y 有最小值,最小值为 30 元;
例2[2019·天津]甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数
量是多少,价格均为6元/千克,在乙批发店,一次购买数量不超过50千克时,价格为
7元/千克;一次购买数量超过50千克时,其中有50千克的价格仍为7元/千克,超出
50千克部分的价格为5元/千克.设小王在同一个批发店一次购买苹果的数量为x
2
②当 x≥3 时,y=5x+6× 5- x -5=25+x.
3
∵k=1>0,∴y 随 x 的增大而增大,
∴当 x=3 时,y 有最小值,最小值为 28 元.
综合①②可得,购买瓶子所需要最少费用为 28 元.
故 C 不成立,D 成立.
考向
一次函数的实际应用(7年4考)
例1 一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆
相遇后:因为点 C(6,480),所以当两车行驶了 6 h 后,快车已到达乙地,慢车再行驶
20 km,两车相距 500 km,
20
所以 x=6+ =6.25.所以当 x=1.1 h 或 6.25 h 时,两车之间的距离为 500 km.
80
例2[2019·天津]甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数