3M_压敏胶的作用原理与技术
- 格式:ppt
- 大小:256.00 KB
- 文档页数:33
技术胶流赢销52009年冬季,中国比往年早一个月开始降温,多地气温相继打破历史最低记录,出现了罕见的极寒天气。
受此影响,中国大部、尤其是北方地区的很多压敏胶用户,遇到了胶带粘性下降、粘接失效等问题,不仅造成了客户经济上的损失,更降低了客户对我们产品的满意度。
究竟胶带性能与温度有何关联?怎样才能帮助客户未雨绸缪,应对严寒?希望下面的分析和经验能对大家有所帮助。
1.压敏胶的基本原理压敏胶(Pressure Sensitive Adhesives )简称PSA ,是一种同时具备了液体粘性和固体弹性的粘弹体,它通常以胶带、胶膜、标签及保护膜等产品的形式出现在我们身边。
压敏胶的核心成分是高分子聚合物,它在不同的温度下会呈现不同的物理状态。
在我们推荐使用的温度范围内,高分子处于半固态(如图1),具有粘弹特性:在外界压力的作用下它能产生粘性流动,与被粘表面紧密接触,产生分子之间的相互作用力,即粘接强度。
另外,半固态的高分子能够提供粘接所需要的内聚强度。
因此,在推荐温度范围内,压敏胶可以正常使用。
玻璃态高弹态粘流态温度(℃)形变皮革态半固态T g 玻璃化T f 粘流图1.高分子材料的物理状态2.压敏胶失效的类型压敏胶的失效类型主要分为3类:界面破坏、胶层破坏、混合破坏。
一般而言,压敏胶的粘接效果取决于界面粘接强度以及胶自身内聚强度。
界面破坏是指压敏胶与被粘表面之间的粘接强度不足,从被粘表面完全脱离,被粘面基本上没有残留的胶。
胶层破坏是因压敏胶的内聚强度低,受力时胶层自身破坏,部分的胶残留在被粘表面。
混合破坏是指上述2种破坏的混合。
通常,随着温度的降低,压敏胶失效的演变规律是由胶层破坏向混合破坏过渡,最终发展为界面破坏。
浅谈压敏胶的冬季失效问题与对策█ 文 /Jenny Qiu3.低温条件下压敏胶失效的特点及原因分析在极寒天气条件下,压敏胶失效以界面破坏为主。
主要原因是压敏胶与基材之间的粘接力不足。
压敏胶具有足够粘接力需要下列条件:①在适当温度下施加均匀压力,使得压敏胶与被粘表面实现有效接触,进而通过分子运动,浸润被粘表面并实现粘接。
3M TM丙烯酸压敏胶带常见问题及回答问题1: 什么是丙烯酸压敏胶带?答: 3M TM 丙烯酸压敏胶带是一种双面涂有高性能丙烯酸胶的丙烯酸泡绵粘弹 体,它具有高初粘结力,卓越的最终粘结强度和无与伦比的分散应力能力(于汽车使用中产生),符合世界级汽车生产原厂和售后市场的要求,得到QS9000质量体系的认证。
它被广泛地作为一种高性能的安装系统用于汽车部件的连接,如防擦条,不锈钢车轮罩和饰条,宽护板,踏板,雨挡,桃木饰板和其他的内外装饰件。
问题2:为什么选用泡绵胶带?答:3M TM 丙烯酸压敏胶带的泡绵具有独特的应力分散能力,其在受到应力时, 可以延长和变宽,这样可以使通过泡绵进行分散,而不是集中在胶的粘结面 上导致脱离。
因此,胶带可以在绝大多数汽车基材上使用。
另外,泡绵的厚度可以弥补两个连接部件之间的型面差,特别是对于一些不易弯曲的部件尤其重要。
此外,泡绵具有抵御增塑剂,提高胶带粘结力一致性的作用。
问题3:需要用多少胶带来粘结一个部件?答:胶带的用量取决于部件的形状和应力或冲力的作用情况。
高膨胀收缩率的材料需要更多的胶带粘结面积。
同样较重或是应力大的部件或是应用也需要较多的胶带。
例如较硬的聚丙烯(TPO)材料通常软的聚乙烯材料的部件需要更多的胶带才能进行正常的粘结。
问题4:什么和何时需要使用底胶?答:底胶上一种溶于溶剂的树脂,用于改变材料的表面性能。
这种改变会提高材料的表面能,从而增加胶带与表面的粘结强度。
因此底胶常用于低表面能的材料,如TPO。
问题5:什么是低表面能材料?答:低表面能的塑料有很滑的表面如Teflon涂层,其很难只用胶进行粘结。
3中国有限公司 汽车产品部问题6:使用底胶时应注意哪些事项?涂完底胶后多久贴胶带?答:一般来讲,在涂底胶时应有良好的通风环境,保证溶剂的挥发,避免吸入和皮肤与眼睛的直接接触。
操作的工艺参照不同底胶的具体操作指南及安全说明。
通常在底胶完全干后才贴胶带,如果涂量适合,底胶的干燥时间为30—45秒。
3M压敏胶作用原理与技术介绍首先,让我们来了解一下3M压敏胶的作用原理。
3M压敏胶是一种粘合剂,它的特点是在正常条件下具有卓越的粘附性能,即使在轻微应力下也能起到粘合的效果。
这是因为3M压敏胶的分子结构中含有各种高分子链,这些链在胶黏剂干燥后形成的均匀胶层中排列紧密。
当胶黏剂与被粘合物接触时,这些高分子链能够与被粘结物表面形成千层结构,形成卓越的亲合力和表面能,从而使胶黏剂牢固地粘结在被粘结物上。
其次,3M压敏胶在技术方面具有一些特点。
首先,它具有较高的粘接力和剪切强度,能够承受较大的拉伸或剪切应力。
这使得3M压敏胶成为一种可靠和经济的粘合剂选择。
其次,3M压敏胶可以在各种温度下保持良好的粘附性能。
无论是在极寒的条件下,还是在高温环境中,3M压敏胶都能够保持其粘结性能不受影响。
此外,3M压敏胶也具有很好的耐老化和耐化学性能,能够长时间保持其粘性和稳定性。
在应用方面,3M压敏胶广泛应用于各行各业。
在工业制造领域,3M压敏胶通常用于粘合金属、塑料和橡胶等材料,用于制造汽车零部件、电子产品和工业设备。
由于3M压敏胶具有良好的耐化学性和耐温性能,可以在各种恶劣环境中使用。
例如,它可以用于粘合汽车的车身件、玻璃和汽车内饰件,因为它可以抵抗车内高温和紫外线的影响。
在电子设备领域,3M压敏胶通常用于粘合微电子元件、PCB板和电线连接器等。
由于其优异的粘接和电绝缘性能,它可以确保电子设备的稳定性和可靠性。
此外,在医疗设备和家居用品领域,3M压敏胶也得到了广泛应用。
它可以用于粘合医疗器械、贴合绷带和创可贴等,因为它对皮肤友好,同时还具有良好的透气性和防水性。
总之,3M压敏胶是一种具有卓越粘附性能的粘合剂,其作用原理是在分子层面上与被粘结物形成千层结构,从而产生稳定和可靠的粘合效果。
在技术方面,3M压敏胶具有高粘接力、广温性能、耐化学性和耐老化性能等特点。
在应用方面,它广泛应用于工业制造、电子设备、医疗设备和家居用品等领域,用于粘合各种材料和组件。
压敏胶作用原理与技术介绍解读压敏胶的作用原理主要是通过分子间的吸附作用和表面张力来实现粘接。
其主要特点是物质之间强烈的分子间吸附力和较低的表面张力。
当施加压力时,胶黏剂与物体表面接触,产生吸附力,使胶黏剂快速附着于物体表面。
与此同时,胶黏剂的黏性能够将物体表面的微小凹凸填充,形成更大的接触面积,增加胶黏剂与物体的接触力。
而当施加的压力消失时,分子间吸附力仍然存在,使得胶黏剂能够长时间地保持粘附性能。
压敏胶的技术介绍主要涉及其组分和制备工艺。
通常情况下,压敏胶是由高分子聚合物、粘结剂、溶剂和添加剂等组成的。
高分子聚合物是胶黏剂的主要成分,可以通过控制其聚合度、交联程度和分子量分布等参数来调节胶黏剂的黏性、流动性和耐久性。
粘结剂的作用是增加胶黏剂的粘接力,其中常用的粘结剂有橡胶树脂、丙烯酸树脂等。
溶剂在胶黏剂的应用过程中扮演溶解聚合物和调节黏度的角色。
添加剂可以改善胶黏剂的特性,如增强胶黏剂的耐热性、抗氧化性、抗紫外线性能等。
压敏胶的制备工艺主要包括胶黏剂的混合、溶剂的蒸发和涂布等过程。
首先,将高分子聚合物、粘结剂和一定比例的溶剂混合搅拌,使其均匀分散。
然后,通过加热或真空脱泡等方式去除气泡,并调节黏度。
接下来,使用涂布机将胶黏剂均匀地涂布在基材上,然后将涂布后的基材经过一定的温度和时间进行固化。
最后,经过切断,检测和包装等环节,制备成压敏胶产品。
总的来说,压敏胶通过分子间的吸附作用和表面张力来实现粘接,具有粘附迅速、剥离轻松的特点。
其技术介绍主要包括组分和制备工艺。
掌握了压敏胶的作用原理和技术介绍,能够更好地理解和应用压敏胶在日常生活中的各种应用。
压敏胶原理
压敏胶是一种具有特殊粘附性能的胶粘剂,它可以在受到外力作用时产生粘附性。
压敏胶的粘附性能是指在外力作用下,胶粘剂能够在不使用溶剂、水或热能的情况下,与被粘物表面产生持久的粘附性。
压敏胶的粘附性能是由其特殊的化学结构和物理性能所决定的。
首先,压敏胶的粘附性能与其分子结构有关。
一般来说,压敏胶的分子结构中含有大量的极性基团,这些基团可以与被粘物表面的分子发生相互作用,从而产生粘附力。
此外,压敏胶分子链的长度和交联程度也会影响其粘附性能,较长的分子链和适度的交联结构有利于增强压敏胶的粘附性能。
其次,压敏胶的粘附性能与其物理性能有关。
压敏胶通常具有较高的延展性和柔韧性,这使得它可以更好地适应被粘物表面的形状和不规则性,从而增强了其粘附性能。
此外,压敏胶的表面粗糙度和表面能也会影响其粘附性能,适当的表面粗糙度和表面能有利于增强压敏胶的粘附性能。
压敏胶的粘附性能是由其特殊的化学结构和物理性能共同决定的。
在实际应用中,我们可以通过调整压敏胶的分子结构和物理性能来改善其粘附性能,以满足不同应用场合的需要。
同时,我们也可以通过合理选择被粘物的表面处理方法,来提高压敏胶的粘附性能。
综上所述,压敏胶的粘附性能是由其分子结构和物理性能共同决定的。
了解压敏胶的粘附原理,有助于我们更好地应用压敏胶,并在实际生产中进行有效的质量控制。
希望本文对压敏胶的粘附原理有所帮助。
压敏胶作用原理与技术介绍压敏胶是一种在外力作用下能变软并迅速恢复原状的材料,广泛应用于工业生产和日常生活中。
它通常在胶带、电子产品、汽车零部件等领域中起着重要的作用。
压敏胶的作用原理主要涉及其化学和物理性质,下面将分别进行介绍。
其次,压敏胶的物理作用原理是指由于外界压力的作用,在材料表面形成一种弹性变形,从而具有吸附和粘附的能力。
这种能力使压敏胶在不需要外力固定的情况下能够粘附在各种平滑表面上,如玻璃、塑料和金属等。
具体来说,压敏胶的物理作用原理涉及到它的分子结构和微观形貌。
压敏胶的分子结构通常呈现出一种多孔、不规则的形态,这使得胶黏剂能够扩散到被粘接表面的微小凹陷和凸起。
同时,压敏胶的表面具有一定的粗糙度,这使得胶黏剂能够更好地与被粘接表面产生物理吸附,并提高粘附力。
技术介绍方面,压敏胶的制备工艺和应用技术也是至关重要的。
在制备过程中,一般采用溶液法、乳液法、热熔法等方法来制备压敏胶。
溶液法是最常用的制备方法,通过将弹性体、粘合剂和添加剂溶解于适当的溶剂中,并采用共混、共溶、聚合等方式来得到胶黏剂。
乳液法则是通过将弹性体、粘合剂和添加剂分散在水相中,使用乳化剂稳定乳液,并经过凝胶、络合、析出等方式得到胶黏剂。
热熔法则是通过将弹性体、粘合剂和添加剂加热至熔点,混合均匀后迅速冷却得到胶黏剂。
除了制备方法外,还有很多先进的技术被应用在压敏胶的加工和应用中,如迅速固化技术、微胶囊技术、纳米技术等。
这些技术为压敏胶的性能改良和应用拓展提供了新的途径。
综上所述,压敏胶的作用原理主要涉及其化学和物理性质。
通过切变可逆反应和弹性变形,压敏胶具有可粘连和分离的特性,并能粘附在各种表面上。
同时,压敏胶的制备工艺和应用技术也对其性能和应用具有重要影响。
随着科技的不断发展,人们对压敏胶的需求也在不断增加,相信在未来会有更多优化和创新的技术应用于压敏胶领域。