第7章交流绕组的磁动势
- 格式:ppt
- 大小:998.50 KB
- 文档页数:33
交流绕组部分(感应电动势和磁动势)习题1.谐波电动势对电机运行有何影响?为什么同步发电机定子绕组采用星型接法?谐波电动势使电机的电动势波形非正弦,产生谐波转矩和附加损耗。
为了消除3次谐波,同步电机定子绕组采用星形接法。
(三相交流电流中,各相基波电动势相位差为120度,而各相的三次谐波电动势相位差为360度,即为同相。
同理,3的倍数的各奇次谐波也为同相位。
这样接成星形时,在线电动势中不可能出现3次和3的倍数奇次谐波电动势。
当三相绕组接成三角形,3次及3的倍数奇次谐波电动势在闭合的三角形电路中被短路而形成环流,引起附加铜损耗,虽然这时只残留微少的电压降,线电动势中仍不出现这类谐波。
因此多采用星形连接。
)2.为什么交流绕组的磁动势,既是时间函数又是空间函数?用单相绕组基波磁动势来说明。
交流绕组的电流是随时间而变化的正弦函数。
磁动势为空间函数,磁场在空间分布。
(见练习题书P.121)3.脉动磁动势和旋转磁动势有什么关系?脉动磁动势可以分解为两个旋转磁动势分量,每个旋转磁动势分量的振幅为脉动磁动势振幅的一半,旋转速度相同,但旋转方向相反。
(分解的表达式见笔记p.3)。
等式左边为脉动磁动势,等式右边第一项为正向旋转磁动势,在空间按正弦规律分布,幅值不变,幅值位置在wt-x=0处,随时间变化,磁动势波在空间移动,移动的速度为w,所以是旋转磁动势。
等式右边第二项为负向旋转磁动势。
4.产生圆形旋转磁动势和椭圆形旋转磁动势的条件有何不同?m相对称电流流入m相对称绕组时,产生圆形旋转磁动势。
m相不对称电流流入m相对称绕组,或者m相对称电流流入m相不对称绕组时,产生椭圆形旋转磁动势。
5.如果不考虑谐波分量,在任一瞬间,脉动磁动势的空间分布是怎样的?圆形旋转磁动势的空间分布是怎样的?椭圆形旋转磁动势在空间分布是怎样的?如果观察一瞬间,能否区别该磁动势是脉动磁动势、圆形旋转磁动势或椭圆形旋转磁动势?如果不考虑谐波分量,在任一瞬间,脉动磁动势、圆形旋转磁动势和椭圆形旋转磁动势在空间分布均为正弦波,故不能区别三种磁动势。
第七章交流绕组的磁动势目录第一节概述 (1)第二节单相绕组的磁动势 (1)第三节对称三相电流流过对称三相绕组的基波磁动势 (6)第四节不对称三相电流流过对称三相绕组的基波磁动势 (9)第五节三相绕组磁动势的空间谐波分量和时间谐波分量 (11)小结 (14)思考题 (14)习题 (15)第一节概述在第六章介绍旋转电机基本作用原理的基础时,电机类别不同则电机磁场的建立方式和特性也不同,气隙磁场对电机的机电能量转换和运行特性具有重要影响。
气隙磁场的建立是很复杂的,它可以由电流励磁产生,也可以由永磁体产生。
电流励磁也可以分直流励磁和交流励磁。
图6-1中的三相同步电机转子电流流过直流电建立空载磁场,当同步发电机接上负载后,定子绕组里就有了交流电流,它同样也会产生磁动势,这个磁动势必然会对转子磁动势产生影响。
在介绍异步电机作用原理时,当定子三相绕组通流入交流电,也会产生一个与同步电机气隙磁场类同的旋转磁场,这个磁场与交流电流的参数、绕组的构成之间的关系密切,这些内容将在本章内进行认真的分析。
根据由简入繁的原则,按下列层次逐项讨论:线圈、线圈组、单相绕组的磁动势;三相绕组的基波磁动势;三相电流不对称的基波磁动势以及磁动势空间谐波的分析等。
为了简化分析,本章对交流绕组磁动势分析时,作如下几点假定:(1)绕组的电流随时间按正弦规律变化,不考虑高次谐波电流;(2)槽内电流集中于槽中心处,齿槽的影响忽略不计,定转子间的气隙是均匀的,气隙磁阻是常数;(3)铁心不饱和,略去定转子铁芯的磁压降。
第二节单相绕组的磁动势一、线圈的磁动势图7-1(a)表示任一个整距线圈通以电流后的磁场分布情况,气隙磁场为一对磁极,由于是整距线圈,气隙的磁通密度均相同,按照全电流定律,在磁场中沿任一磁力线的磁位降等于该磁力线所包围的全部电流。
如线圈的匝数为,电流为,则作用在磁路上的磁势为。
由于铁心中磁压降不考虑,所以线圈的磁动势降落在两个均匀的气隙中,则气隙各处的磁压降均等于线圈磁动势的一半,即。
交流绕组的磁动势§9-2 一相绕组的磁动势(1)一相绕组的磁动势为一空间位置固定、幅值随时间变化的脉振磁动势,脉振的频率等于电流的频率,脉振磁动势的幅值位于相绕组的轴线上。
(2)一相绕组的基波(或谐波)脉振磁动势可以分解成两个幅值相等。
转速相同,转向相反的旋转磁动势。
旋转电角速度w 恰恰等于角频率每分钟转数同步速n1(3)一相绕组的 v 次谐波磁动势表达式为:f ϕν =Fϕν=Fϕmνcosναcosωt cosνα=0.9νIwkp wνcosωt cosνα交流绕组的磁动势§9-3 三相绕组的磁动势研究对象为研究方便,把三相绕组的每一相用一个等效的单层整距集中绕组来代替,该等效绕组的匝数等于实际一相串联匝数w 乘以绕组因数kw1, kw1w 称为一相的有效匝数,三相绕组在空间互差120度电角度。
这是一对极电机的三相等效绕组示意图。
电流正方向+B +AYC A XZ α=0 B+C三相绕组的基波磁动势结论:三相基波合成磁动势具有以下性质1)三相对称绕组通入三相对称电流产生的基波合成磁动势为一幅值不变的旋转磁动势。
由于基波磁动势矢量的端点轨迹是一个圆形,故又称为圆形旋转磁动势。
2)三相基波合成磁动势的幅值为一相基波脉振磁动势最大幅值的3/2 倍,即F 1 =32Fϕm1= 1.35Iwkp w1(安/ 极)3)三相基波合成磁动势的转向取决于电流的相序和三相绕组在空间上的排列次序。
基波合成磁动势总是从电流超前的相绕组向电流滞后的相绕组方向转动,例如电流相序为A-B-C,则基波合成磁动势按A轴-B轴-C轴方向旋转,改变三相绕组中电流相序可以改变旋转磁动势的转向。
4)三相基波合成磁动势的转速与电流频率保持严格不变的关系,即该转速即为同步速。
5)当某相电流达到最大值时,基波合成磁动势的波幅刚好转到该相绕组的轴线上,磁动势的方向与绕组中电流的方向符合右手螺旋定则。
分析方法如果三相等效绕组里通过三相对称电流,则每相均产生一脉振磁动势;把三个相绕组的磁动势进行合成,即得三相绕组的合成磁动势。
五、脉振磁动势的分解()()11111111cos cos cos cos 22m m m f F t F t f f F t φφφφφφωαωαωα==−++''+'=即:一个脉振磁动势可以分解为两个幅值为的磁动势。
121m F ϕ1)第一项:()αωϕϕ−='t F f m cos 2111即:旋转磁动势(行波)的角速度等于电流角频率,朝+α方向旋转。
在空间上向前运动的波形在物理学上叫行波。
因此该磁动势不再是一个脉振的磁动势,而是变为一个空间分布不变,但向前运动的旋转磁动势。
因其幅值不变,旋转矢量末端的轨迹是一个圆,所以也称为圆形旋转磁动势。
()1602d dft f n dt dtpαωωπ====取磁动势幅值为这一点进行研究121m F ϕ§9-2 一相绕组的磁动势(续)()αωϕϕ−='t F f m cos 2111对应的波形图选取波形幅值所在位置的点进行分析,令ωt-α=0,则α=ωt上图中从左到右的三个波形分别对应,α=0、α=π/2、α=π三个时刻的波形。
对应上述三个时刻的波形,可以看到幅值对应的点在向右移动,在电机表面就是在逆时针旋转。
旋转角速度d α/dt=ω(rad/s )换算为电机转速为同步速2)第二项:即:旋转磁动势转速与的相同,但转向相反。
可见第二项和第一项都是圆形旋转磁动势,幅值、转速都相同,只是转向相反。
同样我们也可以用波形来分析第二项。
可以得到和第一项类似的结果。
()αωϕϕ+=''t F f m cos 21111602d f f n dt pαωπ=−=−=−1ϕf '对应的波形图选取波形幅值所在位置的点进行分析,令ωt+α=0,则α=-ωt上图中从左到右的三个波形分别对应,α=0、α=-π/2、α=-π三个时刻的波形。
对应上述三个时刻的波形,可以看到幅值对应的点在向左移动,在电机表面就是在顺时针旋转。