因式分解与配方法练习题
- 格式:doc
- 大小:213.50 KB
- 文档页数:5
解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。
1、用提公因式法把多项式进行因式分解【知识精读】如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。
提公因式法是因式分解的最基本也是最常用的方法。
它的理论依据就是乘法分配律。
多项式的公因式的确定方法是:(1)当多项式有相同字母时,取相同字母的最低次幂。
(2)系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。
下面我们通过例题进一步学习用提公因式法因式分解【分类解析】1. 把下列各式因式分解(1)a xabxacxaxm m mm 2213(2)a ab a b a ab b a ()()()32222分析:(1)若多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数是正数,在提出“-”号后,多项式的各项都要变号。
解:a xabxacxaxax axbx c x m m mm m 221323()(2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当n 为自然数时,()()()()a b b a a b b a nn n n 222121;,是在因式分解过程中常用的因式变换。
解:a ab a b a ab ba ()()()32222)243)((]2)(2))[(()(2)(2)(222223b babab aa b b a a b a b a a b a ab b a a b a a 2. 利用提公因式法简化计算过程例:计算1368987521136898745613689872681368987123分析:算式中每一项都含有9871368,可以把它看成公因式提取出来,再算出结果。
解:原式)521456268123(1368987987136813689875、中考点拨:例1。
因式分解322x x x ()()解:322x xx ()()322231x x xxx ()()()()说明:因式分解时,应先观察有没有公因式,若没有,看是否能通过变形转换得到。
因式分解的常用方法一、提公因式法.:ma+mb+mc=m(a+b+c) 二、公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)平方差公式:(a+b)(a -b) = a 2-b 2(2) 完全平方公式:(a ±b)2= a 2±2ab+b 2(3) 立方和公式:a 3+b 3=(a+b)(a 2-ab+b 2)(4) 立方差公式:a 3-b 3=(a -b)(a 2+ab+b 2) (5)完全立方公式:(a±b)³=a ³±3a ²b +3ab ²±b ³ 下面再补充两个常用的公式: (6)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(7)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca); 三、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式:))(()(2q x p x pq x q p x ++=+++进行分解。
特点:(1)二次项系数是1; (2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。
例5、分解因式:652++x x 672+-x x练习5、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习6、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c (3)1221c a c a b += 1221c a c a b += 分解结果:c bx ax ++2=))((2211c x a c x a ++例7、分解因式:101132+-x x练习7、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例8、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。
21.2.2因式分解法同步练习一、单选题1、一元二次方程()x x 22x -=-的根是( )A. -1B. 2C. 1和2D. -1和22、已知三角形的两边长为4和5,第三边的长是方程x 2-5x +6=0的一个根,则这个三角形的周长是( )A. 11B. 12C. 11或12D. 153、关于x 的一元二次方程x 2-4x +3=0的解为( )A. x 1=-1,x 2=3B. x 1=1,x 2=-3C. x 1=1,x 2=3D. x 1=-1,x 2=-34、已知2340x x --=,则代数式24x x x --的值是( ) A. 3 B. 2 C. 13 D. 125、一个等腰三角形的底边长是6,腰长是一元二次方程28150x x -+=的一根,则此三角形的周长是( )A. 16B. 12C. 14D. 12或166、若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为( ) A. -1或4 B. -1或-4 C. 1或-4 D. 1或47、已知()222226x y y x +-=+,则22x y +的值是( ) A. -2 B. 3 C. -2或3 D. -2且38、已知x 、y 都是实数,且(x 2+y 2)(x 2+y 2+2)-3=0,那么x 2+y 2的值是( )A. -3B. 1C. -3或1D. -1或39、若方程()()2310x x -+=,则31x +的值为( )A. 7B. 2C. 0D. 7或010、若实数x 、y 满足(3)()20x y x y +-++=,则x +y 的值为( )A. -1或-2;B. -1或2;C. 1或-2;D. 1或2;11、我们知道方程x 2+2x -3=0的解是x 1=1,x 2=-3,现给出另一个方程(2x +3)2+2(2x +3)-3=0,它的解是( )A. x 1=1,x 2=3B. x 1=1,x 2=-3C. x 1=-1,x 2=3D. x 1=-1,x 2=-3二、填空题12、若关于x 的方程()(4)0x a x +-=和2340x x --=的解完全相同,则a 的值为______. 13、已知在△ABC 中,AB =3,AC =5,第三边BC 的长为一元二次方程x 2-6x +8=0的一个根,则该三角形为______三角形.14、若多项式x 2-mx +n (m 、n 是常数)分解因式后,有一个因式是x -2,则2m -n 的值为______. 15、我们知道方程x 2-2x +1=0的解是x 1=x 2=1,则给出的另一个方程(x -1)2-2(x -1)+1=0的解是______.16、如果(x 2+y 2)2+3(x 2+y 2)-4=0,那么x 2+y 2的值为______.17、方程34x x =的实数根是______.三、解答题18、解方程:(1)2450x x +-=(配方法);(2)x 2−5x +6=0(因式分解法);(3)22730x x -+=(公式法).19、选择适当方法解下列方程(1)(3x -1)2=(x -1)2(2)3x (x -1)=2-2x20、阅读下面的材料,回答问题:解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.(1)在由原方程得到方程①的过程中,利用______法达到______的目的,体现了数学的转化思想.(2)解方程(x2+x)2-4(x2+x)-12=0.1、答案:①x1=-1,x2=2;②x1=-1,x2=3;③x1=-1,x2=4;(2)①x1=-1,x2=10;②x1=-1,x2=10;(3)x2-nx-(n+1)=0分析:本题考查了用因式分解法和配方法解一元二次方程,数字类探索与规律,掌握因式分解法是解(1)的关键,掌握配方法是解(2)的关键,观察出二次项系数、一次项系数、常数项与两根之间的关系是解(3)的关键.解答:①∵x2-x-2=0,∴(x+1)(x−2)=0,∴x1=-1,x2=2;②∵x2-2x-3=0,∴(x+1)(x−3)=0,∴x1=-1,x2=3;③∵x2-3x-4=0,∴(x+1)(x−4)=0,∴x1=-1,x2=4;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2-9x-10=0的解为x1=-1,x2=10;②x2-9x-10=0,移项,得x2-9x=10,配方,得x2-9x+814=10+814,即(x-92)2=1214,开方,得x-92=112.x1=-1,x2=10;(3)应用:关于x的方程x2-nx-(n+1)=0的解为x1=-1,x2=n+1.2、答案:D分析:本题考查了因式分解法解一元二次方程.解答:()x x 22x -=-⇒()()x x 2x 20-+-=⇒()()x 2x 10-+=⇒x 20x 10-=+=⇒或12x 2x 1,==-,选D .3、答案:C分析:本题考查了因式分解法解一元二次方程.解答:x 2-5x +6=0,解得x 1=2,x 2=3,∴三角形周长是4+5+2=11,4+5+3=12,选C .4、答案:C分析:本题考查了因式分解法解一元二次方程.解答:x 2-4x +3=0,分解因式得:(x -1)(x -3)=0,解得:x 1=1,x 2=3,选C .5、答案:D分析:本题考查了因式分解法解一元二次方程、代数式求值.解答:x 2-3x -4=0,(x -4)(x +1)=0,解得x 1=4,x 2=-1,∴当x =4时,24x x x --=12;当x =-1时,24x x x --=12. 选D .6、答案:A分析:本题考查了因式分解法解一元二次方程、三角形的三边关系.解答:解方程28150x x -+=,得:3x =或5x =,若腰长为3,则三角形的三边为3、3、6,显然不能构成三角形;若腰长为5,则三角形三边长为5、5、6,此时三角形的周长为16,选A .7、答案:C分析:本题考查了因式分解法解一元二次方程.解答:∵x =-2是关于x 的一元二次方程22302x ax a +-=的一个根, ∴(-2)2+32a ×(-2)-a 2=0,即a 2+3a -4=0, 整理,得(a +4)(a -1)=0,解得a 1=-4,a 2=1.即a 的值是1或-4.选C .8、答案:B分析:本题考查了因式分解法解一元二次方程.解答:根据题意,先移项得()2222260x y y x +---=, 即()2222260x y x y ()+-+-=,然后根据“十字相乘法”可得2222(2)(3)0x y x y +++-=,由此解得22x y +=-2(舍去)或223x y +=.选B .9、答案:B分析:本题考查了因式分解法解一元二次方程.解答:∵(x 2+y 2)(x 2+y 2+2)-3=0,∴(x 2+y 2)2+2(x 2+y 2)-3=0,解得:x 2+y 2=-3或x 2+y 2=1∵x 2+y 2>0∴x 2+y 2=1选B .10、答案:D分析:本题考查了解一元二次方程−因式分解法,利用此方法解方程时首先将方程右边化为0,左边的多项式分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.解答:方程(2)(31)0x x -+=,可得20x -=或310x +=, 解得:12123x x ==-,,当2x =时,313217x +=⨯+=; 当13x =-时,1313103x +=⨯-+=(). 选D .11、答案:D分析:本题考查了因式分解法解一元二次方程.解答:t =x +y ,则由原方程,得t (t -3)+2=0,整理,得(t -1)(t -2)=0.解得t =1或t =2,∴x +y 的值为1或2.选D .12、答案:D分析:本题考查了因式分解法解一元二次方程.解答:将x 1=1,x 2=-3代入到x 2+2x -3=0得12+2×1-3=0,(-3)2+2×(-3)-3=0对比方程(2x +3)2+2(2x +3)-3=0,可得2x +3=1或-3解得:x 1=-1,x 2=-3选D .二、填空题13、答案:1分析:本题考查了因式分解法解一元二次方程.解答:解:2340x x --=,∴(4)(1)0x x -+=,∵关于x 的方程()(4)0x a x +-=和2340x x --=的解完全相同,∴a =1,故答案为:1.14、答案:直角分析:本题考查了因式分解法解一元二次方程、勾股定理的逆定理.解答:解一元二次方程x 2-6x +8=0,得,x =2或4,∵AB =3,AC =5,∴2<BC <8,∵第三边BC 的长为一元二次方程x 2-6x +8=0的一个根,∴BC =4,当BC =4时,AB 2+BC 2=AC 2,△ABC 是直角三角形.故答案为:直角.15、答案:4分析:本题考查了因式分解法解一元二次方程.解答:设另一个因式为x -a ,则x 2-mx +n =(x -2)(x -a )=x 2-ax -2x +2a =x 2-(a +2)x +2a ,得:22a m a n +=⎧⎨=⎩, ∴2m -n =2(a +2)-2a =4,故答案为4.16、答案:x 1=x 2=2分析:本题考查了换元法解一元二次方程.解答:∵方程x 2-2x +1=0的解是x 1=x 2=1,∴方程(x -1)2-2(x -1)+1=0的解满足:x −1=1,∴x 1=x 2=2.17、答案:1分析:先设22x y m +=,则原方程可变形为:2340m m +-=,解方程即可求得m 的值,从而求得22x y +的值.解答:设22x y m +=,则原方程可变形为:2340m m +-=,分解因式得,(1)(4)0m m -+=∴m =-4,m =1,∵22xy +≥0 ∴22x y +=1 故答案为:1.18、答案:10x =,22x =,32x =-分析:本题考查了因式分解法解方程.解答:34x x =340x x -=2(4)0x x -=x (x -2)(x +2)=0∴10x =,22x =,32x =-.故答案为:10x =,22x =,32x =-.三、解答题19、答案:(1)x 1=1,x 2=−5;(2)x 1=2,x 2=3;(3)x 1=3,x 2=12. 分析:本题考查的是一元二次方程的解法,掌握一元二次方程的解法:配方法,公式法,因式分解法的解答步骤是关键.解答:(1)2450x x +-=,245x x +=,24454x x ++=+,()229x +=,23x +=±,23x +=或23x +=-,∴121,5x x ==-.(2)x 2-5x +6=0,(x -2)(x -3)=0,x -2=0或x -3=0,∴x 1=2,x 2=3,(3)22730x x -+=,∵a =2,b =−7,c =3,2449423250b ac -=-⨯⨯=>,754x ±==, ∴1213,2x x ==. 20、答案:(1)x 1=0,x 2=12;(2)x 1=1,x 2=-23. 分析:本题考查了因式分解法解一元二次方程.解答:(1)3x -1=±(x -1),即3x -1=x -1或3x -1=-(x -1),∴x 1=0,x 2=12; (2)3x (x -1)+2(x -1)=0,(x -1)(3x +2)=0,x -1=0或3x +2=0,∴x 1=1,x 2=-23. 20、答案:(1)换元,降次;(2)x 1=-3,x 2=2.分析:本题考查了因式分解法解一元二次方程.解答:解:(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想;(2)设x 2+x =y ,原方程可化为y 2-4y -12=0,解得y 1=6,y 2=-2.由x 2+x =6,得x 1=-3,x 2=2.由x2+x=-2,得方程x2+x+2=0,b2-4ac=1-4×2=-7<0,此时方程无实根.∴原方程的解为x1=-3,x2=2.【答题】根据要求,解答下列问题:(1)①方程x2-x-2=0的解为______;②方程x2-2x-3=0的解为______;③方程x2-3x-4=0的解为______;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2-9x-10=0的解为______;②请用配方法解方程x2-9x-10=0,以验证猜想结论的正确性.(3)应用:关于x的方程______的解为x1=-1,x2=n+1.。
锲而不舍,胆大心细让我们陪伴着你的成长!一元二次方程的根一元二次方程的解也叫做一元二次方程的根因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解. 例1下面哪些数是方程 2χ210χ • 12 =O 的根?—4、一 3、一 2、一 1、0、1、2、3、4分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.复习a b 2 =a 2 2ab b 22 2 2(a - b) = a - 2ab b像这种求出一元二次方程的根的方法叫做配方法。
2⑵ X 12X T5= 0根据公式完成下面的练习:解: 解:由已知,得: X 32=22方程两边同时除以3,得X直接开平方,得:X - 2即 X 3 = 2 , X 3 = - 2所以,方程的两根X 1 = -3 ∙・、2 , X 2 = -3 - I 2 2所以,2配方,得X49 36Q 2方程的两根×1=-- 6 6=2 , X 2(1) X 28X = 9让我们陪伴着你的成长!2(4) 3X 8x - 3 = 02(5)2X -9X 8=02⑹ X 2 -8X锲而不舍,胆大心细 让我们陪伴着你的成长!锲而不舍,胆大心细 练一练 一、选择题1•方程x x -1 =2的两根为().方程ax X -b ]亠∣b -X = 0的根是(若X 2 —4x + P =(x +q 2 ,那么p 、q 的值分别是(、填空题2 21 •如果X -81 =O ,那么X -81 =0的两个根分别是2. 已知方程5x +mx-6=0的一个根是X =3 ,贝U m 的值为 _______________________ .3. __________________________________________________ 方程(x+1 丫 + J2x (x+1)=θ ,那么方程的根 X i = ; X 2= ____________________________________________________ .24 •若8x -16 =0 ,则X 的值是 __________________ .5•如果方程2(x-3f =72,那么,这个一元二次方程的两根是 _________________________ .6.如果a 、b 为实数,满足∙√'3a+4+b 2 T2b+36 = 0 ,那么ab 的值是 ________________________ .三、综合提高题如果关于X 的一元二次方程 ax 2 bx ∙c = 0a=0中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.A . X 1 = 0, X 2 = 1B . X 1 =0,X 2C . X 1 = 1, X 2 = 2D . X 1 = -1, X 2 = 2A . x^b, X ? =aB . X 1 =b, X 2C . X 1 =a,X 2D . x 1 = a 2,x 2 =b 2已知X- -1是方程2axf a Cb b b ^0=().A . p=4,q=2B . p= 4,q ι-2C . P = -4, q = 2D . P = -4, q = -2A . 3B .- -3C . ± 3D .无实数根 26.用配方法解方程X2 一―X +1 =0正确的解法是( ).3f 1Y8 1 2^2A .X — — I = -,X = 二— +BI 3丿 93 3x-1t-8 ,原方程无解 .3 9C .x1√5+ 2 - 3 -x2√5 - 2D . Ffr ι,χ^f,χ2xI= ______ ,x2= ________25 .方程3x ∙ 9 =0的根为().让我们陪伴着你的成长!一元二次方程公式法一元二次方程ax2∙ bx ∙ c = O a = O 的根由方程的系数 a 、b 、C 而定,因此:★ (1)解一元二次方程时,可以先将方程化为一般形式ax 2 ∙ bx ∙ c = O a = O ,当b 2 - 4ac _ O 时,?将■ 2一 b 十b — 4aca 、b 、C 代入式子X就得到方程的根。
初中数学因式分解常用七大解题方法,分类讲解+例题解析,收藏初中数学|因式分解常用七大解题方法,分类讲解+例题解析,收藏 -一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a2-b2 ---------a2-b2=(a+b)(a-b);(2) (a±b)2 = a2±2ab+b2 ———a2±2ab+b2=(a±b)2;(3) (a+b)(a2-ab+b2) =a3+b3------ a3+b3=(a+b)(a2-ab+b2);(4) (a-b)(a2+ab+b2) = a3-b3 ------a3-b3=(a-b)(a2+ab+b2).下面再补充两个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);三、分组分解法(一)分组后能直接提公因式比如,从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
(二)分组后能直接运用公式分组后能直接运用公式,主要是通过对题目当中各因式的观察,进行分组后,能够进行提公因式分解,直到分解的最后能够变成几个多项式或单项式与多项式的乘积为止。
综合练习:四、十字相乘法.十字相乘法是因式分解当中比较难的一种分解方式。
在运用过程当中,对同学们的思维提出了更高的要求,等大家都熟练了这种方法以后,其实对于因式分解是非常简单的,而且比较方便。
对于十字相乘法,我们分为四种类型。
给大家做详细的讲解。
针对每一种方法都有经典的例题解析,通过例题解析的方式让大家明白因式分解时该如何操作,遵循怎样的分解步骤,才能比较顺利的解决和掌握十字相乘法。
第 1 页 共6 页 因式分解的配方法和拆添项法参考答案知识要点:拆项或添项是将原多项式配上某些需要的项,创造能因式分解的条件。
配方法则是通过拆项或添项,把一个式子写成完全平方式或几个完全平方式和的形式。
A 卷一、填空题1、分解因式:_______________893=+-x x .(拆项法) 答案:()()812-+-x x x解析:原式()()()()()=---+=---=+--=18111818823x x x x x x x x x x ()()812-+-x x x提示:本题的关键是将x 9-拆为x -和x 8-.2、分解因式:_______________12224=-+++a ax x x .(添项法) 答案:()()1122++--++a x x a x x解析:原式()()=--+=-+-++=22222241212a x x a ax x x x ()()1122++--++a x x a x x提示:本题的关键是将通过添加2x ,构造完全平方公式,进而利用平方差公式分解。
,构造完全平方公式,进而利用平方差公式分解。
3、分解因式:____________________15=++x x .(添项法) 答案:()()11232+-++x x x x解析:原式()()()()()111111222232225+++++-=+++-=+++-=x x x x x x x x x x x x x x ()()11232+-++=x x x x提示:本题的关键是将通过添加2x ,构造立方差公式,进而提取公因式分解。
,构造立方差公式,进而提取公因式分解。
4、(第15届“希望杯”初二试题)分解因式:_____________232432234=++++b ab b a b a a . 答案:()222ab b a ++解析:原式()()=+++++=22334224222b a ab b a b b a a ()()()=++++22222ab b a ab ba()222ab b a++提示:本题的关键是将通过拆项223b a ,构造完全平方公式。
因式分解------配方法与待定系数法配方法把一个式子或一个式子的部分写成完全平方式或几个完全平方式的和的形式,这种方法叫配方法。
配方法分解因式的关键是通过拆项或添项,将原多项式配上某些需要的项,以便得到完全平方式,然后在此基础上分解因式。
例1、分解因式: (1)44x +(2)、344422-+--y y x x(3)、1232234++++x x x x (3)`、()()22221x x x x ++++ (另见最后一题)练习 :分解因式: (1)4416b a +;(2)4224y y x x ++;(3)432234232a a b a b ab b ++++;(4)、1724+-x x ;(5)、22412a ax x x -+++;(6)、24222)1()1(2)1(y x y x y -+--+。
待定系数法对所给的数学问题,根据已知条件和要求,先设出问题的多项式表达形式(含待定的字母系数),然后利用已知条件,确定或消去所设待定系数,使问题获解的这种方法叫待定系数法,用待定系数法解题的一般步骤是: 1、根据多项式次数关系,假设一个含待定系数的多项式; 2、利用恒等式对应项系数相等的性质,列出含有待定系数的方程组;3、解方程组,求出待定系数,再代人所设问题的结构中去,得到需求问题的解。
例1、如果823+++bx ax x 有两个因式1x +和2x +,则a b +=( )。
A 、7B 、8C 、15D 、2l练习1、如果3233x x x k +-+有一个因式1x +,求k 。
课后练习、已知是多项式12234-+++-+b a bx ax x x 的一个因式为62-+x x ,求a 的值。
例2、k 为何值时,多项式253222+-++-y x ky xy x 能分解成两个一次因式的积?练习:1、已知代数式 22342x xy y x by ---+-能分解成两个关于 , y x 一次因式的积求 b 的值。
因式分解一.解答题(共40小题)1.因式分解:ab2﹣2ab+a.2.因式分解:(x2﹣6)2﹣6(x2﹣6)+93.因式分解:(1)3ax2﹣6axy+3ay2 (2)(3x﹣2)2﹣(2x+7)24.分解因式:(1)3mx﹣6my (2)4xy2﹣4x2y﹣y3.5.因式分解:(1)9a2﹣4 (2)ax2+2a2x+a36.分解因式:①﹣a4+16 ②6xy2﹣9x2y﹣y37.因式分解:x4﹣81x2y2.8.在实数范围内将下列各式分解因式:(1)3ax2﹣6axy+3ay2;(2)x3﹣5x.9.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy310.因式分解(1)﹣x3+2x2y﹣xy2 (2)x2(x﹣2)+4(2﹣x)11.因式分解:(1)x2y﹣y;(2)a3b﹣2a2b2+ab3.12.分解因式:(1)3a3b2﹣12ab3c;(2)3x2﹣18xy+27y2.(1)8ax2﹣2ax (2)4a2﹣3b(4a﹣3b)14.因式分解(1)m2﹣4n2 (2)2a2﹣4a+2.15.分解因式:(m2+4)2﹣16m2.16.分解因式:(1)﹣2m2+8mn﹣8n2 (2)a2(x﹣1)+b2(1﹣x)(3)(m2+n2)2﹣4m2n2.17.分解因式:m2﹣25+9n2+6mn.18.分解因式:(1)x3y﹣2x2y2+xy3 (2)x2﹣4x+4﹣y2.(1)9a2(x﹣y)+4b2(y﹣x)(2)(x2y2+1)2﹣4x2y220.分解因式:(1)8a3b2+12ab3c;(2)(2x+y)2﹣(x+2y)2.21.分解因式:a2b﹣b3.22.因式分解:x4﹣10x2y2+9y4.23.分解因式:(1)(m+n)2﹣4m(m+n)+4m2 (2)a3b﹣ab;(3)x2+2x﹣324.分解因式:(1)81x4﹣16;(2)8ab3+2a3b﹣8a2b2(1)5a2+10ab;(2)mx2﹣12mx+36m.26.分解因式:(1)2x﹣8x3;(2)﹣3m3+18m2﹣27m(3)(a+b)2+2(a+b)+1.(4)9a2(x﹣y)+4b2(y﹣x).27.阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3 (2)4x2+12x﹣7.28.因式分解:(1)a4﹣a2b2;(2)(x﹣1)(x﹣3)+1.(1)a3﹣2a2+a (2)x4﹣130.分解因式(1)x3﹣9x;(2)﹣x3y+2y2x2﹣xy3;(3)1﹣a2+2ab﹣b2.31.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(x﹣y)+4b2(y﹣x).32.因式分解(1)ax2﹣16ay2(2)﹣2a3+12a2﹣18a(3)(x+2)(x﹣6)+16 (4)a2﹣2ab+b2﹣1.33.因式分解:(1)x2﹣2x﹣8=(2)﹣a4+16;(3)3a3(1﹣2a)+a(2a﹣1)2+2a(2a﹣1).34.分解因式:(1)2a3﹣4a2b+2ab2;(2)x4﹣y435.将下列多项式因式分解①4ab2﹣4a2b+a3 ②16(x﹣y)2﹣24x(x﹣y)+9x2③6(a﹣b)2﹣3(b﹣a)2.36.因式分解①﹣2a3+12a2﹣18a ②9a2(x﹣y)+4b2(y﹣x)37.分解因式:(1)x(x﹣y)﹣y(y﹣x).(2)(a2+1)2﹣4a2.38.【问题提出】:分解因式:(1)2x2+2xy﹣3x﹣3y;(2)a2﹣b2+4a﹣4b 【问题探究】:某数学“探究学习”小组对以上因式分解题目进行了如下探究:探究1:分解因式:(1)2x2+2xy﹣3x﹣3y分析:该多项式不能直接使用提取公因式法,公式法进行因式分解.于是仔细观察多项式的特点.甲发现该多项式前两项有公因式2x,后两项有公因式﹣3,分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2+2xy)﹣(3x+3y)=2x(x+y)﹣3(x+y)=(x+y)(2x ﹣3)另:乙发现该多项式的第二项和第四项含有公因式y,第一项和第三项含有公因式x,把y、x提出来,剩下的是相同因式(2x﹣3),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2﹣3x)+(2xy﹣3y)=x(2x﹣3)+y(2x﹣3)=(2x ﹣3)(x+y)探究2:分解因式:(2)a2﹣b2+4a﹣4b分析:该多项式亦不能直接使用提取公因式法,公式法进行因式分解,于是若将此题按探究1的方法分组,将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组即﹣b2﹣4b=﹣b(b+4),但发现a(a+4)与﹣b(b+4)再没有公因式可提,无法再分解下去.于是再仔细观察发现,若先将a2﹣b2看作一组应用平方差公式,其余两项看作一组,提出公因式4,则可继续再提出因式,从而达到分解因式的目的.解:a2﹣b2+4a﹣4b=(a2﹣b2)+(4a﹣4b)=(a+b)(a﹣b)+4(a﹣b)=(a﹣b)(4+a+b)【方法总结】:对不能直接使用提取公因式法,公式法进行分解因式的多项式,我们可考虑把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运动公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法.分组分解法并不是一种独立的因式分解的方法,而是通过对多项式进行适当的分组,把多项式转化为可以应用“基本方法”分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用“基本方法”进行分解因式的目的.【学以致用】:尝试运动分组分解法解答下列问题:(1)分解因式:x3﹣x2﹣x+1;(2)分解因式:4x2﹣y2﹣2yz ﹣z2(3)尝试运用以上思路分解因式:m2﹣6m+8.39.分解因式:(1)2x2y﹣8xy+8y;(2)a2(x﹣y)﹣9b2(x﹣y);(3)9(3m+2n)2﹣4(m﹣2n)2;(4)(y2﹣1)2+6(1﹣y2)+9.40.分解因式:(1)x2﹣9 (2)x2+4x+4(3)a2﹣2ab+b2﹣16 (4)(a+b)2﹣6(a+b)+9.2018年04月15日173****3523的初中数学组卷参考答案与试题解析一.解答题(共40小题)1.因式分解:ab2﹣2ab+a.【解答】解:ab2﹣2ab+a=a(b2﹣2b+1)=a(b﹣1)2.2.因式分解:(x2﹣6)2﹣6(x2﹣6)+9【解答】解:原式=(x2﹣6﹣3)2=(x2﹣9)2=(x+3)2(x﹣3)2.3.因式分解:(1)3ax2﹣6axy+3ay2(2)(3x﹣2)2﹣(2x+7)2【解答】解:(1)原式=3a(x2﹣2xy+y2)=3a(x﹣y);(2)原式=[(3x﹣2)+(2x+7)][(3x﹣2)﹣(2x+7)]=(5x+5)(x﹣9)=5(x+1)(x﹣9).4.分解因式:(1)3mx﹣6my(2)4xy2﹣4x2y﹣y3.【解答】解:(1)3mx﹣6my=3m (x﹣2y);(2)原式=﹣y(﹣4xy+4x2+y2)=﹣y(y﹣2x)2.5.因式分解:(1)9a2﹣4(2)ax2+2a2x+a3【解答】解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)26.分解因式:①﹣a4+16②6xy2﹣9x2y﹣y3【解答】解:①﹣a4+16=(4﹣a2)(4+a2)=(2+a)(2﹣a)(4+a2);②6xy2﹣9x2y﹣y3=﹣y(y2﹣6xy+9x2)=﹣y(y﹣3x)2.7.因式分解:x4﹣81x2y2.【解答】解:原式=x2(x2﹣81y2)=x2(x+9y)(x﹣9y)8.在实数范围内将下列各式分解因式:(1)3ax2﹣6axy+3ay2;(2)x3﹣5x.【解答】解:(1)原式=3a(x2﹣2xy+y2)=3a(x﹣y)2;(2)原式=x(x2﹣5),=x(x+)(x﹣).9.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3【解答】解:(1)原式=a(9x2﹣y2)=a(3x+y)(3x﹣y);(2)原式=2xy(x2+2xy+y2)=2xy(x+y)2.10.因式分解(1)﹣x3+2x2y﹣xy2(2)x2(x﹣2)+4(2﹣x)【解答】解:(1)﹣x3+2x2y﹣xy2=﹣x(x2﹣2xy+y2)=﹣x(x﹣y)2;(2)x2(x﹣2)+4(2﹣x)=(x﹣2)(x2﹣4)=(x+2)(x﹣2)2.11.因式分解:(1)x2y﹣y;(2)a3b﹣2a2b2+ab3.【解答】解:(1)x2y﹣y=y(x2﹣1)=y(x+1)(x﹣1);(2)a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2.12.分解因式:(1)3a3b2﹣12ab3c;(2)3x2﹣18xy+27y2.【解答】解:(1)3a3b2﹣12ab3c;=3ab2(a2﹣4bc);(2)3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.13.将下列各式分解因式(1)8ax2﹣2ax(2)4a2﹣3b(4a﹣3b)【解答】解:(1)8ax2﹣2ax=2ax(4x﹣1);(2)4a2﹣3b(4a﹣3b)=4a2﹣12ab+9b2=(2a﹣3)2.14.因式分解(1)m2﹣4n2(2)2a2﹣4a+2.【解答】解:(1)原式=(m+2n)(m﹣2n)(2)原式=2(a2﹣2a+1)=2(a﹣1)215.分解因式:(m2+4)2﹣16m2.【解答】解:(m2+4)2﹣16m2=(m2+4+4m)(m2+4﹣4m)=(m+2)2(m﹣2)2.16.分解因式:(1)﹣2m2+8mn﹣8n2(2)a2(x﹣1)+b2(1﹣x)(3)(m2+n2)2﹣4m2n2.【解答】解:(1)﹣2m2+8mn﹣8n2=﹣2(m2﹣4mn+4n2)=﹣2(m﹣2n)2;(2)a2(x﹣1)+b2(1﹣x)=(x﹣1)(a2﹣b2)=(x﹣1)(a﹣b)(a+b);(3)(m2+n2)2﹣4m2n2=(m2+n2+2mn)(m2+n2﹣2mn)=(m+n)2(m﹣n)2.17.分解因式:m2﹣25+9n2+6mn.【解答】解:原式=(m2+6mn+9n2)﹣25 =(m+3n)2﹣25=(m+3n+5)(m+3n﹣5).18.分解因式:(1)x3y﹣2x2y2+xy3(2)x2﹣4x+4﹣y2.【解答】解:(1)x3y﹣2x2y2+xy3=xy(x2﹣2xy+y2)=xy(x﹣y)2;(2)x2﹣4x+4﹣y2=(x﹣2)2﹣y2=(x﹣2+y)(x﹣2﹣y).19.把下列各式因式分解:(1)9a2(x﹣y)+4b2(y﹣x)(2)(x2y2+1)2﹣4x2y2【解答】解:(1)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(2)(x2y2+1)2﹣4x2y2=(x2y2+1+2xy)(x2y2+1﹣2xy)=(xy﹣1)2(xy+1)2.20.分解因式:(1)8a3b2+12ab3c;(2)(2x+y)2﹣(x+2y)2.【解答】解:(1)8a3b2+12ab3c=4ab2(2a2+3bc);(2)(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).21.分解因式:a2b﹣b3.【解答】解:原式=b(a2﹣b2)=b(a+b)(a﹣b).22.因式分解:x4﹣10x2y2+9y4.【解答】解:原式=(x2﹣9y2)(x2﹣y2)=(x﹣3y)(x+3y)(x﹣y)(x+y).23.分解因式:(1)(m+n)2﹣4m(m+n)+4m2(2)a3b﹣ab;(3)x2+2x﹣3【解答】解:(1)原式=[(m+n)﹣2m]2 =(n﹣m)2(2)原式=ab(a2﹣1)=ab(a+1)(a﹣1).(3)原式=(x+3)(x﹣1).24.分解因式:(1)81x4﹣16;(2)8ab3+2a3b﹣8a2b2【解答】解:(1)原式=(9x2+4)(9x2﹣4)=(9x2+4)(3x+2)(3x﹣2);(2)原式=2ab(4b2+a2﹣4ab)=2ab(a﹣2b)2.25.分解因式:(1)5a2+10ab;(2)mx2﹣12mx+36m.【解答】解:(1)原式=5a(a+2b)(2)原式=m(x2﹣12x+36)=m(x﹣6)226.分解因式:(1)2x﹣8x3;(2)﹣3m3+18m2﹣27m(3)(a+b)2+2(a+b)+1.(4)9a2(x﹣y)+4b2(y﹣x).【解答】解:(1)2x﹣8x3;=2x(1﹣4x2)=2x(1﹣2x)(1+2x);(2)﹣3m3+18m2﹣27m=﹣3m(m2﹣6m+9)=﹣3m(m﹣3)2;(3)(a+b)2+2(a+b)+1=(a+b+1)2;(4)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).27.阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3(2)4x2+12x﹣7.【解答】解:(1)x2﹣4x+3=x2﹣4x+4﹣4+3=(x﹣2)2﹣1=(x﹣2+1)(x﹣2﹣1)=(x﹣1)(x﹣3)(2)4x2+12x﹣7=4x2+12x+9﹣9﹣7=(2x+3)2﹣16=(2x+3+4)(2x+3﹣4)=(2x+7)(2x﹣1)28.因式分解:(1)a4﹣a2b2;(2)(x﹣1)(x﹣3)+1.【解答】解:(1)原式=a2(a2﹣b2)=a2(a+b)(a﹣b)(2)原式=x2﹣4x+3+1=(x﹣2)229.因式分解:(1)a3﹣2a2+a(2)x4﹣1【解答】解:(1)原式=a(a2﹣2a+1)(2)原式=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1).30.分解因式(1)x3﹣9x;(2)﹣x3y+2y2x2﹣xy3;(3)1﹣a2+2ab﹣b2.【解答】解:(1)原式=x(x2﹣9)=x(x﹣3)(x+3)(2)原式=﹣xy(x2﹣2xy+y2)=﹣xy(x﹣y)2(3)原式=1﹣(a2﹣2ab+b2)=1﹣(a﹣b)2=(1﹣a+b)(1+a﹣b)31.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(x﹣y)+4b2(y﹣x).【解答】解:(1)原式=2a2﹣2a﹣12﹣(16﹣a2)=2a2﹣2a﹣12﹣16+a2=3a2﹣2a﹣28.(2)原式=9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).32.因式分解(1)ax2﹣16ay2(2)﹣2a3+12a2﹣18a(3)(x+2)(x﹣6)+16(4)a2﹣2ab+b2﹣1.【解答】解:(1)原式=a(x2﹣16y2)=a(x+4y)(x﹣4y)(2)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2(3)原式=x2﹣4x+4=(x﹣2)2(4)原式=(a﹣b)2﹣1=(a﹣b+1)(a﹣b﹣1)33.因式分解:(1)x2﹣2x﹣8=(x+2)(x﹣4);(2)﹣a4+16;(3)3a3(1﹣2a)+a(2a﹣1)2+2a(2a﹣1).【解答】解:(1)原式=(x+2)(x﹣4)(2)原式=16﹣a4=(4+a2)(4﹣a2)=(4+a2)(2+a)(2﹣a)(3)原式=3a3(1﹣2a)+a(1﹣2a)3﹣2a(1﹣2a)=a(1﹣2a)(3a2+1﹣2a﹣2)=a(1﹣2a)(a﹣1)(3a+1)故答案为:(1)(x+2)(x﹣4)34.分解因式:(1)2a3﹣4a2b+2ab2;(2)x4﹣y4【解答】解:(1)2a3﹣4a2b+2ab2,=2a(a2﹣2ab+b2),=2a(a﹣b)2;(2)x4﹣y4,=(x2+y2)(x2﹣y2),=(x2+y2)(x+y)(x﹣y).35.将下列多项式因式分解①4ab2﹣4a2b+a3②16(x﹣y)2﹣24x(x﹣y)+9x2③6(a﹣b)2﹣3(b﹣a)2.【解答】解:①4ab2﹣4a2b+a3=a(a2﹣4ab+4b2)=a(a﹣2b)2;②16(x﹣y)2﹣24x(x﹣y)+9x2=[4(x﹣y)﹣3x]2=(x﹣4y)2;③6(a﹣b)2﹣3(b﹣a)2.=3(a﹣b)2×(2+1)=9(a﹣b)2.36.因式分解①﹣2a3+12a2﹣18a②9a2(x﹣y)+4b2(y﹣x)【解答】解:①﹣2a3+12a2﹣18a,=﹣2a(a2﹣6a+9),=﹣2a(a﹣3)2;②9a2(x﹣y)+4b2(y﹣x),=(x﹣y)(9a2﹣4b2),=(x﹣y)(3a+2b)(3a﹣2b).37.分解因式:(1)x(x﹣y)﹣y(y﹣x).(2)(a2+1)2﹣4a2.【解答】解:(1)x(x﹣y)﹣y(y﹣x)=x(x﹣y)+y(x﹣y)=(x﹣y)(x+y);(2)(a2+1)2﹣4a2.=(a2+1﹣2a)(a2+1+2a)=(a﹣1)2(a+1)2.38.【问题提出】:分解因式:(1)2x2+2xy﹣3x﹣3y;(2)a2﹣b2+4a﹣4b【问题探究】:某数学“探究学习”小组对以上因式分解题目进行了如下探究:探究1:分解因式:(1)2x2+2xy﹣3x﹣3y分析:该多项式不能直接使用提取公因式法,公式法进行因式分解.于是仔细观察多项式的特点.甲发现该多项式前两项有公因式2x,后两项有公因式﹣3,分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2+2xy)﹣(3x+3y)=2x(x+y)﹣3(x+y)=(x+y)(2x ﹣3)另:乙发现该多项式的第二项和第四项含有公因式y,第一项和第三项含有公因式x,把y、x提出来,剩下的是相同因式(2x﹣3),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2﹣3x)+(2xy﹣3y)=x(2x﹣3)+y(2x﹣3)=(2x ﹣3)(x+y)探究2:分解因式:(2)a2﹣b2+4a﹣4b分析:该多项式亦不能直接使用提取公因式法,公式法进行因式分解,于是若将此题按探究1的方法分组,将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组即﹣b2﹣4b=﹣b(b+4),但发现a(a+4)与﹣b(b+4)再没有公因式可提,无法再分解下去.于是再仔细观察发现,若先将a2﹣b2看作一组应用平方差公式,其余两项看作一组,提出公因式4,则可继续再提出因式,从而达到分解因式的目的.解:a2﹣b2+4a﹣4b=(a2﹣b2)+(4a﹣4b)=(a+b)(a﹣b)+4(a﹣b)=(a﹣b)(4+a+b)【方法总结】:对不能直接使用提取公因式法,公式法进行分解因式的多项式,我们可考虑把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运动公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法.分组分解法并不是一种独立的因式分解的方法,而是通过对多项式进行适当的分组,把多项式转化为可以应用“基本方法”分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用“基本方法”进行分解因式的目的.【学以致用】:尝试运动分组分解法解答下列问题:(1)分解因式:x3﹣x2﹣x+1;(2)分解因式:4x2﹣y2﹣2yz﹣z2【拓展提升】:(3)尝试运用以上思路分解因式:m2﹣6m+8.【解答】【学以致用】:解:(1)x3﹣x2﹣x+1=(x3﹣x2)﹣(x﹣1)=x2(x﹣1)﹣(x﹣1)=(x﹣1)(x2﹣1)=(x﹣1)(x+1)(x﹣1)=(x﹣1)2(x+1)(2)解:4x2﹣y2﹣2yz﹣z2=4x2﹣(y2+2yz+z2)=(2x)2﹣(y+z)2=(2x+y+z)(2x﹣y﹣z)′【拓展提升】:(3)解:m2﹣6m+8=m2﹣6m+9﹣1=(m﹣3)2﹣1=(m﹣2)(m﹣4).39.分解因式:(1)2x2y﹣8xy+8y;(2)a2(x﹣y)﹣9b2(x﹣y);(3)9(3m+2n)2﹣4(m﹣2n)2;(4)(y2﹣1)2+6(1﹣y2)+9.【解答】解:(1)2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y(x﹣2)2;(2)a2(x﹣y)﹣9b2(x﹣y)=(x﹣y)(a2﹣9b2)=(x﹣y)(a+3b)(a﹣3b);(3)9(3m+2n)2﹣4(m﹣2n)2=[3(3m+2n)﹣2(m﹣2n)][3(3m+2n)+2(m﹣2n)]=(7m+10n)(11m+2n);(4)(y2﹣1)2+6(1﹣y2)+9=(y2﹣1﹣3)2=(y+2)2(y﹣2)2.40.分解因式:(1)x2﹣9(2)x2+4x+4(3)a2﹣2ab+b2﹣16(4)(a+b)2﹣6(a+b)+9.【解答】(1)x2﹣9=(x+3)(x﹣3)(2)x2+4x+4=(x+2)2(3)a2﹣2ab+b2﹣16=(a﹣b)2﹣42=(a﹣b+4)(a﹣b﹣4)(4)(a+b)2﹣6(a+b)+9=(a+b﹣3)2。
因式分解与配方法解方程训练题一.选择题(共27小题)1.用配方法解方程x2﹣2x﹣5=0时,原方程变形为()A.(x+1)2=6B.(x﹣1)2=6C.(x+2)2=9D.(x﹣1)2=9 2.用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣9B.(x+4)2=﹣7C.(x+4)2=25D.(x+4)2=7 3.把方程x2﹣4x﹣5=0化成(x+a)2=b的形式,则a、b的值分别是()A.2,9B.2,7C.﹣2,9D.﹣2,74.用配方法解方程,x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x﹣1)2=6C.(x+2)2=9D.(x﹣2)2=9 5.用公式法解方程x2﹣2x=3时,求根公式中的a,b,c的值分别是()A.a=1,b=﹣2,c=3B.a=1,b=2,c=﹣3C.a=1,b=2,c=3D.a=1,b=﹣2,c=﹣36.用公式法解一元二次方程3x2﹣4x=8时,化方程为一般式,当中的a,b,c依次为()A.3,﹣4,8B.3,4,8C.3,4,﹣8D.3,﹣4,﹣8 7.一元二次方程x2+4x﹣8=0的解是()A.x1=2+2,x2=2﹣2B.x1=2+2,x2=2﹣2C.x1=﹣2+2,x2=﹣2﹣2D.x1=﹣2+2,x2=﹣2﹣28.用求根公式解一元二次方程5x2﹣1﹣4x=0时a,b,c的值是()A.a=5,b=﹣1,c=﹣4B.a=5,b=﹣4,c=1C.a=5,b=﹣4,c=﹣1D.a=5,b=4,c=19.一元二次方程x2﹣7x=0的解是()A.x1=x2=7B.x1=x2=﹣7C.x1=0,x2=7D.x1=0,x2=﹣7 10.方程x2﹣2x=0的解是()A.x=2B.x=0C.x=2或x=1D.x=2或x=0 11.一元二次方程x2﹣4x﹣5=0的根为()A.x=1B.x=5C.x=﹣1或x=5D.x=1或x=﹣5 12.方程(x﹣3)(x+2)=0的根是()A.x1=﹣3,x2=﹣2B.x1=﹣3,x2=2C.x1=3,x2=﹣2D.x1=3,x2=213.一元二次方程(x﹣1)x=0的解是()A.0或﹣1B.0或1C.1D.014.解方程x(x﹣2)+3(x﹣2)=0,最适当的解法是()A.直接开平方法B.因式分解法C.配方法D.公式法15.一元二次方程x2+x﹣6=0的根是()A.x=2B.x=﹣3C.x=﹣2D.x1=2,x2=﹣3 16.若关于x的一元二次方程x2+2m=4有两个不相等的实数根,则m的取值范围是()A.m<2B.m≤2C.m≥0D.m<017.关于x的一元二次方程kx2+2x﹣1=0有两个相等的实数根,则实数k的取值范围是()A.k>﹣1B.k<﹣1C.k=﹣1D.k>﹣1且k≠0 18.一元二次方程3x2﹣6x+4=0根的情况是()A.有两个相等的实数根B.无实数根C.有两个不相等的实数根D.无法确定19.方程x2﹣2x+4=0的根的情况是()A.有两个不相等的实根B.有两个相等的实根C.没有实数根D.无法确定20.已知关于x的一元二次方程(k﹣1)x2﹣4x﹣1=0有两个不等的实数根,则k的取值范围是()A.k≥﹣4B.k>﹣3C.k>﹣3且k≠1D.k≥﹣3且k≠1 21.一元二次方程5x2﹣3x=x+1的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断22.一元二次方程x2﹣x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根23.若关于x的方程(k﹣1)x2+4x+1=0有两不相等实数根,则k的取值范围是()A.k≤5B.k<5C.k≤5且k≠1D.k<5且k≠1 24.已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则()A.m<1B.m>1C.m≠0D.0<m<125.一元二次方程x2+x﹣4=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.只有一个实数根26.如果关于x的一元二次方程kx2﹣3x+1=0有两个实数根,那么k的取值范围是()A.B.且k≠0C.且k≠0D.27.若a*b=ab2﹣2ab﹣3.则方程3*x=0的根的情况为()A.无实数根B.有两个相等的实数根C.有两个不相等的实数根D.不能确定二.填空题(共3小题)28.一元二次方程x2﹣7x=0的解是.29.方程x2﹣x=0的解为.30.若关于x的一元二次方程x2+x+k=0有两个相等的实数根,则k的值为.三.解答题(共29小题)31.用配方法解方程:2x2+6x=3.32.解下列方程3x2+4x﹣1=0.(用配方法)33.用配方法解方程:2x2﹣6x+1=0.34.解方程:(配方法)2x2+5x﹣1=0.35.x2﹣14x=8(配方法).36.解方程:x2+12x+27=0(用配方法).37.用配方法解方程:2x2﹣2x﹣1=0.38.用适当的方法解方程:x2﹣6x﹣2=0.39.用公式法解方程:x2+2x﹣6=0.40.用公式法解方程:2x(x﹣3)=(x﹣1)(x+1).41.按要求解下列方程:(1)x2+6x﹣2=0(配方法);(2)2x2+5x﹣1=0(公式法).42.公式法解方程:2x2﹣x﹣3=0.43.(1)用配方法解方程:x2+2x﹣2=0;(2)用公式法解方程:x2﹣2x﹣5=0.44.x2﹣7x﹣18=0(公式法).45.用公式法解方程:x2﹣x﹣7=0.46.解方程:2x2﹣7x+3=0(公式法).47.解方程:(1)x2+2x﹣3=0;(2)(x+4)2=5(x+4).48.解方程:(2x﹣1)2=3(2x﹣1).49.解方程:(1)x+2=x(x+2);(2)2x2﹣7x+6=0.50.解方程:(1)x(x﹣3)=x﹣3;(2)x2﹣10x+6=0.51.解下列关于x的方程.(1)(x﹣3)(x+1)=x﹣3;(2)3x2﹣4x﹣1=0.52.解方程:x(x﹣5)=8(5﹣x).53.用因式分解法解方程:(1)2(x﹣3)2=x2﹣9;(2)(2x﹣1)2=2(1﹣2x)﹣1.54.用因式分解法解下列方程.(1)x2﹣x﹣56=0.(2)3x(x﹣2)=2(x﹣2).55.关于x的一元二次方程x2﹣2x+3m﹣2=0有实数根.(1)当x=0是方程的一个根,求m的值;(2)求m的取值范围.56.已知关于x的方程x2﹣(k+2)x+2k﹣1=0.(1)求证:方程总有两个不相等的实数根;(2)如果方程的一个根为x=3,求k的值及方程的另一根.57.关于x的一元二次方程x2+(m+4)x﹣2m﹣12=0,求证:(1)方程总有两个实数根;(2)如果方程的两根相等,求此时方程的根.58.关于x的一元二次方程:.(1)当k=1时,求方程的根;(2)若此方程有两个不相等的实数根,求k的取值范围.59.已知关于x的一元二次方程x2﹣x+m﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为正整数,求方程的根.。
分解因式
1、1522--x x ;
2、2
265y xy x +-. 3、3522--x x ; 4、3832-+x x .
5、91024+-x x ;
6、 22157x x ++
7、 2384a a -+
8、2
61110y y --
9、2252310a b ab +- 10、222231710a b abxy x y -+ 11、 22
712x xy y -+
12、 42718x x +- 13、 22483m mn n ++ 14、532
51520x x y xy --
15、672+-x x ; 16、1232-+x x ; 17、652-+x x ; 18、9542--x x ;
19、823152+-x x ; 20、121124-+x x 21、6724+-x x ; 22、36524--x x ;
23、4
22416654y y x x +-; 24、633687b b a a --; 25、234456a a a --;
26、2224)3(x x --; 27、9)2(2
2--x x ; 28、 2222)332()123(++-++x x x x
29、60)(17)(222++-+x x x x ; 30、8)2(7)2(2
22-+-+x x x x ;
31、48)2(14)2(2++-+b a b a . 32、 2576x x +-)(2)(5)(723y x y x y x +-+-+;
33、120)8(22)8(222++++a a a a . 34、90)242)(32(2
2+-+-+x x x x .
35、653856234++-+x x x x . 36、655222-+-+-y x y xy x
37、 a 2-7a+6; 38、8x 2+6x -35; 39、18x 2-21x+5; 40、 20-9y -20y 2;
41、2x 2+3x+1; 42、2y 2+y -6; 43、6x 2-13x+6; 44、3a 2-7a -6;
45、6x 2-11x+3; 46、4m 2+8m+3; 47、10x 2-21x+2; 48、8m 2-22m+15;
49、4n 2+4n -15; 50、6a 2+a -35; 51、5x 2-8x -13; 52、4x 2+15x+9;
53、15x 2+x -2; 54、6y 2+19y+10; 55、7(x -1) 2+4(x -1)-20;
56、.=-+1032x x __________.
57.=--652m m (m +a )(m +b ). a =__________,b =__________.
58.=--3522
x x (x -3)(__________).
59.+2x ____=-22y (x -y )(__________). 60.22____)(____(_____)+=++a m
n a . 61.当k =______时,多项式k x x -+732有一个因式为(__________).
62.若x -y =6,36
17=xy ,则代数式32232xy y x y x +-的值为__________.
1、在同一直角坐标系中,分别画出下列函数的图象.
(1)221x y -
=, 2212+-=x y , 1212--=x y ;
(2)221x y -
=, 2)1(21+-=x y , 2)2(21--=x y ;
(3)221x y -
= , 1212--=x y , 1)1(212-+-=x y .
2.(1)3212+-
=x y 的开口方向 ,对称轴 ,顶点坐标 . (2)2)2(4
1+=x y 的开口方向 ,当x 时,y 随x 的增大而减小. (3)1)3(22---=x y 顶点坐标是 ,当x 时,函数值y 有最 值,
是 .
3、用配方法解下列方程
1.210x x +-= 2.23610x x +-= 3.21(1)2(1)02x x ---+=
4、22103x x -
+=
5、210x x --=;
6、23920x x -+=.
7、23(1)12x +=; 8、2410y y ++=; 9、82884x x -=;
4、把下列函数写成2()y a x h k =-+的形式,并写出它们的图象的开口方向、对称轴和顶点坐标。
(1)162++-=x x y (2)4322+-=x x y (3)232y x x =+
(4)22y x x =-- (5)2288y x x =-+- (6)21432
y x x =-+
(7)2248y x x =--+ (8)q px x
y ++=2
(9)nx x y +-=2
(10)21212y x x =
-+ (11)2285y x x =-+-
5.已知21212
y x x =-++; (1)把它配方成()2y a x h k =++形式
(2)写出它的开口方向、顶点M 的坐标、对称轴方程和最值;
(3)求出图象与y 轴、x 轴的交点坐标;
6.已知抛物线()2
2235y x a a a =+++-的顶点在坐标轴上,求字母a 的值,并指出顶点坐标。
7.二次函数y=x2-2x+c的顶点在直线y=-2x+1上,求抛物线与y轴的交点。