圆柱的侧面积和表面积练习题 (1)
- 格式:doc
- 大小:17.00 KB
- 文档页数:4
圆柱圆锥练习题以及答案圆柱圆锥练习题以及答案圆柱和圆锥是几何学中常见的形状,它们在日常生活和工程设计中都有广泛的应用。
下面将为大家介绍一些关于圆柱和圆锥的练习题以及答案。
练习题1:一个圆柱的底面半径为5cm,高度为10cm,求其表面积和体积。
解答1:圆柱的表面积由两部分组成,底面积和侧面积。
底面积可以通过公式πr^2计算,其中r为底面半径。
侧面积可以通过公式2πrh计算,其中r为底面半径,h为高度。
底面积= π × 5^2 = 25π cm^2侧面积= 2π × 5 × 10 = 100π cm^2圆柱的表面积 = 底面积 + 侧面积= 25π + 100π = 125π cm^2圆柱的体积 = 底面积× 高度= 25π × 10 = 250π cm^3练习题2:一个圆锥的底面半径为6cm,高度为8cm,求其表面积和体积。
解答2:圆锥的表面积由底面积、侧面积和母线组成。
底面积可以通过公式πr^2计算,其中r为底面半径。
侧面积可以通过公式πrl计算,其中r为底面半径,l为母线长度。
母线可以通过勾股定理计算,即l = √(r^2 + h^2),其中h为高度。
底面积 = π × 6^2 = 36π cm^2母线= √(6^2 + 8^2) = √(36 + 64) = √100 = 10 cm侧面积= π × 6 × 10 = 60π cm^2圆锥的表面积 = 底面积 + 侧面积= 36π + 60π = 96π cm^2圆锥的体积 = 底面积× 高度÷ 3 = 36π × 8 ÷ 3 = 96π cm^3通过以上练习题,我们可以看到圆柱和圆锥的表面积和体积的计算方法。
这些计算方法是几何学中的基本概念,对于日常生活和工程设计都有重要的应用。
掌握了这些计算方法,我们可以更好地理解和应用圆柱和圆锥的特性。
完整版)圆柱的表面积经典题型圆柱的表面积圆柱的表面积公式包括圆的周长公式、圆的面积公式和圆的侧面积公式。
以下是一些例题:1.求以下圆柱的侧面积。
2.r=3厘米,h=5厘米;d=4分米,h=5米;c=18.84厘米,h=2分米。
3.已知一个圆柱的侧面积为37.68平方厘米,高为3厘米,求底面半径。
4.已知一个圆柱的底面周长为3.5分米,高为底面周长的2倍,求侧面积。
5.已知一个圆柱形物体的侧面积为12.56平方厘米,每个底面的面积为3.14平方厘米,求表面积。
6.已知一个无盖的圆柱形水桶,底面直径为4分米,高为5分米,求铁皮的面积(接头处重叠部分不算)。
7.已知一台压路机的前轮为圆柱形,轮宽为1.5米,直径为8分米,求前轮转动一周所压路的面积和前进的距离。
圆柱的体积圆柱的体积公式为底面积乘以高。
以下是一些例题:1.求以下圆柱的体积。
2.R=2厘米,h=3厘米;d=10厘米,h=4厘米;c=19.84分米,h=2米;s=28.26平方分米,h=2米。
3.已知一个圆柱的底面半径为2厘米,高为底面半径的3倍,求体积。
4.已知一个圆柱的侧面积为37.68平方米,底面直径为6米,求体积。
5.将一个圆柱体沿底面半径切开,分成若干等份,拼成一个近似的长方体,表面积增加了6平方厘米,已知长方体的高为3厘米,求圆柱的体积。
6.将一块长31.4厘米,宽20厘米,高4厘米的长方体钢坯溶化成铸成底面半径为4厘米的圆柱,求圆柱的高。
7.横截面直径为2厘米的一根钢筋,横截成两段后,表面积的和为75.36平方厘米,求原来这根钢筋的体积。
8.已知一个圆柱的高为4厘米,增加1厘米后表面积增加50.24平方厘米,求底面半径和体积。
9.做十节长2米,直径8厘米的圆柱形铁皮烟囱,需要多少铁皮。
10、压路机的滚筒是一个长为2米,横截面半径为0.6米的圆柱体。
如果每分钟转动5圈,那么每分钟可以压路多少平方米?11、大厅里有10根圆柱,它们的底面直径为1米,高为8米。
一、求下列圆柱的侧面积。
1、r=2cm h=5cm2、c=94.2cm h=25cm3、d=0.5m h=1.8m二、求下列圆柱的表面积。
1、r=5cm h=15cm2、c=188.4dm h=15dm3、d=4cm h=8cm三、解决问题:(侧面积展开问题)1、一个圆柱的底面半径是1dm ,把圆柱的侧面展开后,得到一个正方形,这个圆柱的高是多少dm?2、一个圆柱的高是6.28cm ,它的侧面展开图是一个正方形,这个圆柱的底面积是多少平方厘米?3、一个圆柱,它的侧面展开图是一个正方形,它的底面半径是3cm,圆柱的高是多少厘米?4、一个圆柱的侧面积是125.6平方厘米,底面半径是2cm,它的高是多少?5、一个圆柱的侧面积是62.8平方厘米,高是5cm,这个圆柱的表面积是多少平方厘米?6、用一张长25.12cm,宽25cm的长方形硬纸板卷成一个圆柱形,则圆柱的高是多少cm?底面周长是多少?7、用一张长25.12cm,宽18.84厘米的长方形硬纸板卷成一个圆柱,则圆柱的高是多少?底面周长是多少?底面直径是多少?四、(切割圆柱问题)1、有一段底面直径和高都是10cm的圆柱形木料,把它沿着与底面平行的方向锯成两段,表面积增加多少平方厘米?2、有一根长6dm的圆柱形木料,若把它截成三段相等的圆柱,表面积比原来增加50.24平方分米,这跟木料的表面积是多少平方分米?3、一个圆柱,它的高增加3cm,侧面积就增加18.84cm,这个圆柱的底面积是多少?5、有一根圆柱形木材,直径是10dm,高是25dm,沿着直径锯成相等的两段,每块的表面积是多少平方分米?五、1、把一个棱长为10cm的正方体削成一个最大的圆柱,这个圆柱的表面积是多少平方厘米?2、一个无盖的圆柱形铁皮水桶,底面直径是0.4米,高是0.8米,要在水桶里、外两面都漆防锈漆,油漆的面积大约是多少平方米?(得数保留一位小数)3、一个压路机的滚筒横截面的直径是1米,长是1.8米,转一周能压路多少平方米?如果每分钟转8周,半小时能压路多少平方米?4、一个圆柱体的表面积比侧面积大12. 56平方米,这个圆柱体的底面半径是多少?5、一个圆柱,如果它的高增加2米,它的表面积就增加50.24平方米,这个圆柱的底面积是多少平方米?6、一个用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一半径2米的半圆。
圆柱的表面积练习题答案圆柱是一种常见的几何图形,它具有特殊的形状和特点。
在计算圆柱的表面积时,我们需要考虑其底面积和侧面积。
下面是一些圆柱表面积的练习题及其答案。
练习题1:已知一个圆柱的高度为8cm,底面半径为4cm,求其表面积。
解答:首先,我们需要计算圆柱的底面积和侧面积,然后将它们相加得到表面积。
底面积= π * r^2 = 3.14 * 4^2 = 3.14 * 16 ≈ 50.24(平方厘米)侧面积 = 周长 * 高度= 2 * π * r * h = 2 * 3.14 * 4 * 8 = 3.14 * 32 ≈ 100.48(平方厘米)表面积 = 底面积 + 侧面积 = 50.24 + 100.48 = 150.72(平方厘米)因此,该圆柱的表面积约为150.72平方厘米。
练习题2:一个圆柱的高度为12cm,表面积为180π平方厘米,求其底面半径。
解答:我们已知该圆柱的表面积,可以利用这一信息来求解底面半径。
表面积 = 底面积 + 侧面积已知表面积为180π平方厘米,将其代入公式中:180π = π * r^2 + 2π * r * h由于高度已知为12cm,将其代入公式中:180π = π * r^2 + 2π * r * 12化简公式:180 = r^2 + 24r移项并整理:r^2 + 24r - 180 = 0我们可以将上述二次方程进行因式分解或者使用求根公式求解出r 的值。
通过解方程,得到底面半径r ≈ 6cm 或r ≈ -30cm,由于半径不可能为负值,所以底面半径约为6cm。
练习题3:一个圆柱的底面积为20π平方厘米,侧面积为60π平方厘米,求其高度和底面半径。
解答:我们已知该圆柱的底面积和侧面积,可以通过这些信息来求解其高度和底面半径。
底面积= π * r^2 = 20π解方程,得到底面半径r ≈ 2.83cm侧面积 = 周长 * 高度= 2 * π * r * h = 60π解方程,得到高度h ≈ 5cm因此,该圆柱的底面半径约为2.83cm,高度约为5cm。
圆柱的侧面积练习题1)圆柱的侧面沿()展开是一个(),它的长等于圆柱的()。
宽等于圆柱的()。
2)如果圆柱的侧面展开图是一个正方形,这个圆柱的底面直径是5厘米,那么圆柱的高是()厘米。
3)一个圆柱,侧面积是2.24平方米,高是0.7米,底面周长是()米。
二.应用题。
1.用一张长15厘米,宽8厘米长方形纸围一个圆柱体,这个圆柱体的侧面积是多少平方厘米?2.把一个圆柱的侧面沿高展开得到一个边长为6.3厘米的正方形,它的侧面积是多少?3.一个圆柱体,它的底面积周长是12.56厘米,高10厘米,它的侧面积是多少平方厘米?4.一个圆柱体,它的底面半径是2分米,高10分米,它的侧面积是多少平方分米?5.一个圆柱体,它的底面直径是4分米,高10分米,它的侧面积是多少平方分米?三,生活实例。
4.广告公司制作了一个底面直径是1.5米,高2.5米的圆柱形灯箱。
它的侧面最多可以张贴多大面积的海报?5.卫生纸的宽度是10cm,中央硬纸轴的直径是3.5cm,制作中央的轴需要多大的硬纸板?6.修建一个圆柱形的沼气气池,底面直径4米,深3米。
在池的四壁与下底面抹上水泥,抹水泥部分的面积是多少平方米?3.做一对无盖的圆柱形铁皮水桶,高是5分米,底面直径是4分米。
做这个水桶需用铁皮约多少平方分米?(得数保留整平方分米)4.一顶圆柱形的厨师帽,高3分米,帽顶直径20厘米,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)5.一个圆柱形油桶,高5米,底面半径0.3米,制作一个这样的油桶,至少需要铁皮多少平方米?(结果保留一位小数)6.一种圆柱形流水管,每节长度为12分米,横截面直径1米,制作20节这样的流水管,至少需要铁皮多少平方米?(得数保留整数)1.做10节长2米,直径为3分米米的圆柱形通风管,至少要用多少的铁皮?2.压路机的滚筒是一个圆柱,它的横截面半径是5分米,长是2米,它滚动100周压过的路面有多大?3.XXX用铁皮加工做10节通风管,每节长1.2米,横截面直径为0.8米,共要用铁皮多少平方米?(接口处忽略不计,得数用进一法保留整平方米)求下面各圆柱体的侧面积.1、底面周长是6分米,高是3.5分米.2、底面直径是2.5分米,高是4分米.3、底面半径是3厘米,高是15厘米.4、把一张边长为5.5厘米的正方形白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是多少用铁皮制10节同样大小的通风管,每节长5分米,底面直径1.2分米,至少需要多少平方分米铁皮?一个圆柱的侧面积是12.56平方米,底面半径是4分米,它的高是多少分米?一个圆柱高9分米,侧面积226.08平方分米,它的底面积是多少平方分米?一个圆柱,它的高是8厘米,侧面积是200.96平方厘米,它的底面积是多少?一个圆柱体的侧面积是12.56平方厘米,底面半径是2分米,它的高是几何?一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,它的高是几何?一个圆柱高9分米,侧面积226.08平方分米,它的底面积是几何平方分米?一个圆柱形无盖的水桶,底面的直径是0.6米,高是40厘米,做如许一个水桶,需要几何平方米的铁皮?(得数保留整数)一个圆柱形,侧面展开是一个边长为62.8厘米的正方形,这个圆柱形的外表积是几何平方厘米?压路机的滚筒是一个圆柱。
圆柱的侧面积和表面积一、单选题1.求做一个圆柱形茶叶罐需要多少硬纸板是求()A. 圆柱的侧面积B. 圆柱的体积C. 圆柱的表面积2.(202X•绵阳)一个圆的直径扩大3倍,那么它的面积扩大()倍.A. 3B. 6C. 9D. 43.一个圆柱形蓄水池,从里面量底面直径20米,高3米,要在这个蓄水池底面和四周抹上水泥.抹水泥部分的面积是()A. 188.4平方米B. 314平方米C. 816.4平方米D. 502.4平方米4.求一个圆柱形的杯子能装多少水,是求圆柱的()A. 表面积B. 体积C. 容积5.底面周长和高分别相等的长方体、正方体和圆柱体,体积最大的是()A. 长方体B. 正方体C. 圆柱体6.一个圆柱的底面半径扩大4倍,高不变,它的体积扩大()A. 4倍B. 8倍C. 16倍7.一个圆柱形物体,底面周长是12.56厘米,高10厘米.它的表面积是()A. 125.6平方厘米B. 150.72平方厘米C. 25.12平方厘米D. 32.21平方厘米8.一个直圆柱体的侧面展开,可能是()A. 长方形或正方形B. 梯形C. 等腰梯形D. 三角形或等腰三角形9.把一个圆柱形钢材锯成4段,它的表面积实际上是增加了()个底面的面积.A. 8B. 6C. 410.一个圆柱和一个圆锥等底等高,它们的体积之和是48立方分米,圆锥的体积是()立方分米.A. 12B. 24C. 36二、判断题11.只要长方体与圆柱体的底面积相等、高也相等,它们的体积就一定相等。
12.等底等高的圆柱和长方体的体积相等.(判断对错)13.圆柱体的体积与圆锥体的体积比是3:1.(判断对错)14.圆锥体积是圆柱体积的.(判断对错)15.如果一个圆柱体积是18cm3,则圆锥体积是6cm3.(判断对错)16.判断对错。
(1)圆柱的高只有一条。
(2)圆柱的两底面直径相等。
(3)圆柱的底面周长和高相等时,沿圆柱的高将圆柱的侧面展开后一定是正方形。
圆柱的侧面积、表面积和体积答案典题探究例1.一个圆柱和一个圆锥等底等高,圆锥体积是圆柱体积的,圆锥的体积与圆柱体积的比是1:3.考点:圆柱的侧面积、表面积和体积;圆锥的体积.分析:(1)根据等底等高的圆柱的体积与圆锥的体积的关系即可得出答案;(2)根据等底等高的圆柱的体积是圆锥的体积的3倍,即可得出答案.解答:解:(1)等底等高的圆锥的体积是圆柱的体积的,(2)因为等底等高的圆柱的体积是圆锥的体积的3倍,所以把圆锥的体积看作1份,那圆柱的体积是3份,即圆锥的体积与圆柱的体积的比是:1:3,故答案为:,1:3.点评:此题主要考查了等底等高的圆柱的体积与圆锥的体积的关系.例2.一个圆柱的底面半径是5cm,高是10cm,它的底面积是78.5cm2,侧面积是314 cm2,体积是785cm3.考点:圆柱的侧面积、表面积和体积.分析:圆柱的底面积=πr2=3.14×52=78.5(平方厘米);侧面积=底面周长×高=ch;体积=sh,利用这三个公式即可求出.解答:解:①3.14×52,=78.5(平方厘米);②2×3.14×5×10,=314(平方厘米);③78.5×10,=785(立方厘米).故答案为:①78.5;②314;③785.点评:此题考查了学生对s底=πr2、s侧=ch、v=sh三个公式的掌握情况,同时应注意面积与体积单位的不同.例3.一个高10厘米的圆柱体,如果把它的高截短3厘米,它的表面积减少94.2平方厘米.这个圆柱体积是785立方厘米.考点:圆柱的侧面积、表面积和体积.专题:压轴题.分析:由题意知,截去的部分是一个高为3厘米的圆柱体,并且表面积减少了94.2平方厘米,其实减少的面积就是截去部分的侧面积,由此可求出圆柱体的底面周长,进一步可求出底面半径,再利用V=sh求出体积即可.解答:解:94.2÷3=31.4(厘米);31.4÷3.14÷2=5(厘米);3.14×52×10,=3.14×250,=785(立方厘米);答:这个圆柱体积是785立方厘米.故答案为:785.点评:此题是复杂的圆柱体积的计算,要明白:沿高截去一段后,表面积减少的部分就是截去部分的侧面积.例4.一个圆柱体,底面半径是7厘米,表面积是1406.72平方厘米.这个圆柱的高是多少?考点:圆柱的侧面积、表面积和体积.专题:压轴题.分析:已知底面半径是7厘米,那么可以求得这个圆柱的底面积和底面周长;这里要求圆柱的高,根据已知条件,需要求得这个圆柱的侧面积,根据圆柱的表面积公式可得:侧面积=表面积﹣2个底面积,再利用圆柱的侧面积公式即可求得这个圆柱的高.解答:解:(1406.72﹣3.14×72×2)÷(2×3.14×7),=(1406.72﹣307.72)÷43.96,=1099÷43.96,=25(厘米);答:这个圆柱的高是25厘米.点评:此题考查了圆柱的表面积、侧面积、体积公式的综合应用,要求学生要熟练掌握公式的变形.例5.圆柱体积300立方厘米,侧面积100平方厘米,这个圆柱的表面积是多少平方厘米?考点:圆柱的侧面积、表面积和体积.专题:压轴题;立体图形的认识与计算.分析:根据题意,要求圆柱体的表面积关键是求出底面半径,根据圆柱体的体积公式:v=πr2h,侧面积公式:s=2πrh,求出体积与侧面积的比值,进而求出底面半径,再根据圆柱体的表面积=侧面积+底面积×2,列式解答.解答:解:圆柱的体积:圆柱的侧面积=πr2h:2πrh=,所以圆柱的底面半径:r=(300÷100)×2=3×2=6(厘米),圆柱体的表面积:3.14×62×2+100,=3.14×36×2+100,=226.08+100,=326.08(平方厘米).答:这个圆柱体的表面积是326.08平方厘米.点评:此题主要考查圆柱体的表面积的计算,关键是如何求出底面半径,可以根据圆柱的体积公式、侧面积公式,求出体积与侧面积的比值,进一步求底面半径.演练方阵A档(巩固专练)一.选择题(共15小题)1.(•徐州模拟)一圆柱体的体积是141.3立方厘米.底面周长是18.84厘米.高是()厘米.A.7.5B.5C.15考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:圆柱的体积=底面积×高,已知一个圆柱的体积是141.3立方厘米,底面周长是18.84厘米,首先求出它的底面积,再用体积÷底面积=高;由此列式解答.解答:解:底面半径是:18.84÷3.14÷2=6÷2=3(厘米);141.3÷(3.14×32)=141.3÷(3.14×9)=141.3÷28.26=5(厘米).答:高是5厘米.故选:B.点评:此题主要根据已知圆的周长求圆的面积的方法求出圆柱的底面积,再用体积÷底面积=高解决问题.2.(•阳谷县)把一个棱长为20厘米的正方体木块削成一个最大的圆柱体,这个圆柱体的体积是()立方厘米.A.8000B.6280C.1884考点:圆柱的侧面积、表面积和体积.专题:压轴题;立体图形的认识与计算.分析:把一个棱长为20厘米的正方体木块削成一个最大的圆柱体,这个圆柱体的底面直径、高都等于正方体的棱长,根据圆柱的体积=底面积×高,把数据代入公式解答.解答:解:3.14×(20÷2)2×20,=3.14×100×20,=6280(立方厘米);答:这个圆柱的体积是6280立方厘米.故选:B.点评:此题主要考查圆柱的体积公式的灵活运用,关键是明白:这个圆柱体的底面直径、高都等于正方体的棱长.3.(•锦屏县)一个圆柱体和一个圆锥体等底等高,圆柱体的体积是圆锥体的()A.B.3倍C.考点:圆柱的侧面积、表面积和体积;圆锥的体积.专题:立体图形的认识与计算.分析:一个圆柱体和一个圆锥体在“等底等高”的条件下,圆柱体的体积应是圆锥体的3倍.解答:解:一个圆柱体和一个圆锥体等底等高,那么圆柱体的体积应是圆锥体的3倍;故选B.点评:此题是考查圆柱、圆锥的关系,要注意圆柱和圆锥只有在等底等高的条件下体积才有3倍或的关系.4.(•广州)一个圆柱体和一个圆椎体的底面积和高相等,已知圆柱体的体积是7.8立方米,那么圆椎体的体积是()立方米.A.23.4B.15.6C.3.9D.2.6考点:圆柱的侧面积、表面积和体积;圆锥的体积.专题:立体图形的认识与计算.分析:根据等底等高的圆锥和圆柱的体积之间的关系,如果圆锥和圆柱等底等高,那么圆锥的体积是圆柱体积的,由此解答.解答:解:7.8×=2.6(立方米),答:圆椎体的体积是2.6立方米;故选:D.点评:此题主要考查了圆锥和圆柱等底等高,圆锥的体积是圆柱体积的.5.(•鞍山)把一根长2米的圆柱形木料截成3段小圆柱,3个小圆柱的表面积之和比原来增加了0.6平方米,原来这根木料的体积是()立方米.A.1.2B.0.4C.0.3D.0.2512考点:圆柱的侧面积、表面积和体积.专题:压轴题;立体图形的认识与计算.分析:根据圆柱的切割特点可知,切成3段后,表面积比原来增加了4个圆柱的底面的面积,由此利用增加的表面积0.6平方米,除以4即可得出圆柱的一个底面的面积,再利用圆柱的体积公式即可求出这根木料的体积.解答:解:0.6÷4×2=0.3(立方米),答:这根木料的体积是0.3立方米.故选:C.点评:抓住圆柱的切割特点和增加的表面积,先求出圆柱的底面积是解决此类问题的关键.6.(•桃源县)圆锥的体积是6立方分米,与它等底等高圆柱的体积是()A.3立方分米B.2立方分米C.18立方分米考点:圆柱的侧面积、表面积和体积;圆锥的体积.专题:压轴题;立体图形的认识与计算.分析:根据等底等高的圆柱的体积是圆锥的体积的3倍,用6×3即可求出圆柱的体积.解答:解:6×3=18(立方分米),答:圆柱的体积是18立方分米.故选:C.点评:此题主要考查了等底等高的圆柱的体积是圆锥的体积的3倍.7.(•长寿区)一段重12千克的圆柱体钢柱,锻压成等底的圆锥,这个圆锥的高和圆柱的高相比()A.圆锥的高是圆柱的3倍B.相等C.圆锥的高是圆柱的D.圆锥的高是圆柱的考点:圆柱的侧面积、表面积和体积;圆锥的体积.专题:综合题.分析:把圆柱体的钢柱锻压等底的圆锥,只是形状改变了,体积不变.根据等底等高的圆锥的体积是圆柱体积的.这个圆柱和圆锥等底等体积,那么圆锥的高就是圆柱高的3倍.解答:解:根据等底等高的圆锥的体积是圆柱体积的.如果圆锥和圆柱等底等体积,那么圆锥的高是圆柱高的3倍.答:这个圆锥的高是圆柱高的3倍.故选:A.点评:此题主要根据等底等高的圆锥的体积是圆柱体积的这一关系解决问题.8.(•平坝县)等底等体积的圆柱和圆锥,如果圆锥的高是12厘米,那么圆柱的高是()厘米.A.12B.4C.36D.14考点:圆柱的侧面积、表面积和体积;圆锥的体积.专题:立体图形的认识与计算.分析:根据等底等高圆锥的体积是圆柱体积的,已知圆锥和圆柱等底等体积,圆锥的高是12厘米,那么圆柱的高是圆锥高的,由此解答.解答:解:圆锥和圆柱等底等体积,圆锥的高是12厘米,那么圆柱的高是圆锥高的,即12×=4(厘米),答:圆柱的高是4厘米.故选:B.点评:此题解答关键是理解和掌握等底等高圆锥的体积是圆柱体积的,已知圆锥和圆柱等底等体积,那么圆柱的高是圆锥高的,由此解决问题.9.(•晴隆县)36个铁圆锥,可以熔铸成等底等高的圆柱体的个数是()A.12个B.8个C.36个D.72个考点:圆柱的侧面积、表面积和体积;圆锥的体积.分析:等底等高的圆柱的体积是圆锥体积的3倍,所以在36中有几个3就能铸造成几个等底等高的圆柱,求一个数里面有几个另一个数,用除法,直接列式即可解答.解答:解:36÷3=12(个),故选:A.点评:此题考查了等底等高的圆柱的体积是圆锥体积的3倍关系的灵活应用.10.(•广汉市模拟)圆柱的体积不变,如果高扩大2倍,底面积应该()A.扩大4倍B.缩小4倍C.扩大2倍D.缩小2倍考点:圆柱的侧面积、表面积和体积.分析:圆柱的体积=底面积×高,此题根据积不变的规律:一个因数扩大几倍,另一个因数同时缩小相同的倍数,积不变,即可解答.解答:解:圆柱的体积=底面积×高,高扩大2倍,要使体积不变,根据积不变的规律可知:底面积要缩小2倍,故选:D.点评:此题考查了积不变规律在圆柱的体积公式中的灵活应用.11.(•江油市模拟)下面()杯中的饮料最多.A.B.C.考点:圆柱的侧面积、表面积和体积.分析:本题是一道选择题,要比较体积的大小,可分别计算出结果再判断选哪一个答案;也可经过分析比较用排除法解答.解答:解:用排除法分析解答:(1)要选最多的饮料,故答案D排除;(2)比较B、C的大小,因为高相等,那么底面直径大的体积就大,故B>C;(3)比较A、C的大小,因为底面直径相等,那么高大的体积就大,故C>A;因为B>C且C>A,所以B最大;故选B.点评:此类题目往往不用列式计算,灵活地运用排除法即可解答.12.(•慈利县模拟)等体积的圆柱和圆锥,圆柱的底面半径是圆锥底面半径的,圆柱的高是圆锥高的()A.B.C.4倍D.考点:圆柱的侧面积、表面积和体积;圆锥的体积.专题:立体图形的认识与计算.分析:圆柱的体积=底面积×高,圆锥的体积=×底面积×高,设圆柱的底面半径为r,圆柱的高为h,圆锥的高为H,则圆锥的底面半径为2r,依据体积相等,即可得解.解答:解:根据体积相等得:πr2h=π(2r)2H,h=H,答:圆柱的高是圆锥的高的.故选:D.点评:此题主要考查圆柱和圆锥的体积的计算方法的灵活应用.13.(•顺昌县)一个圆柱体杯中盛满15升水,把一个与它等底等高的铁圆锥倒放入水中,杯中还有()水.A.5升B.7.5升C.10升D.9升考点:圆柱的侧面积、表面积和体积;圆锥的体积.分析:由条件“一个与它等底等高的铁圆锥”可知,圆锥的体积是圆柱体积的,也就是15升的;把铁圆锥倒放入水中后,铁圆锥会排出与它等体积的水,所以杯中剩下的水的体积就是圆柱体积的(1﹣),也就是15升的(1﹣),可用乘法列式求得.解答:解:15×(1﹣)=10(升);故选C.点评:此题是考查圆柱、圆锥的关系,要注意圆柱和圆锥只有在等底等高的条件下才有3倍或的关系.14.(•中山市模拟)圆柱体和圆锥体底面周长比是2:3,体积比是8:5,圆锥与圆柱高的比是()A.16:15B.15:16C.5:6D.6:5考点:圆柱的侧面积、表面积和体积;圆锥的体积.分析:根据圆的周长公式知道底面周长的比就是半径的比,所以设圆柱的底面半径是2,则圆锥的底面半径是3,设圆柱的体积是8,则圆锥的体积是5;再根据圆柱的体积公式V=sh=πr2h与圆锥的体积公式V=sh=πr2h,得出圆柱的高与圆锥的高的关系,由此得出答案.解答:解:底面周长的比就是半径的比,所以圆柱与圆锥的底面半径之比是2:3,设圆柱的底面半径是2,则圆锥的底面半径是3,设圆柱的体积是8,则圆锥的体积是5;所以圆柱的底面积是:π×22=4π;圆锥的底面积是:π×32=9π,所以圆柱与圆锥的高的比是::=6:5,故选:D.点评:此题主要是根据圆柱的体积公式与圆锥的体积公式的推导出圆柱与圆锥的高的关系.15.(•郯城县)等底等体积的圆柱和圆锥,圆锥高是9米,圆柱高是()A.9米B.18米C.6米D.3米考点:圆柱的侧面积、表面积和体积;圆锥的体积.分析:设圆柱和圆锥的体积为V;底面积为S,由此利用圆柱和圆锥的体积公式推理得出圆柱与圆锥的高的关系,由此即可解决问题.解答:解:设圆柱和圆锥的体积为V;底面积为S,所以圆柱的高是:,圆锥的高是:,所以圆柱的高与圆锥的高的比是::=1:3,因为圆锥的高是9米,所以圆柱的高是:9÷3=3(米);故选:D.点评:根据圆柱与圆锥的体积公式得出体积相等、底面积相等的圆柱和圆锥的高的比是1:3是解决此类问题的关键.二.填空题(共13小题)16.(•玉环县)一个圆柱底面周长是12.56分米,高是6分米,它的底面积是12.56平方分米,表面积是100.48平方分米,体积是75.36立方分米.如果把这个圆柱削成最大的圆锥,那圆锥体积是25.12立方分米.考点:圆柱的侧面积、表面积和体积;圆锥的体积.分析:先根据圆柱的底面周长求出半径,然后根据圆面积计算公式求出面积.圆柱的表面积=底面积的2倍+侧面积,侧面积=底面周长(12.56分米)×高(6分米).圆柱的体积=底面积(已求出)×高(6分米).把圆柱削成最大的圆锥,则削成的圆锥和圆柱等底等高,所以圆锥的体积等于圆柱体积的(已求出)列式解答即可.解答:解:底面积是:3.14×(12.56÷3.14÷2)×(12.56÷3.14÷2),=3.14×2×2,=12.56(平方分米);表面积是:12.56×2+12.56×6,=12.56×(2+6),=12.56×8,=100.48(平方分米);体积是:12.56×6=75.36(立方分米);圆锥的体积是:75.36×,=25.12(立方分米);故答案为:12.56,100.48,75.36,25.12.点评:解答此题的知识点是:已知圆周长求半径和面积;已知底面积、底面周长和高求侧面积、表面积和体积;圆柱和圆锥之间的关系.17.(•北京)一个铁皮水桶,求做它用多少铁皮是求它的表面积,求它占空间的大小是求它的体积,求它可装多少升水是求它的容积.考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:根据圆柱的表面积、底面积、体积、容积的意义进行解答.解答:解:做一个长方体的水桶需要多少铁皮是求水桶的表面积,水桶所占空间的大小是指水桶的体积,水桶能装多少水是指水桶的容积.故答案为:表面积,体积,容积.点评:此题考查了表面积、底面积、体积、容积四个概念的区别与联系.18.(•晴隆县)底面积和高分别相等的长方体、正方体、圆柱的体积一定相等.√.(判断对错)考点:圆柱的侧面积、表面积和体积;长方体和正方体的体积.专题:立体图形的认识与计算.分析:底面积和高分别相等的长方体、正方体、圆柱,它们的体积都是用底面积乘高得来,所以它们的体积也一定相等,原题说法是正确的.解答:解:底面积和高分别相等的长方体、正方体、圆柱,由于它们的体积都是用底面积×高求得,所以它们的体积也是相等的;故答案为:√.点评:此题是考查体积的计算公式,求长方体、正方体、圆柱的体积都可用V=sh解答.19.(•康县模拟)把一根5米的圆柱形钢锭截成两个小圆柱,表面积增加了25.12平方分米,这根钢锭的体积是628立方分米.考点:圆柱的侧面积、表面积和体积.分析:根据题意知道,25.12平方分米是圆柱的两个底面的面积,由此求出圆柱的底面积,进而根据圆柱的体积公式V=sh,即可求出这根钢锭的体积.解答:解:5米=50分米,25.12÷2×50,=12.56×50,=628(立方分米),答:这根钢锭的体积是628立方分米;故答案为:628.点评:解答此题的关键是,知道25.12平方分米是圆柱的两个底面的面积,再根据圆柱的体积公式解决问题.20.(•临川区模拟)圆锥的体积与圆柱的体积比等于1:3.×.(判断对错)考点:圆柱的侧面积、表面积和体积;圆锥的体积.分析:圆锥的体积等于与它等底等高的体积的,即等底等高的圆锥体的体积与圆柱体的体积的比等于1:3.解答:解:圆锥的体积等于与它等底等高的圆柱体体积的,即等底等高的圆锥体的体积与圆柱体的体积的比等于1:3.故答案为:×.点评:此题主要考查的是圆锥的体积等于与它等底等高的体积的,考查此题的目的是强调“等底等高”的圆锥与圆柱之间的关系.21.(•吴中区)有一个盖着瓶盖的瓶子里装着一些水(如图所示),请你根据图中标明的数据,计算瓶子的容积是60cm3.考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:因为两个瓶中的水是一样多的,所以空着的部分也是一样多的,用第一个瓶中的水+第二个瓶中的空余部分就是总的容积.根据圆柱的容积公式:v=sh,把数据代入公式解答即可.解答:解:10×4+10×(7﹣5),=40+10×2,=40+20,=60(立方厘米);答:瓶子的容积是60立方厘米.故答案为:60.点评:此题解答关键是明确:两个瓶子中的水是一样多,所以直接利用圆柱的容积公式解答.22.(•正宁县)圆锥的体积是圆柱体积的.×.(判断对错)考点:圆柱的侧面积、表面积和体积;圆锥的体积.专题:立体图形的认识与计算.分析:因为圆柱和圆锥是在“等底等高”的条件下,圆锥的体积才是圆柱体积的,所以原题说法是错误的.解答:解:圆锥的体积是与它等底等高的圆柱体积的,原题没有“等底等高”的条件是不成立的;故答案为:×.点评:此题是考查圆柱、圆锥的关系,要注意圆柱和圆锥在等底等高的条件下有3倍或的关系.23.(•福田区模拟)一个圆柱底面半径是1厘米,高是2.5厘米,它的侧面积是15.7平方厘米.考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:圆柱的侧面积=底面周长×高=2πrh,据此代入数据即可解答.解答:解:3.14×1×2×2.5=15.7(平方厘米),答:这个圆柱的侧面积是15.7平方厘米.故答案为:15.7.点评:此题考查圆柱的侧面积公式的计算应用,熟记公式即可解答.24.(•福田区模拟)一个圆柱和一个圆锥的底面积和高分别相等,圆锥的体积是圆柱体积的,圆柱的体积是圆锥体积的3倍.考点:圆柱的侧面积、表面积和体积;圆锥的体积.专题:立体图形的认识与计算.分析:等底等的圆锥的体积是圆柱体积的,圆柱的体积是圆锥体积的3倍.据此解答.解答:解:等底等的圆锥的体积是圆柱体积的,圆柱的体积是圆锥体积的3倍.故答案为:,3倍.点评:此题考查的目的是掌握等底等高的圆锥和圆柱体积之间的关系.25.(•福田区模拟)有一个圆柱体和一个圆锥体它们的底面半径相等,高也相等,圆柱的体积是6 立方分米,圆锥的体积是2立方分米.正确.考点:圆柱的侧面积、表面积和体积;圆锥的体积.分析:根据底面半径和高相等可知这个圆柱与圆锥是等底等高的,则圆柱的体积就是圆锥的体积的3倍,由此即可解答问题.解答:解:等底等高圆柱的体积就是圆锥的体积的3倍,6÷2=3,所以原题说法正确.故答案为:正确.点评:此题考查了等底等高的圆柱与圆锥的体积倍数关系的灵活应用,此题的关键是根据底面半径和高对应相等得出它们是等底等高的.26.(•淮安)新亚商城春节期间,文具店实行“买一赠一”促销活动,实际是打五折出售;把一个圆柱体的侧面展开,得到一个长31.4厘米,宽10厘米的长方形,这个圆柱体的侧面积是314平方厘米,表面积是471平方厘米.考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:(1)买一赠一是指买2件商品,只需要付1件的钱数;设一件商品的单价是1,求出2件商品的总价,1件商品的总价除以1件商品的总价,求出现价是原价的百分之几十,再根据打折的含义求解.(2)根据圆柱体的侧面展开后,得到长方形的长是圆柱的底面周长,宽是圆柱的高,再依据圆柱的侧面积=底面周长×高,最后先求出圆柱底面的半径,再依据圆柱的表面积=侧面积+底面积×2解答即可.解答:解:(1)1÷(1+1)=1÷2=50%答:打五折出售.(2)侧面积:31.4×10=314(平方厘米)半径:31.4÷3.14÷2=5(厘米)表面积:314+3.14×52×2=314+157=471(平方厘米);答:这个圆柱体的侧面积是314平方厘米,表面积是471平方厘米.故答案为:五,314,471.点评:本题主要考查打折的含义和圆柱的表面积,解答本题时,依据侧面积和表面积公式代入相应的数据即可解答,关键是理解长方形的长是圆柱的底面周长,宽是圆柱的高.27.(•淮安)圆柱的侧面积加上两个底面的面积,就是圆柱的表面积.考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:根据圆柱体的表面积的意义和它特征,圆柱体的特征是:上下底面是完全相同的两个圆,侧面是一个曲面,侧面沿高展开是一个长方形,它的侧面积加上两个底面积就是它的表面积.由此解答.解答:解:根据圆柱体的表面积的意义和它的特征,圆柱的侧面积加上两个底面积就是它的表面积.故答案为:侧,两个底面.点评:此题主要考查圆柱体的表面积的意义和它的特征.28.(•田林县模拟)把一个体积是9.42立方分米的圆柱体削成一个最大的圆锥体,削去的体积是6.28立方分米.√.(判断对错)考点:圆柱的侧面积、表面积和体积;圆锥的体积.专题:立体图形的认识与计算.分析:把一个圆柱体削成一个最大的圆锥体,说明圆柱与圆锥等底等高,那么圆锥的体积就是圆柱体积的,求得圆锥体积,就可以求出削去的体积.解答:解:9.42﹣9.42×=9.42﹣3.14=6.28(立方分米);答:要削去6.28立方分米.故答案为:√.点评:此题主要考查等底等高的圆柱与圆锥的关系:圆锥的体积等于与它等底等高圆柱体积的.B档(提升精练)一.选择题(共15小题)1.(•通川区模拟)把一个圆柱的底面平均分成若干个扇形,然后切开拼成一个近似的长方体,表面积比原来增加了100cm2,已知圆柱的高是10cm,圆柱的侧面积是()cm2.A.314B.628C.785D.1000考点:圆柱的侧面积、表面积和体积.分析:根据题意可知:把一个圆柱体的底面平均分成若干个扇形,然后切开拼成一个近似的长方体,表面积比原来增加了100cm2,表面积比原来增加了两个长方形的面积.这个长方形长是圆柱的高,宽是圆的底面半径.因此,圆柱的底面半径是100÷2÷10=5厘米,圆柱体的侧面积=底面周长×高;由此列式解答.解答:解:圆柱的底面半径是:100÷2÷10,=50÷10,=5(厘米);圆柱的侧面积是:2×3.14×5×10,=31.4×10,=314(平方厘米);答:圆柱的侧面积是314平方厘米.故选:A.点评:此题主要考查圆柱的侧面积的计算,解答关键是理解把圆柱切拼成近似长方体,表面积比原来增加了两个长方形的面积.每个长方形的长等于圆柱的高,宽等于底面半径;再根据侧面积公式解答即可.2.(•温江区模拟)一个底面直径是4厘米的圆柱,侧面展开是一个正方形,则这个圆柱的体积是()立方厘米.A.4πB.4π2C.16πD.16π2考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:根据圆柱的侧面展开图特征可知,这个正方形的边长等于圆柱的底面周长和高,由此根据圆柱的体积公式即可解答问题.解答:解:底面半径是:4÷2=2(厘米)圆柱的底面积:π×22=4π(平方厘米);圆柱的高(即圆柱的底面周长):π×2×2=4π(厘米);圆柱的体积:4π×4π=16π2(立方厘米).答:这个圆柱的体积是16π2立方厘米.故选:D.点评:解答此题的关键是根据侧面展开图是一个正方形,明确圆柱的高与底面周长相等.3.(•延边州)计算一个圆柱形无盖水桶要用多少铁皮,应该是求()A.侧面积B.侧面积十1个底面积C.侧面积十2个底面积D.体积考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:根据圆柱的特征,圆柱的上、下底面是完全相同的两个圆,侧面是一个曲面,侧面展开是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高.根据题意可知,因为铁皮水桶无盖,因此计算做一个无盖的圆柱形铁皮水桶需要多少铁皮,其实就是计算水桶的侧面积和一个底面积的和.解答:解:因为铁皮水桶无盖,因此计算做一个无盖的圆柱形铁皮水桶需要多少铁皮,其实就是计算水桶的侧面积和一个底面积的和.故选:B.点评:此题主要考查圆柱的特征,明确水桶无盖.。
小学数学-有答案-人教版数学六年级下册3.1.2 圆柱的表面积练习卷一、填空题1. 一个圆柱体的底面直径是4分米,高是3分米,它的侧面积是(________)平方分米,表面积是(________)平方分米。
2. 一圆柱过底面圆心沿高切开,表面积增加了60平方厘米,已知圆柱的高为5厘米,则一个底面圆的面积是(________)平方厘米。
3. 把一个底面半径6厘米、高8厘米的圆柱体,切拼成一个近似的长方体,表面积比原来增加了(________)平方厘米。
4. 把一个圆柱体侧面展开,量得展开后的长方形的长是9.42厘米,这个圆柱体的底面积是(________)。
5. 请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选。
A.B.C.D.你认为(______)和(______)的材料搭配较合适.二、选择题做一个铁皮烟囱需要多少铁皮,就是求烟囱的()A.表面积B.体积C.侧面积一个圆柱,底面半径扩大到原来的2倍,高不变,它的侧面积( )A.扩大2倍B.扩大4倍C.不变在棱长8cm的正方体的上面正中央向下挖一个底面直径是2cm,高是2cm的圆柱,则正方体的表面积增加的部分是圆柱的()。
A.侧面积B.侧面积+一个底面积C.表面积三、解答题一个圆柱体,高减少4厘米,表面就减少50.24平方厘米,这个圆柱的底面积是多少平方厘米?(π取3.14)一种圆柱形铅笔,底面直径是0.8cm,长18cm.这支铅笔刷漆的面积是多少平方厘米?你见下面这种形状的抽纸吗?它的前面是半圆形.如果像现在这样把它放在桌子上,它占多大的面积?参考答案与试题解析小学数学-有答案-人教版数学六年级下册3.1.2 圆柱的表面积练习卷一、填空题1.【答案】37.68,62.8【考点】圆柱的侧面积、表面积和体积圆柱的特征关于圆柱的应用题【解析】此题暂无解析【解答】略2.【答案】28.26【考点】圆、圆环的面积【解析】根据题干把一个圆柱沿底面直径切开,分成两个相等的半圆柱,表面积增加部分就是以这个圆柱的底面直径和圆柱的高为边长的两个长方形的面积,由此利用长方形的面积公式即可求得圆柱的底面半径,代入圆的面积公式即可解决问题.【解答】底面半径是:60−2÷5−2=3(厘米),底面积是:3.14×32=3.14×9=28.26(平方厘米)3.【答案】96【考点】圆柱的侧面积、表面积和体积简单的立方体切拼问题长方体、正方体表面积与体积计算的应用【解析】根据圆柱体积公式的推导过程可知,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高,长方体的宽等于圆柱的底面半径,长方体的侧面积=圆柱的侧面积+2个长方形切面的面积,所以要求表面积比原来增加多少,就是求2个长方形切面的面积.【解答】根据表面积比原来增加的部分,就是求2个长方形切面的面积可得:6×8×2=48×2=96(平方厘米)4.【答案】7.065平方厘米【考点】圆、圆环的面积【解析】此题暂无解析【解答】3.14×(9.42+3.14+2)2=3.14×1.5=3.14×2.25=7.065(平方厘米)5.【答案】BC【考点】圆、圆环的面积【解析】因为所制作的水桶的底面周长即图中圆的周长等于长方形的长,由此得出B和C的材料搭配合适.【解答】因为3.14×2=6.28(分米),所以B和C的材料搭配合适.二、选择题【答案】C【考点】圆柱的侧面积、表面积和体积长度及长度的常用单位图文应用题【解析】此题暂无解析【解答】略【答案】A圆柱的特征整数四则混合运算【解析】此题暂无解析【解答】因为圆柱侧面积=2ππ圆柱底面半径×高,圆柱底面半径扩大到原来的2倍,高不变,侧面积就扩大2倍.【答案】A【考点】圆柱的侧面积、表面积和体积长方体和正方体的体积关于圆柱的应用题【解析】此题暂无解析【解答】根据题意,挖出的是一个底面直径为2厘米,高2厘米的圆柱体,那么圆柱体的底面积的部分是原来立方体的表面积,圆柱体的侧面积部分是原来正方体内的部分,所以正方体的表面积增加的部分是圆柱体的侧面积.三、解答题【答案】12.56平方厘米【考点】圆柱的侧面积、表面积和体积关于圆柱的应用题圆柱的特征【解析】50.24平方厘米是以圆柱的底面积为底,高是4厘米的圆柱的侧面积,根据侧面积公式5=cℎ,由此求出圆柱的底面的周长是c=5+,进而求出圆柱的底面半径,再根据圆的面积公式,5=πr2求出圆柱的底面积.【解答】圆柱的底面周长:50.24÷4=12.56(厘米),圆柱的底面积是:3.14×(12.56÷3.14÷2)2=3.14×22=3.14×4=12.56(平方厘米),答:这根圆柱的底面积是12.56平方厘米.【答案】45.216平方厘米关于圆柱的应用题有关圆的应用题【解析】此题暂无解析【解答】3.14×0.8×18=2.512×18=45.216(平方厘米)【答案】160平方厘米.【考点】圆、圆环的面积组合图形的面积长方形、正方形的面积【解析】求它的占地面积,实际上是求长和宽分别为20厘米、8厘米的长方形的面积,利用长方形的面积公式即可求解.【解答】20×8=160(平方厘米);答:它占地面积是160平方厘米.。
圆柱侧面积和表面积练习(一)共八道题一、求表面积,单位:厘米侧面积:第一步:底面周长=3.14×底面直径第二部:侧面积=底面周长×高3.14×2×0.8=5.024(平方厘米)底面积:第一步:半径=直径÷2第二步:底面积=3.14×半径²2÷2=1(厘米) 3.14×1²=3.14(平方厘米)表面积:圆柱表面积=侧面积+两个底面积5.024+3.14×2=11.304(平方厘米)二、求表面积,单位:厘米侧面积:第一步:底面周长=2×3.14×底面半径第二部:侧面积=底面周长×高2×3.14×0.5×3.5=10.99(平方厘米)底面积:一步:底面积=3.14×半径²3.14×0.5²=0.785(平方厘米)表面积:圆柱表面积=侧面积+两个底面积10.99+0.785×2=12.56(平方厘米)三、求铝皮就是求圆柱的侧面积。
第一步:底面周长=3.14×底面直径第二部:侧面积=底面周长×高铝皮:3.14×6×2.6=49.296(平方分米)求羊皮就是求两个底面积。
第一步:半径=直径÷2第二步:底面积=3.14×半径²第三步:两个底面积=底面积×26÷2=3(分米) 3.14×3²×2=56.52(平方分米)四、侧面积第一步:底面周长=3.14×底面直径第二部:侧面积=底面周长×高3.14×0.6×1=1.884(平方米)底面积第一步:半径=直径÷2第二步:底面积=3.14×半径²0.6÷2=0.3(米) 3.14×0.3²=0.2826(平方米)求需要铁皮就是求表面积,圆柱表面积=侧面积+两个底面积1.884+0.2826×2=2.4492(平方米)五、六、无盖的铁皮水桶,因为没有上底所以就是求:侧面积+一个底面面积侧面积第一步:底面周长=3.14×底面直径第二部:侧面积=底面周长×高3.14×30×50= 4710(平方厘米)底面积第一步:半径=直径÷2第二步:底面积=3.14×半径²30÷2=15(米) 3.14×15²=706.5(平方厘米)无盖的铁皮水桶需要材料=侧面积+一个底面面积4710+706.5=5416.5(平方厘米)七、通风管需要铁皮面积,因为通风管没有底面,就是求侧面积。
苏教版数学六年级下册试题2.2圆柱的侧面积和表面积同步练习(含答案)班级:姓名:等级:一、选择题1.做一个圆柱形油桶,至少要用多少平方米铁皮是求它的()。
A.体积B.侧面积C.表面积2.圆柱的侧面展开图是正方形,这个圆柱的底面直径和高的比是()。
A.π:1 B.1:1 C.1:π3.一个圆柱的展开图如下图(单位:厘米),它的表面积是( )平方厘米。
A.36π B.60π C.66π D.72π4.如果一个圆柱的底面直径是d,它的高是πd,那么这个圆柱侧面展开图是()。
A.长方形B.正方形C.平行四边形D.圆形5.两块同样的长方形纸板,卷成形状不同的圆柱(接头处不重叠),并装上两个底面,那么制成的两个圆柱体的()相等。
A.底面积B.侧面积C.表面积二、填空题6.一个圆柱的底面半径是4cm,它的高是4cm,这个圆柱的侧面积是______cm²。
7.一个圆柱的底面直径是8厘米,高是1分米,它的侧面积是________平方厘米.把它沿着底面直径垂直切成两半,表面积会增加________平方厘米.8.一个圆柱,它的高是8厘米,侧面积是200.96平方厘米,它的底面积是____平方厘米。
9.一个长方形的长是4cm,宽是3cm,以这个长方形的长为轴旋转一周,得到的立体图形是____,这个立体图形的底面积是____c2m,表面积是____c2m.三、计算题10.求下列圆柱体的侧面积:①底面半径是2米,高32分米; ②底面周长21厘米,高8厘米;11.计算圆柱的表面积。
四、解答题12.做10节圆柱形通风管,每个通风管的底面周长是30厘米,长1.2米。
至少需要铁皮多少平方厘米?13.一台压路机的前轮是圆柱形,轮宽1.8m,直径为1m。
前轮转动一周,压路的面积是多少平方米?14.一根长2米,底面半径是4厘米的圆柱形木段,把它据成同样长的4根圆柱形的木段。
表面积比原来增加了多少平方厘米?15.一个圆柱形水池,底面内半径是2米,高是1.5米,在池内周围和底面抹上水泥,抹水泥的面积是多少?16.如下图,爷爷的水杯中部有一圈装饰,是悦悦怕烫伤爷爷的手特意贴上的。
圆柱的表面积和体积练习题精选
姓名:
一、知识归纳
求表面积:求体积:
(1)侧面积S侧=2πrh (1)底面积S底=πr2 (2)底面积S底=πr2 (2)体积 V=S底h (3)表面积S表=S侧+2S底
(1)已知圆的半径和高,怎样求圆柱的表面积和体积?
(2)已知圆的直径和高,怎样求圆柱的表面积和体积?
(3)已知圆的周长和高,怎样求圆柱的表面积和体积?
二、求下面各圆柱的表面积和体积
⑴底面积28.26平方米,高2米
⑵半径3厘米,高15厘米
⑶直径8分米,高12分米
⑷底面周长25.12米,高3米
⑸底面半径为3厘米,侧面展开图是正方形
3、一个圆柱形水池,直径16米,深1.5米。
(1)这个水池占地面积是多少?(2)在池底及池壁抹一层水泥,抹水泥部分的面积是多少?
(3)挖成这个水池,共需挖土多少立方米?
三、综合练习
1、一个无盖的圆柱形,侧面积是1884平方厘米,底面周长是28.26厘米。
做这个水桶至少要多少平方分米的铁皮?这个水桶的容积是多少立方分米?
2、压路机的滚筒是个圆柱,它的长是1.8米,滚筒横截面半径是0.8米,如果滚筒每分钟滚动12周,那么1小时可压路多少平方米?前进了多少米?
3、在直径8米的水管中,水流速度是每秒2.5米,那么5分钟流过的水有多少立方米?
4、把一个长、宽、高分别是10厘米、8厘米、5厘米的长方体铁块和一个棱长是5厘米的正方体铁块,熔铸成一个圆柱体。
这个圆柱体的底面直径是30厘米,高是多少厘米?
5、想一想,把圆锥的侧面展开会得到一个什么图形?这个图形的一些线段分别和原来圆锥的那些线段相等?怎样计算圆锥的底面积?。
圆柱表面积专项练习60题(有答案)1.王师傅要做一个底面直径2分米,高9分米的圆柱形通风管,至少需要多少平方分米的铁皮?2.一个无盖的圆柱形铁皮水桶,高是30厘米,底面半径是10厘米,做这个水桶至少要用铁皮多少平方分米?(用进一法,得数保留整数)3.一台压路机滚筒长1.2米,直径1米,这台压路机的滚筒滚动200周前进了多少米?压过的路面是多少平方米?4.一个圆柱的表面积是50.24平方分米,底面半径是2分米,则这个圆柱的高是多少分米?5.将这根水管内外表面镀锌,求镀锌的面积(单位:厘米)6.压路机的滚筒是一个圆柱形,直径是1米,长1.5,米,每滚动一周能压多少面积的路面?7.做20节圆柱形铁皮烟囱,每节烟囱长2.5米,横截面的直径是40厘米,一共要用多少平方米的铁皮?8.把一张长9.42分米,宽3.14分米的长方形铁皮圈成一个圆柱形无盖容器,要配上底面半径多少分米的圆形铁皮.9.把一根长80厘米,底面半径是15厘米的圆柱形钢材锯成3段,表面积增加了多少平方厘米?10.一个无盖的圆柱形铁皮水桶,高为12分米,底面直径是高的,做这个水桶,至少用铁皮多少平方分米?(用进一法保留整数)11.把141.3升水倒入一个底面周长18.84分米的无盖铁皮圆柱体水桶中,正好能倒满,请你算算这个铁皮水桶用铁皮多少平方分米?12.一个圆柱形水池,底面直径为40m,深3m,现要在其底部和四周铺上方砖,铺方砖的面积是多少?13.把一个长12厘米,宽6厘米的长方形纸板沿长旋转一周,得到一个圆柱体,这个圆柱体的侧面积是多少?14.一个圆柱形无盖水桶,底面直径4dm、高5dm,做一个这样的水桶至少需要多少dm2的木板?15.一个圆柱形的薯片包装盒,高是2.5分米,底面半径是3厘米.如果沿包装盒的一周贴上高度为5厘米的商标纸,商标纸的面积应是多少平方厘米?16.如图,把一个底面半径2厘米、高5厘米圆柱沿直径切成两半,表面积会比原来增加多少平方厘米?17.一个高是20厘米的圆柱,把高增加4厘米后,圆柱表面积比原来增加了25.12平方厘米,那么新的圆柱表面积是多少平方厘米?18.一个圆柱体和一个圆锥体等底等高,它们的体积相差50.24立方厘米.如果圆柱体的底面半径是2厘米,这个圆柱体的侧面积是多少平方厘米.19.用铁皮制成一个高是5分米,底面周长是12.56分米的圆柱形水桶(没有盖),至少需要多少平方分米铁皮?20.按要求计算.(1)底面周长1.8米,高1.5米的圆柱侧面积.(2)底面半径6分米,高5分米的圆柱表面积.(3)底面直径10厘米,高4分米的圆柱表面积.21.一种圆柱形状的饮料盒,底面直径5.6厘米,高13厘米.要把它的侧面全部围上包装纸,这张包装纸的面积至少是多少?(得数保留整百平方厘米.用进一法取近似值)22.下面的圆柱沿着箭头方向竖着切开,表面积增加了40平方厘米,求圆柱的表面积.23.一个圆柱,底面半径是0.2米,高是35分米,它的侧面积是多少平方分米?24.一个圆柱体形的蓄水池,从里面量底面周长31.4米,深2.4米,在它的内壁与底面抹上水泥.抹水泥部分的面积是多少平方米?25.做10节圆柱形通风管,底面周长是30厘米,长1.2米,至少需要铁皮多少平方厘米?26.一圆柱底面周长是12厘米,高12厘米,求它的侧面积和表面积.27.把一个9厘米,宽7厘米,高3厘米的长方体铁块和一个棱长为5厘米的正方体铁块,熔铸成一个底面直径为20厘米的圆柱,为了防锈蚀,要在其表面刷上防锈漆,求刷漆的面积是多少平方厘米?28.工人把一根高是1米的圆柱形木料,沿底面直径平均分成两部分,这时两部分的表面积之和比原来增加了0.8平方米.求这根木料原来的表面积.29.一个圆柱,底面周长是12.56厘米,高是8厘米,沿底面直径垂直把它切成两部分后,切割面的面积一共是多少平方厘米?30.压路机的前轮是圆柱形,轮宽1.5米,直径1.2米,前轮每分钟转动10周,每分钟前进多少米?每分钟压路多少平方米?31.如图的一种罐头,要给它的侧面贴上包装纸,这样的包装纸的面积有多少平方厘米?32.用铁皮制作20节通风管,每节长80厘米,底面周长34厘米,需要铁皮多少平方米?(保留整平方米)33.一个通风管道长20米,管口是一个正方形,边长0.5米,做3个这样的通风管需要铁皮多少平方米?34.把一个正方体削成一个体积最大的圆柱.如果圆柱的侧面积是314平方厘米,求正方体的表面积.35.一个圆柱形的无盖水桶,底面半径4分米,高6分米,至少需要用多少平方分米的铁皮?(用进一法取近似值,得数保留整数)36.一个圆柱形水桶(无盖),高12dm,高与底面直径的比是2:1,做一对这样的水桶至少用多少平方米的铁皮?(得数保留两位小数)38.把一个底面半径是3分米,高5分米的圆锥形钢材锻造成一个高15分米的圆柱,这个圆柱的底面积是多少?39.如图,一个蔬菜大棚的外形是半个圆柱形,两端是3米高的半圆柱形砖墙.已知覆盖的塑料薄膜最少需376.8平方米,这个蔬菜大棚的种植面积是多少平方米?40.一种压路机滚筒,半径是4分米,长1.2米,每分钟转10周,每分钟压路多少平方米?每小时前进多少米?41.两张完全一样的长方形纸,长16厘米,宽4厘米.一张横着卷成圆柱形,另一张竖着卷成圆柱形.两个圆柱形的侧面积一样大吗?为什么,请算出来.42.一个圆柱侧面积100平方厘米,这个圆柱的底面半径和高相等,求这个圆柱的表面积是多少平方厘米?43.长10厘米,直径2厘米的三根圆柱捆成一捆(如图),用一张纸将这捆圆柱侧面包起来(纸要绷紧),至少需要多大面积的纸?44.圆柱形无盖铁皮水桶的高与底面直径的比是3:2,底面直径是4分米.做这样的2只水桶要用铁皮多少平方分米?(得数保留整十平方分米)45.一个圆柱体底面周长和高相等,如果高缩短了2厘米,表面积就减少12.56平方厘米.求这个圆柱体的表面积.46.把一张长方形的铁皮按上页右下图剪料,正好能制成一只铁皮油桶,求所制成的油桶的表面积.47.用一张长2.5米,宽1.5米的铁皮做一个圆柱形烟筒,这个烟筒的底面积最大是多少?(接口处忽略不计)48.有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(如图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?49.一个圆柱原来高8厘米,圆柱的高截去4厘米,表面积就减少25.12平方厘米,原来的表面积是多少平方厘米?50.铁皮烟囱长2米,直径10厘米,焊接头长10厘米,做50节这样的烟囱需要多少平方米铁皮?51.做一个圆柱形无盖铁皮水桶,高6分米,底面直径4分米,至少需要多少平方分米铁皮?(得数保留整平方分米)52.大厅里有6根圆柱,每根柱子的底面半径是4分米,高5米,如果每平方米需要油漆费0.5元,漆这6根柱子,一共需用油漆费多少元?53.一个圆柱高8厘米,如果它的高增加2厘米,那么它的表面积增加25.12平方厘米,求原来圆柱的表面积是多少平方厘米?54.一个圆柱体的体积是200立方厘米,侧面积是100平方厘米,这个圆柱体的表面积是多少平方厘米?55.做一个圆柱形水桶,底面半径是20cm,高是50cm,至少需要铁皮多少平方厘米?56.制作一节圆柱形铁皮烟囱,烟囱长1米,直径15厘米,焊接的地方为1厘米,制作这样的烟囱至少需要多少平方厘米的铁皮?57.把一个底面直径6分米,高15分米的圆锥形金属零件熔铸成一个和它等底的圆柱体,这个圆柱体的表面积是多少平方分米?58.圆柱体的底面周长是31.4厘米,高是8厘米,求它的侧面积和体积?59.一根长1米,横截面直径是20厘米的木头浮在水面上,小明发现它正好是一半露出水面,请你求出这根木头与水接触的面的面积是多少?60.已知下面圆柱的直径是6厘米,高是8厘米,其底面是圆的扇形,求表面积.参考答案:1.3.14×2×9=56.52(立方分米);答:至少需要56.52平方分米的铁皮.2.2×3.14×10×30+3.14×102=1884+314=2198(平方厘米)≈22(平方分米);答:做这个水桶至少要用铁皮22平方分米3.(1)3.14×1×200=628(米);(2)3.14×1×1.2×200=3.14×240=753.6(平方米),答:这台压路机的滚筒滚动200周前进了628米;压过的路面是753.6平方米.4.底面积:3.14×22=12.56(平方分米),侧面积:50.24﹣2×12.56=25.12(平方分米),高:25.12÷(2×3.14×2)=25.12÷12.56=2(分米),答:圆柱额高是2分米5.根据题干分析可得:R=8÷2=4厘米,r=6÷2=3厘米,表面积:3.14×(42﹣32)×2+3.14×6×50+3.14×8×50=3.14×7×2+942+1256=2241.96(平方厘米),答:镀锌的面积是2241.96平方厘米.6.3.14×1×1.5=4.71(平方米),答:每滚动一周能压4.71平方米的路面.7.40厘米=0.4米,3.14×0.4×2.5×20=62.8(平方米);答:一共需要62.8平方米的铁皮.8.两种可能:第一种:9.42÷3.14÷2=1.5(分米),第二种:3.14÷3.14÷2=0.5(分米),答:要配上底面半径是1.5分米或0.5分米的圆形铁皮.9. 3.14×152×4=3.14×225×4=2826(平方厘米),答:表面积增加了2826平方厘米.10.12×=9(分米);9÷2=4.5(分米);3.14×9×12+3.14×4.52=339.12+3.14×20.25=339.12+63.585=402.705,≈403(平方分米);答:至少用铁皮403平方分米11.底面半径是:18.84÷3.14÷2=3(分米),底面积是:3.14×32=28.26(平方分米),圆柱水桶的高是:141.3÷28.26=5(分米),它的侧面积是:18.84×5=94.2(平方分米),所以铁皮水桶的铁皮是:28.26+94.2=122.46(平方分米);答:这个铁皮水桶用铁皮122.46平方分米.12.3.14×40×3+3.14×(40÷2)2=376.8+3.14×400=376.8+1256=1632.8(平方米);答:铺方砖的面积是1632.8平方米.13.3.14×6×2×12=6.28×6×12=37.68×12=452.16(平方厘米),答:这个圆柱体的侧面积是452.16平方厘米.14.3.14×4×5+3.14×(4÷2)2=62.8+3.14×4=62.8+12.56=75.36(平方分米);答:做一个这样的水桶至少需要75.36平方分米的木板15.3.14×3×2×5=94.2(平方厘米),答:商标纸的面积是94.2平方厘米.16.2×2×5×2=40(平方厘米);答:它的表面积增加了40平方厘米.17.底面周长:25.12÷4=6.28(厘米),半径:6.28÷3.14÷2=1(厘米),表面积:3.14×12×2+3.14×1×2×(20+4)=6.28+150.72=157(平方厘米),答:新的圆柱表面积是157平方厘米.18.圆柱体积:50.24÷(3﹣1)×3=25.12×3=75.36(立方厘米),高:75.36÷(3.14×22)=75.36÷12.56=6(厘米),侧面积:2×3.14×2×6=12.56×6=75.36(平方厘米);答:这个圆柱体的侧面积是75.36平方厘米19.底面半径:12.56÷(2×3.14)=12.56÷6.28=2(分米);需要的铁皮面积:12.56×5+3.14×22=62.8+3.14×4=62.8+12.56=75.36(平方分米);答:做这个水桶需要铁皮75.36平方分米.20.(1)1.8×1.5=2.7(平方米),(2)3.14×62×2+2×3.14×6×5=3.14×36×2+31.4×6=3.14×72+188.4=226.08+188.4=414.48(平方分米);(3)4分米=40厘米,3.14×(10÷2)2×2+3.14×10×40=3.14×50+31.4×40=157+1256=1413(平方厘米);答:(1)底面周长1.8米,高1.5米的圆柱侧面积是2.7平方米;(2)底面半径6分米,高5分米的圆柱表面积是414.48平方分米;21.3.14×5.6×13=17.584×13=228.592≈300(平方厘米);答:每张包装纸的面积至少是300平方厘米22.根据题干分析可得,圆柱的高:40÷2÷4=5(厘米),所以表面积是:3.14×()2×2+3.14×4×5=25.12+62.8=87.92(平方厘米),答:这个圆柱的表面积是87.92平方厘米23.0.2米=2分米,3.14×2×2×35=439.6(平方分米),答:它的侧面积是439.6平方分米.24.底面半径是:31.4÷3.14÷2=5(米);底面积是:3.14×52=3.14×25=78.5(平方米);侧面积是:3.14×5×2×2.4=75.36(平方米),所以抹水泥的面积是:78.5+75.36=153.86(平方米),答:抹水泥的面积是153.86平方米.25. 1.2米=120厘米,30×120×10=3600×10=36000(平方厘米);答:至少需要铁皮36000平方厘米.26.圆柱的侧面积:12×12=144(平方厘米);圆柱的底面积:3.14×(12÷2÷3.14)2=3.14×=(平方厘米);圆柱的表面积:144+2=144+=(平方厘米);答:圆柱的侧面积是144平方厘米,表面积是平方厘米.27.9×7×3+5×5×5=314(立方厘米),20÷2=10(厘米),314÷(3.14×102)=314÷(3.14×100),=314÷314,=1(厘米),刷漆的面积为:3.14×20×1+3.14×(20÷2)2×2=62.8+628,=690.8(平方厘米),答:刷漆的面积是690.8平方厘米.28.底面半径是:0.8÷2÷1÷2=0.2(米),3.14×0.22×2+3.14×0.2×2×1=3.14×0.04×2+1.256=0.2512+1.256=1.5072(平方米);答:这根木料原来的表面积是1.5072平方米29.底面直径:12.56÷3.14=4(厘米),两个切面的面积:8×4×2=64(平方厘米);答:切面的面积一共是64平方厘米.30.(1)3.14×1.2×10=37.68(米),(2)3.14×1.2×1.5×10=56.52(平方米),答:每分钟前进37.68米,每分钟压路56.52平方米.31.3.14×8×15=376.8(平方厘米),答:这样的包装纸的面积是376.8平方厘米32.34×80×20=34×1600=54400(平方厘米),54400平方厘米=5.44平方米≈6平方米.答:需要铁皮6平方米33.0.5×0.5×20×3=15(平方米),答:需要15平方米.34.314÷3.14×6=600(平方厘米);答:正方体的表面积是600平方厘米.35.3.14×4×2×6+3.14×42=3.14×48+3.14×16=3.14×64≈201(平方分米);答:至少需要用201平方分米的铁皮36.水桶的底面直径是:12÷2=6(分米),3.14×(6÷2)2+3.14×6×12=3.14×9+226.08=28.26+226.08=254.34(平方分米)=2.5434平方米,2.5434×2≈5.09(平方米),答:做一对这样的水桶至少用5.09平方米的铁皮37.3.14×6×10+3.14×(6÷2)2×2=3.14×60+3.14×18=3.14×78=244.92(平方分米);答:制作这个油桶至少要用铁皮244.92平方分米38.×3.14×32×5÷15=9.42×5÷15=47.1÷15=3.14(平方分米);答:这个圆柱的地面积是3.14平方分米39.占地的长:376.8÷(3.14×3)=376.8÷9.42=40(米);40.(1)4分米=0.4米;3.14×0.4×2×1.2×10=3.14×0.8×12=30.144(平方米);(2)3.14×0.4×2×10×60=3.14×8×60=1507.2(米);答:每分钟压路30.144平方米,每小时前进1507.2米41.这个圆柱的侧面积就是围成它的这个长方形的面积,所以这两个圆柱的侧面积一样大,就是这两个长方形的面积,16×4=64(平方厘米);答:两个圆柱形的侧面积一样大,都是64平方厘米42.100+2××100=100+100=200(平方厘米),答:这个圆柱的表面积是200平方厘米43.(2×3+3.14×2)×10=(6+6.28)×10=12.28×10=122.8(平方厘米);答:至少需要122.8平方厘米的纸44.4×=6(厘米),4÷2=2(厘米),(3.14×4×6+3.14×22)×2=(3.14×24+3.14×4)×2=3.14×28×2=3.14×56≈180(平方分米).答:做这样的2只水桶要用铁皮180平方分米.45.底面周长(也是圆柱体的高):12.56÷2=6.28(厘米),侧面积:6.28×6.28=39.4384(平方厘米),两个底面积:3.14×()2×2=6.28(平方厘米),所以表面积:39.4384+6.28=45.7184(平方厘米),答:这个圆柱的表面积是45.7184平方厘米46.解:设这个圆柱形油桶的底面半径是r厘米,根据题意可得方程:2×3.14r+2r=16.56,8.28r=16.56,r=2,所以这个圆柱的高是:2×4=8(厘米),则这个油桶表面积是:3.14×22×2+8×(16.56﹣2×2)=25.12+100.48=125.6(平方厘米),答:制成的油桶的表面积是125.6平方厘米47.底面半径:2.5÷3.14÷2≈0.4(米),底面积:3.14×0.42=0.5024(平方米).答:这个烟筒的底面积最大是0.5024平方米48.3.14×6×10+3.14×(6÷2)2×2+3.14×4×5=188.4+3.14×9×2+62.8=188.4+56.52+62.8=307.72(平方厘米);答:一共要涂307.72平方厘米49.底面周长:25.12÷4=6.28(厘米),底面半径:6.28÷3.14÷2=1(厘米),两个底面积:3.14×12×2=6.28(平方厘米),侧面积:6.28×8=50.24(平方厘米),表面积:50.24+6.28=56.52(平方厘米).答:原来圆柱的表面积是56.52平方厘米50.10厘米=0.1米;3.14×0.1×2+0.1×2=0.628+0.2=0.828(平方米);0.828×50=41.4(平方米);答:做50节这样的烟囱需要41.4平方米铁皮51.底面积:3.14×(4÷2)2=12.56(平方分米),侧面积:3.14×4×6=75.36(平方分米),需要铁皮面积:12.56+75.36=87.92(平方分米)≈88平方分米.答:至少需要88平方分米铁皮52.4分米=0.4米,涂油漆的总面积:3.14×0.4×2×5×6=3.14×(0.4×2×5×6)=3.14×24=75.36(平方米),一共需要的油漆费:0.5×75.36=37.68(元).答:一共需用油漆费37.68元53.底面周长:25.12÷2=12.56(厘米),底面半径:12.56÷3.14÷2=2(厘米),两个底面积:3.14×22×2=25.12(平方厘米),侧面积:12.56×8=100.48(平方厘米),表面积:25.12+100.48=125.6(平方厘米).答:原来圆柱的表面积是125.6平方厘米54.圆柱的体积:圆柱的侧面积=πr2h:2πrh=,答:这个圆柱体的表面积是200.48平方厘米55.水桶的底面积:3.14×202=3.14×400=1256(平方厘米);水桶的侧面积:3.14×20×2×50=6280(平方厘米);水桶的表面积:1256+6280=7536(平方厘米);答:至少需要铁皮7536平方厘米56.1米=100厘米,3.14×15+1=47.1+1=48.1(厘米),48.1×100=4810(平方厘米),答:至少需要4810平方厘米的铁皮57.圆锥的体积为:3.14×()2×15×=3.14×9×15×=141.3(立方分米),圆柱的高为:141.3÷3.14÷()2=141.3÷3.14÷9=5(分米),圆柱的表面积为:3.14×6×5+2×3.14×()2=94.2+56.52,=150.72(平方分米),答:圆柱的表面积是150.72平方分米58.侧面积:31.4×8=251.2(平方厘米);体积:3.14×(31.4÷3.14÷2)2×8=3.14×25×8=628(立方厘米);答:圆柱的侧面积是251.2平方厘米,体积是628立方厘米59.木头横截面的半径为:20÷2=10(厘米),两个底面积:3.14×102×2=628(平方厘米),侧面积:3.14×20×100=62.8×100,=6280(平方厘米),表面积:628+6280=6908(平方厘米),与水接触的面积:6908÷2=3454(平方厘米)答:这根木头与水接触的面的面积是3454平方厘米60.6÷2=3(厘米),3.14×32×2×+6×3.14×8×+3×8×2=37.68+100.48+48=186.16(平方厘米);答:这个图形的表面积是186.16平方厘米.圆柱表面积--- 11。
圆柱的侧面积和表面积
一、填空。
1、把圆柱的侧面沿着一条高展开,可以得到一个长方形,这个长方形的长等于圆柱的( ),宽等于圆柱的( ),所以圆柱的侧面积等于( )。
2、一个圆柱的底面周长是94.2厘米,高是5厘米,它的侧面积是()平方厘米。
3、一个圆柱的侧面展开图是一个长方形,已知长方形的长是6.28厘米,宽是5厘米,那么这个圆柱的高是( )厘米,底面周长是( )厘米,侧面积是( )平方厘米,表面积是( )平方厘米。
4、用一张长15厘米、宽20厘米的长方形纸围成一个圆柱,这个圆柱的侧面积是( )平方厘米。
5、如图是一个圆柱的展开图,它的高是( )厘米,侧面积是( )平方厘米,底面积是( )平方厘米。
二、求下面圆柱的侧面积和表面积。
(1)
(2)
三、解决问题。
1、一种圆柱形的罐头盒,底面直径是15厘米,高是20厘米。
它的侧面贴有一张商标纸,商标纸的面积大约有多少平方厘米?
3厘米
2、一个圆柱的底面半径是6厘米,高是12厘米,这个圆柱的表面积是多少平方厘米?
3、某地为节能环保,特推出“家家建沼气池”工程。
郑旭家挖出一个底面直径为3米,高为2.5米的圆柱沼气池,并在它的四周和池底抹上一层水泥。
求抹水泥的面积。
4、饭店的门前有4根大柱子,直径为60厘米,高为6米。
如果每平方米付油漆费5元,那么油漆这些大柱子要多少元?
5、一个圆柱,侧面沿高展开是一个边长31.4厘米的正方形,这个圆柱的表面积是多少平方厘米?。
一.填空1、一个圆柱体,底面周长是94.2厘米,高是25厘米,它的侧面积是()平方厘米.2、一个圆柱体,底面半径是2厘米,高是6厘米,它的侧面积是()平方厘米.3、一个圆柱体的侧面积是12.56平方厘米,底面半径是2分米,它的高是()厘米.4、把一张长8分米,宽5分米的白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是()平方分米.5、把一张边长为5.5厘米的正方形白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是()平方分米.6、一个圆柱的底面直径是10厘米,高是4分米,它的侧面积是()平方厘米.7、圆柱的底面周长和高相等时,展开后的侧面一定是个()。
8、一个圆柱体,两底面之间的距离是10厘米,底面周长是31.4厘米,把这个圆柱体的侧面展开得到一个长方形,长方形的周长是()。
9、把一个圆柱的侧面展开,是一个边长9.42dm的正方形,这个圆柱的底面直径是()。
10、一个圆柱的侧面展开后恰好是一个正方形,这个圆柱的底面直径和高的比是()。
11、一个圆柱形的纸筒,它的高是3.14分米,底面直径是1分米,这个圆柱形纸筒的侧面展开图是()。
A、长方形 B、正方形 C、圆形二.求下列圆柱体的侧面积:①底面半径是4分米,高21厘米; ②底面直径是16厘米,高3厘米;底面半径是3厘米,高是4厘米;④底面直径是4厘米,高是5厘米。
三.应用题1.做十节长2米,直径8厘米的圆柱形铁皮烟囱,需要铁皮多少平方米?2.压路机的滚筒是圆柱体,它的长是2米,滚筒横截面的半径是0.6米。
如果每分转动5周,每分可以压多大的路面?3.大厅里有10根圆柱,圆柱底面直径1米,高8米。
在这些圆柱的表面涂油漆,平均每平方米用油漆0.8千克,共需油漆多少千克?4.有一节张160厘米的圆柱形状的烟囱,它的侧面积是5024立方厘米。
这节烟囱的底面半径是多少厘米?一.求下列圆柱体的表面积1、底面半径是4厘米,高是6厘米;2、底面周长是25.12厘米,高是8厘米。
一、填空。
1、圆柱的侧面积展开图是一个长方形时,它的长等于圆柱的(),宽等于圆柱的(),所以圆柱的侧面积=()×()。
2、圆柱的侧面展开图是一个正方形时,圆柱的()和圆柱的()相等。
3、圆柱的表面积等于()加上()的和,公式:
4、把一张长8分米,宽3分米的长方形纸,围城一个圆柱形纸筒,这个纸筒的侧面积是()平方分米。
5、做一个圆柱形的烟囱要用多少铁皮,就是求圆柱的()
2、一个圆柱的底面周长是厘米,高是6厘米,那么底面半径是()厘米,底面面积是()平方厘米,侧面积是()平方厘米,表面积是()平方厘米。
3、一个圆柱形储物盒的侧面积是12.56平方分米,底面半径是2分米,高是
()分米。
8、一个圆柱的表面积是平方厘米,底面半径是4厘米,它的侧面积是()平方厘米。
4、把一根半径2分米,长9分米的圆木,平均截成3段,表面积增加了()平方分米。
5、一个圆柱的底面半径是5厘米,高是10厘米,沿着圆柱的底面直径将该圆柱平均分成2份,这是表面积比原来增加了()平方厘米。
二、解决问题。
1、把一张边长为5分米的正方形纸板,围城一个圆柱形纸筒。
这个纸筒的侧面积是多少平方分米?
2、做一对无盖的铁皮水桶,底面半径是2分米,高是6分米,做这对水桶要用料多少平方分米?
3、一个圆柱形铁皮盒,底面半径是3分米,高是5分米。
(1)这个铁皮盒的占地面积是多少?
(2)沿着这个铁皮盒的侧面贴一圈商标纸,需要多少平方分米的纸?
(3)要制作这样的铁皮盒,至少要用多少平方分米的铁皮?
4、一个圆柱形烟囱,它的底面周长是米,高15米。
烟囱的外部要涂刷油漆,平均每平方米要用油漆千克,共需油漆多少千克?
5、一台压路机的前轮是圆柱形,轮宽米,直径1米。
(1)前轮滚动一周,压过的路面是多少平方米?
(2)如果每分钟滚动15周,压过的路面是多少平方米?
6、一个圆柱形蓄水池的底面半径20米,高3米,把这个蓄水池的四周及底部涂抹水泥。
如果每平方米用水泥20千克,一共需要多少千克水泥?
7、有一个圆柱高减少2厘米,表面积就减少平方厘米,这个圆柱的底面积是多少?
8、把一个棱长10厘米的正方体木块削成一个最大的圆柱体,这个圆柱体的表面积是多少?。