地铁车站施工监测方案
- 格式:doc
- 大小:182.50 KB
- 文档页数:13
地铁施工变形监测专项施工方案一、背景简介随着城市交通的发展,地铁工程建设日益增多,然而地铁施工过程中可能会引起地面建筑物的变形,因此对地铁施工变形进行监测显得尤为重要。
二、监测对象地铁施工变形监测的对象主要包括地面建筑物以及地下管线等。
三、监测手段1.地表测量:通过对地表标志物进行定点测量,如测角、测距等方法,了解地表的变形情况。
2.遥感监测:利用航空摄影和遥感技术,对地铁工程周边的地形进行全方位监测。
3.地下管线探测:采用地下雷达等技术,对地下管线的情况进行探测,及时排除隐患。
四、监测频率1.实时监测:在地铁施工过程中,对地面建筑物变形进行实时监测,保证施工过程的安全。
2.定期监测:除实时监测外,还需定期对地铁施工周边区域进行监测,及时发现潜在问题。
五、监测报告1.监测数据分析:对监测数据进行系统分析,了解地面建筑物的变形情况。
2.问题排查:如发现地面变形异常,需及时进行问题排查,找出原因并提出解决方案。
3.监测报告撰写:根据监测数据和问题排查结果,编制监测报告,向相关部门汇报情况。
六、应急预案1.事故处理:如发生地面建筑物坍塌等紧急情况,需立即启动应急预案,保障施工现场人员的安全。
2.紧急通知:在出现紧急情况时,需第一时间向相关部门通报,并配合开展应急处理工作。
七、总结与展望地铁施工变形监测是保障地下工程施工安全的重要环节,只有加强监测工作,提高预警能力,才能确保地铁施工的顺利进行。
未来,随着监测技术的不断创新,地铁施工变形监测工作将更加精准、高效。
以上是关于地铁施工变形监测专项施工方案的介绍,希望通过不懈的努力,确保地铁施工的顺利进行,保障城市交通的高效便捷。
武汉市轨道交通 2 号线18 标洪山广场站基坑工程施工监测方案(版本号V2.0 送审用)上海辉固岩土工程技术有限公司2009年5 月1 工程概况1.1 工程位置武汉市轨道交通2 号线洪山广场站位于洪山广场西侧广场下,洪山广场周围为广场环路。
根据招标设计说明,工程共分为两个标段:18A及18B。
其中,18A标基坑工程为洪山广场站北侧部分,18B标基坑工程为洪山广场站南侧部分。
施工前洪山广场鸟瞰图见图1 。
1.2 工程简况洪山广场站是轨道交通2 号线与规划中的轨道交通4号线的换乘车站,且同期建设,一次建成。
洪山广场站沿2号线方向车站长度约169m沿4号线方向车站长度约155m车站整体呈楔形。
见图2。
车站为地下三层岛式车站。
站台层西侧为2号线轨道线,东侧为4号线轨道线。
2号线与4号线的站台通过换乘通道相连通。
车站共设置1 1个地面出入口、1 8个地面风亭。
18A标基坑大致呈四边形形状,东、西两边长度分别为约90m及80m南、北两边长度分别为约100m及150m 18B标基坑大致亦呈四边形形状,东、西两边长度分别为约74m及81m 南、北两边长度分别为约55m及100m洪山广场站用“盖挖逆作法”设计和施工,施工顺序分为三个阶段。
第一阶段是在现状地面上进行车站主体的围护桩和支承桩的施工。
基坑围护结构由© 1200@1400mm 钻孔灌注桩+©850mn旋喷桩止水帷幕构成。
第二阶段是制作整个车站结构的顶板,为此要将顶板以上的复土剥离。
按设计底板的深度为3〜5米不等,剥离这部分土层的工作从技术、安全方面考虑相当于一个浅型的基坑,所以第二阶段称为“浅基坑(阶段)” 它的围护采用“靠近中南路下穿隧道一侧采用SMW T法桩围护,其余三侧采用放坡围护”的设计。
第三阶段为车站主体施工。
车站顶板埋深: 3.00〜5.09米;车站底板埋深:25.01〜26.20米。
车站主体主要采用盖挖逆作法施工,以钻孔灌注桩为支护结构,另在车站内有多排基础桩与中间钢管混凝土柱复合体作为开挖过程中车站结构体的主要承力体和车站永久结构的一部分。
地铁监测方案地铁交通系统的建设和运行对于现代城市来说具有重要的意义。
为了确保地铁运营的安全和有效性,地铁监测方案是必不可少的工具。
本文将介绍一个全面的地铁监测方案,以确保地铁系统的正常运行和乘客的安全。
一、方案背景地铁系统是城市交通的重要组成部分,为了保证乘客的出行安全和提高运行的可靠性,地铁监测方案是必要的。
通过监测地铁系统的各个方面,可以及时发现潜在的故障和问题,并及时采取措施修复。
二、监测设备1. 传感器地铁监测方案中的核心设备是传感器。
传感器可以安装在地铁线路、车辆和车站等位置来监测各个环节的运行情况。
传感器可以收集并传输各种数据,如振动、温度、湿度等,从而提供全面的监测信息。
2. 数据采集系统为了有效地收集和处理传感器传输的数据,需要建立一个数据采集系统。
数据采集系统负责接收传感器的数据,并将其存储和处理。
通过数据采集系统,监测人员可以实时监测地铁系统的状态,并及时作出应对。
三、监测内容1. 线路监测地铁线路作为地铁系统的基础设施,需要进行全面的监测。
通过安装传感器在线路上,可以实时监测线路的运行情况,如振动、温度变化等。
这些数据可以帮助监测人员及时发现线路的异常情况,如裂缝、变形等,并采取相应的维修措施。
2. 车辆监测地铁车辆是运营中最为关键的环节之一,其安全和正常运行至关重要。
通过在车辆上安装传感器,可以监测车辆的运行状态和性能。
例如,传感器可以监测车辆的振动和噪音水平,以及车辆的温度和湿度情况。
这些数据可以帮助监测人员判断车辆的健康状况,并提前预防潜在故障的发生。
3. 车站监测地铁车站是乘客出行的重要场所,因此需要进行全面的监测。
通过在车站安装传感器,可以监测人流量、空气质量、温度等参数。
这些数据可以帮助监测人员及时调整运营策略,确保乘客的安全和舒适。
四、数据分析与应用通过对传感器采集的数据进行分析,可以获取地铁系统的运行状态和趋势,并及时采取相应措施。
监测人员可以借助数据分析工具,对数据进行处理和分析,并生成相关的报告和预警信息。
地铁工程施工监测方案监测目的:一是通过对监测信息的分析指导后续工程的施工,二是确保周围建筑物的稳定及施工安全,三是为今后类似工程的建设提供经验.根据招标文件中有关施工监测部分的精神,结合本工程的地理位置及基坑的开挖深度和工程结构型式的特点来考虑,我们认为监测重点为监测围护结构的水平位移及沉降、地表变形、钢支撑受力、地下水位以及地下管线变形等方面监测。
1.监测组织与程序建立专业监测小组,根据业主要求委托有资质和有业绩的单位进行,并由具备独立资质有丰富施工经验、监测经验及有结构受力计算、分析能力的工程技术人员组成。
负责监测方案的制定、监测仪器的埋设和调试、监测数据的收集、整理和分析,并采用先进可靠的计算软件,快速、及时准确的反馈信息,指导施工。
同时与预测的数据进行对照,有利于及时发现异常,及早采取措施。
2. 监测项目地下工程按信息化设计,现场监控量测是监视围岩稳定、判断支护衬砌设计是否合理安全、施工方法是否正确的重要手段,通过监控量测:将监测数据与预测值相比较,判断前一步施工工艺和支护参数是否符合预期要求,以确定和调整下一步施工,确保施工安全和地表建筑物、地下管线的安全。
将现场测量的数据、信息及时反馈,以修改和完善设计,使设计达到优质安全、经济合理。
将现场测量的数据与理论预测值比较,用反分析法进行分析计算,使设计更符合实际,以便指导今后的工程建设。
测点布置、监测手段与监测频率现场监控量测项目、测点布置、监测手段与监测频率详见明挖段监控量测表。
3.监测方案及相应措施1)地面沉降(1)监测方法:主要监测基坑开挖引起的地表变形情况。
监测方法是在地表埋设测点,用水准仪进行下沉的量测。
根据量测结果进行回归分析,判断基坑开挖对地表变形的影响。
(2)测点布置原则:测点布置在基坑周围地面上,间距10~20米。
(3)量测频率:见监测项目汇总表(4)量测精度:±1mm(5)相应对策:当地表沉降速度过大,加快监测频率,必要时,停工检查原因,采用加强支撑和加固地层的措施保证施工安全。
地铁监测实施方案模板一、背景介绍。
地铁作为城市交通的重要组成部分,其安全运行对城市的发展至关重要。
为了保障地铁线路的安全运行,需要对地铁进行定期监测和检测,及时发现和解决潜在问题。
因此,制定地铁监测实施方案至关重要。
二、监测目的。
1. 确保地铁线路的安全运行;2. 及时发现和解决地铁线路存在的问题;3. 为地铁线路的维护和保养提供数据支持。
三、监测内容。
1. 轨道及道岔的检测,包括轨道的平整度、轨道的几何参数、道岔的运行情况等;2. 车辆设备的检测,包括列车的车体、车轮、车门等设备的运行情况;3. 信号系统的检测,包括信号设备的运行情况、信号系统的联锁检测等;4. 供电系统的检测,包括牵引供电系统、辅助供电系统的运行情况;5. 站场设施的检测,包括站台、站房、站台屏蔽门等设施的运行情况。
四、监测方法。
1. 采用现场检测和在线监测相结合的方式,对地铁线路进行全面监测;2. 利用先进的监测设备,对地铁线路进行高精度、高效率的监测;3. 结合数据分析和专业评估,对监测数据进行综合分析和评估。
五、监测周期。
1. 对于地铁新建线路,需在开通前进行全面监测;2. 对于已运营的地铁线路,需按照规定周期进行定期监测;3. 对于地铁线路出现异常情况时,需进行临时监测。
六、监测报告。
1. 对监测数据进行分析和评估,形成监测报告;2. 监测报告应包括监测数据、问题分析、解决方案等内容;3. 监测报告需及时提交相关部门,以供决策参考。
七、监测责任。
1. 地铁运营单位需建立健全监测责任制度,明确监测工作的责任人;2. 监测人员需具备专业的监测技术和丰富的实践经验;3. 监测单位需定期对监测人员进行培训和考核,确保监测工作的质量和效果。
八、监测保障。
1. 地铁监测工作需充分利用先进的监测设备和技术;2. 监测单位需建立健全的监测管理体系,确保监测工作的顺利进行;3. 监测单位需配备专业的监测人员和技术支持,确保监测工作的准确性和及时性。
地铁施工监测规范篇一:地铁工程监控量测技术规程地铁工程监控量测技术规程第一章定义、术语1.1 定义1.1 监控量测地铁工程施工中对围岩、地表、支护结构及周边环境的动态进行的经常性观察和量测工作。
1.2 施工监控量测土建承包商按施工合同有关要求在满足监测技术规程的要求下,自行组织对地铁工程实施的监控量测工作。
1.3 第三方监控量测由业主通过招标或委托形式引入的有关资质的单位对其签订的承包合同范围实施的监控量测工作。
1.2 术语2.1 地铁在城市中修建的快速、大运量、用电力牵引并位于隧道内或地铁转到地面和高架桥上的轨道交通。
2.2 应测项目保证地铁周边环境和围岩的稳定以及施工安全应进行的日常监测项目。
2.3 选测项目相对于应测项目而言,为了设计和施工的特殊需要,由设计文件规定的在局部地段进行的检测项目。
2.4 浅埋暗挖法在浅埋软质地层的隧道中,基于喷锚技术而发展的一种矿山工法。
2.5 盾构法使用盾构机械进行开挖并采用管片作为衬砌而修建隧道的施工方法。
2.6 明挖法由地面开挖的基坑中修筑地铁构筑物的方法。
2.7 隧道周边收敛位移隧道周边任意两点间距离的变化。
2.8 水平位移监测测定变形体沿水平方向的位移值,并提供变形趋势及稳定预报而进行的量测工作。
2.9 垂直位移监测测试那个变形体沿垂直方向的位移值,并提供变形趋势及稳定预报而进行的量测工作。
2.10 拱顶沉降隧道拱顶内壁的绝对沉降(量)。
2.11 地表沉降地铁工程施工中地层的(应力)扰动区延伸至地表而引起的沉降。
2.12 隧道围岩隧道周围一定范围内对洞身产生影响的岩土体。
2.13 围岩压力开挖隧道时围岩变形或松散等原因而作用而支护、衬砌上的压力。
2.14 初期支护隧道开挖后即行施作的支护结构。
2.15 二次衬砌初期支护完成后施作的衬砌。
2.16 衬砌沿着隧道洞身周边修建的永久性支护结构。
2.17 管片是一种在工厂制作的圆弧形板肋状并由钢筋混凝土、钢、铸铁或其它材料制作的预制构件。
地铁工程变形监测方案一、项目概述地铁工程建设是城市交通发展的重要组成部分,也是大型公共基础设施建设的关键项目。
在地铁建设和运营过程中,地铁隧道、车站和地下结构的变形监测是一项十分重要的工作。
通过对地铁工程的变形进行定期监测和分析,可以及时发现和处理潜在的安全隐患,保障地铁工程运营的安全和稳定。
本文将就地铁工程变形监测的方案进行详细介绍,包括监测的对象、监测的内容、监测的方法和技术手段等方面,旨在为地铁工程建设和运营提供科学、可靠的变形监测方案。
二、监测对象地铁工程的变形监测对象主要包括地铁隧道、车站和地下结构。
地铁隧道是地铁线路的主要组成部分,其稳定性直接关系到地铁运行的安全和顺畅。
地铁车站是地铁线路的重要节点,其安全稳定性对地铁的客流量和运营效率有着重要的影响。
地下结构主要包括隧道周边的地基土体和基础设施,其变形状态直接关系到地铁工程的整体安全。
三、监测内容地铁工程的变形监测内容主要包括地表沉降、隧道变形、地下水位变化、地铁结构振动等多个方面。
其中,地表沉降是地铁工程建设过程中常见的问题,其变形监测能够及时发现并处理地表沉降造成的安全隐患。
隧道变形是地铁工程变形监测的重点内容,主要包括隧道的收敛变形、开挖变形、压裂变形等多种形式。
地下水位变化是地铁工程变形监测的重要内容之一,其变形监测能够及时发现并处理地下水位引发的地铁工程漏水等安全隐患。
地铁结构振动是地铁运营期间的变形监测内容,主要包括地铁列车行驶和乘客运营等因素引发的地铁结构振动。
四、监测方法地铁工程变形监测的方法主要包括传统监测方法和新兴监测技术两种。
传统监测方法主要包括地表测点监测、隧道地表沉降观测、地下水位监测等。
新兴监测技术主要包括遥感监测、激光测量、地面雷达等技术手段,这些技术手段能够较好地实现地铁工程变形的实时监测和分析。
五、监测技术手段地铁工程变形监测的技术手段主要包括监测系统、传感器设备、数据处理软件等多个方面。
监测系统是地铁工程变形监测的基础设施,其能够通过监测点布设和数据采集实现对不同变形内容的监测。
地铁车站工程监测方案背景为了确保地铁车站工程施工安全、顺利并符合要求,建筑工程监测方案必不可少。
在地铁车站工程中,监测方案的作用更加重要,因为这里需要考虑地下、垂直等多个方向的施工及安全问题。
目的地铁车站工程监测方案的主要目的是为了监控地铁车站工程施工中结构变形及地基沉降等情况,预测并避免潜在风险,确保施工安全、顺利及符合要求。
监测方法地铁车站构造监测地铁车站的构造监测一般包括: - 钢结构监测:对于地铁车站的钢结构,需要进行轴力、弯矩、剪力等监测。
- 混凝土结构监测:需要通过测量深度、弯矩、开口等指标来监测混凝土结构的变化情况。
- 土建结构监测:对于地铁车站的基础等土建结构,需要测量应力、沉降、变形等指标来监测。
地铁车站建筑物监测地铁车站建筑物监测一般包括: - 建筑物倾斜监测:对于地铁车站的建筑物,需要进行倾斜监测,以保证建筑物的稳定性。
- 建筑物结构监测:需要测量建筑物的振动等指标,以监测结构的变化情况。
- 消防设备监测:对于地铁车站的消防设备,需要进行监测,以保证其正常运行。
地铁车站环境监测地铁车站环境监测一般包括: - 声波监测:地铁车站环境中噪声指标需要进行监测,以判断是否超过规定标准。
- 空气质量监测:对于地铁车站的空气质量,需要进行监测,以保证车站内部环境的安全性。
- 其他环境参数监测:如光照、湿度等指标需要进行监测,以保证车站内部环境的适宜性。
监测仪器地铁车站工程监测需要使用一些专用的监测仪器,这些仪器需要满足精确、灵敏、实时等要求,一般包括: - 自动化地下水位计 - 摩擦式电缆计 - 倾斜度计 - 水准仪 - 电测支撑器监测频次地铁车站工程监测要求监测频次高,以及时预测并纠正潜在风险。
车站建设中需要进行常规监测,如日、周、月、季度等周期监测,同时还需要建立相应的应急预案,以应对可能出现的问题。
结论地铁车站工程监测方案应该在施工前编制,并根据施工进展情况进行调整与完善。
地铁监控施工方案1. 引言地铁作为现代城市交通体系的重要组成部分,拥有庞大的乘客流动量和密集的车站网络。
为了确保地铁运行的安全性和便捷性,监控系统在地铁车站和车厢内起着重要作用。
地铁监控施工方案旨在提供一个全面而有效的监控解决方案,确保乘客和地铁设施的安全。
2. 设备与系统安装2.1. 摄像机安装在地铁车站和车厢内设置摄像机以实现全方位监控。
选择高清摄像机并根据车站和车厢的特点确定最佳安装位置。
保证覆盖面积广泛且视野清晰,并避免遗漏监控盲区。
2.2. 视频录像系统为了记录监控画面,必须安装视频录像系统。
该系统应具备高性能的硬盘存储设备,能够长时间存储大量的监控数据。
录像系统还应支持远程访问和备份功能,以便管理人员可以随时查看和管理监控录像。
2.3. 视频监控中心视频监控中心是地铁监控系统的核心。
它使用高性能监控服务器和显示设备,将各个摄像机的视频信号集中显示在一个控制室内。
监控中心还应具备报警功能,以便能够实时监测和响应紧急事件。
3. 网络系统规划地铁监控系统需要一个安全可靠的网络基础设施来传输视频数据和控制信号。
以下是网络系统规划的关键考虑因素:3.1. 网络拓扑采用分布式网络拓扑结构,在各个车站和车厢之间建立局域网,并通过广域网连接到监控中心。
使用可靠的网络设备,如交换机和路由器,确保数据传输的稳定性和安全性。
3.2. 网络带宽根据监控系统的需求和预计的数据流量,规划适当的网络带宽。
考虑到地铁车站和车厢人流量大的情况,应优先提供高带宽网络以确保实时图像传输和监控数据的快速访问。
3.3. 网络安全地铁监控系统存储着大量的敏感信息,所以网络安全性是至关重要的。
采用防火墙系统、入侵检测系统和访问控制策略,确保监控数据的保密性和完整性。
4. 集成与管理4.1. 数据集成地铁监控系统的数据应与其他安全系统集成,如消防系统和门禁系统,以实现全面的安全监控。
集成可以通过网络接口和协议实现,确保各个系统之间的信息共享和联动响应。
***市都市轨道交通2号线一期工程十标车站施工监测方案有限公司3月目录1概述 01.1工程概况 01.2工程设计与施工概况 01.3工程地质及水文地质条件 (1)2监测目 (5)3技术原则 (5)4监测工作内容 (5)4.1监测对象、项目及布点 (5)4.2监测频率及周期 (6)4.3监测控制指标 (7)5 监测作业办法 (9)5.1现场安全巡视 (9)5.2周边环境监测 (10)5.3墙体水平位移 (13)5.4轴力监测 (17)5.5地下管线沉降监测 (18)5.6地下水位监测 (19)5.7墙顶竖向位移监测 (19)5.8墙顶水平位移监测 (19)5.9坑底隆起回弹 (21)6监测信息反馈 (22)6.1信息反馈流程 (22)6.2监测成果内容 (23)6.3与第三方监测单位数据沟通 (23)6.4监测数据报警解决 (23)7 监测人员及仪器配备 (24)7.1拟投入监测人员 (24)7.2拟投入仪器设备 (25)8监测应急方案 (25)8.1应急反映监测流程 (27)8.2应急反映过程中应注意事项 (27)9测量坐标系选取 (28)9.1平面坐标系 (28)9.2高程基准 (28)9.3控制网复测 (28)10 质量及安全保障办法 (28)10.1项目质量管理办法 (28)10.2项目安全生产管理 (29)***市轨道交通2号线一期工程车站施工监测方案1概述1.1 工程概况车站为***市轨道交通2号线一期工程终点站,站内设立交叉渡线,交叉渡线连接出入段线进入车辆段,车站正线预留远期延伸线接驳条件,拟建车站位于新城区昆仑大道南侧地块内,沿昆仑大道南侧呈东西向布置。
昆仑大道红线宽60m,现状道路宽53.5m,双向8车道,车流量较大,车站施工对昆仑大道交通无影响。
场地空旷开阔,周边除个别单层民用建筑外无其她建筑物,车站基坑西南侧约25m处为近东西向无名沟渠,水沟宽约15m,水深约1m,汇入场地西侧约250m废黄河,勘察期间该水渠水位标高33.57m。
第一章、编制依据(1) 监控分中心优化的监测设计文件(2)《地下铁道工程施工及验收规范》GB 50299-1999(2003版)(3)《城市轨道交通工程测量规范》GB50308-2008(4)《工程测量规范》GB50036-2007(5)《建筑基坑支护技术规程》DB11/489-2007(6)《建筑变形测量规范》JGJ8-2007(7)《城市测量规范》CJJ8-99(8)《建筑地基基础设计规范》GB50007-2002(9)《建筑基坑工程技术规范》YB9258-97(10)《地铁工程监控量测技术规程》DB11/490-2007,(11)《测绘作业人员安全规范》(CH1016-2008)(12)《国家一、二等水准测量规范》GB/T 12897-2006(13)《安全风险评估指南》(建设部)(14)《地铁及地下工程建设风险管理指南》(中国建筑出版社,2007年)(15)《建筑施工测量技术规程》DB11/T446-2007(16)《北京市轨道交通工程建设安全风险技术管理体系(试行)》第二章、工程概况2.1 工程位置及周边环境概况xxx位于现状xx西大街,处于xxx之间,沿xxx布置。
现状xxx大街路为双向6车道,两侧各有一非机动车道,路边设人行道。
道路设置三道绿化隔离带,基本实现规划,规划道路红线宽60m。
目前,该路交通繁忙,车流量大。
xxx西侧是过街天桥,东侧与地铁x号线xxx相邻,西北角为隆福广场,是较为繁华的商业区,南、北侧地块多为低层商铺和民宅,车站南侧从西向东依次为xxx办公楼(砖混结构,地上5层,地下一层),xxx和xxx,后两者为六、七十年代建筑,条形砖石基础,基础深度1.5~5m。
场地内对车站影响较大的管线主要有Ф2600雨水管、2000×2000电力管沟、880×1600污水管、Ф1500污水管、3000×1500热力管沟、Ф800给水管、Ф2400雨水管等。
xxx主体结构施工涉及到的环境风险工程如表1所示:表1 xxx主体结构施工涉及到的环境风险工程汇总表序号风险工程名称风险基本状况描述及分析风险等级1 xxx住宅楼基础深度1.5~3.1m,条形砖石基础,建设年代较早,暗挖车站结构外边与楼水平距离13.8m,结构拱顶与基础垂直净距约12.5m一级2 xxx公楼基础深度1.5~3.1m,条形砖石基础,建设年代较早,暗挖车站结构外边与楼水平距离8.8m,上层小导洞南端与楼水平距离5.6m,结构拱顶与基础垂直净距约12.5m一级3 xxx2建筑基础深度1.5~3.1m,条形砖石基础,70年代建筑,暗挖车站结构外边与楼水平距离6.7m,小导洞南端与楼水平距离3.5m,结构拱顶与基础垂直净距约12.5m一级4 PBA暗挖车站主体平行下穿Ф800给水铸铁管,管底埋深 1.7m,管底与暗挖车站主体结构拱顶净距为13.0m一级5 PBA暗挖车站主体平行下穿Ф1550污水砼管,管底埋深7.7m,管底与暗挖车站主体结构拱顶净距为6.6m一级6 PBA暗挖车站主体平行下穿Ф900污水砼管,管底埋深3.0m,管底与暗挖车站主体结构拱顶净距为11.3m一级7 PBA暗挖车站主体平行下穿3000×1500热力砼方沟,沟底埋深 5.0m,管底与暗挖车站主体结构拱顶净距为9.2m一级8 PBA暗挖车站主体平行下穿Ф800给水铸铁管,管底埋深 2.4m,管底与暗挖车站主体结构拱顶净距为11.6m一级9 PBA暗挖车站主体平行下穿Ф2150雨水砼管,管底埋深6.2m,管底与暗挖车站主体结构拱顶净距为8.3m一级10 PBA暗挖车站主体平行下穿Ф300燃气钢管,管底埋深1.5m,管底与暗挖车站主体结构拱顶净距为12.8m一级11 PBA暗挖车站主体平行下穿Ф400燃气钢管,管底埋深1.2m,管底与暗挖车站主体结构拱顶净距为13.3m一级2.2 工程地质与水文地质条件拟建场地位于永定河冲洪扇中下部,整体地势较为平坦,本次勘察揭露地层最大深度为60m,根据钻探资料及室内土工试验结果,按地层沉积年代、成因类型,将本工程场地勘探范围内的土层划分为人工堆积层(Q ml)、第四纪全新世冲洪积层(Q41al+pl)、第四纪晚更新世冲洪积层(Q3al+pl)三大层。
本场区按地层岩性及其物理力学性质进一步分为11个大层根据本工程详勘报告,,自上而下地层情况依次为:杂填土①1层、粉土③层、粉细砂③3层、中粗砂④4层、圆砾卵石⑤层、粉质粘土⑥与粉土⑥2互层、圆砾卵石⑦层、粉质粘土⑧层、粘土⑧1层、中粗砂⑨1层、圆砾卵石⑨层、粉质粘土⑩及粉土⑩2。
车站主体结构大部分位于圆砾卵石⑤层、中粗砂④4层、粉质粘土⑥与粉土⑥2互层及圆砾卵石⑦层中,拱顶位于粉细砂③3层与中粗砂④4层,基底位于圆砾卵石⑦层中。
在勘察深度范围内,实际量测五层地下水,分别为上层滞水(一)、潜水(二)、层间潜水(三)、承压水(四)、层间水(五),各层地下水水位特征如表2所示。
表2 拟建车站地下水特征表地下水性质水位埋深(m) 含水层岩性上层滞水(一) 5.80 粘土③层潜水(二)16.50~17.60 圆砾-卵石⑤层卵石-圆砾⑦层、粉细砂⑦1层、中粗砂⑦2层层间潜水(三)21.20~24.30承压水(四)卵石-圆砾⑨层、粉细砂⑨1层层间水(五)49.10~49.50 卵石-圆砾(11)层、粉细砂(11)1层、中粗砂(11)2层2.3 结构设计形式及施工方法xxx为岛式车站,车站长xxxm,总宽25m,有效站台长178m,站台宽15m,拱顶覆土厚约为15~18m,车站主体为地下两层直墙三连拱结构,采用PBA工法,逆筑施工。
第三章、监控量测技术方案3.1 监测目的同《xxx5合同段施工监测方案》第3.1条。
3.2 监测、巡视范围及项目地铁1号线05标xxx主体施工监测、巡视范围包括:工程主体结构自身安全监测以及工程结构外缘两侧30m范围内的地下、地面建(构)筑物、重要管线、地面及道路。
3.2.1 监测项目监控量测的项目主要根据隧道工程的地质条件、围岩类别、跨度、埋深、开挖方法和支护类型等综合确定。
而且,在隧道工程中进行量测,绝不是单纯地为了获取信息,而是把它作为施工管理的一个积极有效的手段,因此量测信息应能:1)确切地预报破坏和变形等未来的动态,对设计参数和施工流程加以监控,以便及时掌握围岩动态而采取适当的措施(如预估最终位移值、根据监控基准调整、修改开挖和支护的顺序和时机等)。
2)满足作为设计变更的重要信息和各项要求,如提供设计、施工所需的重要参数(初始位移速度、作用荷载等)。
监测项目的选择过程中同时要考虑技术的可行性,在选择过程中应尽量选择技术成熟,数据稳定,抗外界干扰小的监测项目。
综合以上各要素,本标段的主要监测项目为:地质情况观察及描述、地表及道路沉降、地下管线沉降、建筑物沉降及倾斜、钢管柱及边桩沉降、钢管柱纵向差异沉降、钢管柱与边桩差异沉降、拱顶下沉、隧道周边收敛、地下水位监测、土体分层沉降、土体水平位移、桩体水平位移、围岩压力、初期支护结构内力、桩体内力、顶拱结构内力、钢管柱内力、钢拉杆轴力。
3.2.2 巡视主要内容及实施对xx车站自身,周边地下管线及建(构)筑物、道路及地表等主要风险工程展开巡视,重点对以下部位施工进行巡视。
车站主体自身安全巡视:开挖面地质、渗漏水及支护稳定性等。
道路、地表及地下管线监测:主体暗挖施工过程中对周边地表、道路及各类管线的巡视。
建(构)筑物监测:主体暗挖施工过程中对周边临近建筑物(xxx办公楼,中交公路设计院和xxx)进行巡视。
针对xxx主体施工安全巡视内容主要见表3:表3 安全巡视内容巡视内容主要巡视内容工法矿山法1)开挖面地质状况:土层性质及稳定性、降水效果和其它情况;2)支护结构体系:渗漏水情况、支护体系开裂、变形变化和其它情况;3)周边环境:建构筑物变形及开裂情况、地表变形及开裂情况、管线沿线地面开裂、渗水、塌陷情况、管线检查井开裂及积水变化和其它情况。
注:不仅限于以上内容。
3.2.3巡视频率xxx主体施工过程巡视频率表见表4。
表4 xxx施工过程巡视频率表工况频次项目距开挖面的距离(-表示尚未开挖段,B表示隧道直径或跨度) 二衬结构完成后-1B~0 0~1B 1B~2B 2B~5B >5B 0~7天7~15天15天后开挖面地质状况土层性质1次/1天上体稳定性(工作面坍塌)2次/1天,至支护完毕降水效果1次/1天1次/1天1次/2天1次/3天1次/1周支护结构体系支护及时施作情况1次/每循环渗漏水情况1次/1天1次/2天1次/3天1次/1周1次/3天1次/1周1次/1月支护体系开裂、变形情况1次/1天1次/2天1次/3天1次/1周1次/3天1次/1周1次/1月支护体系施工质量缺陷1次/每循环支护体系拱背回填情况1次/每循环施工工艺开挖面暴露时间1次/每循环开挖进尺1次/1天超前支护情况1次/每循环背后注浆情况1次/每循环施工工序1次/每循环超挖情况1次/每循环建构筑物、道路、管线等周边环境1次/1天2次/1天1次/1天1次/2天1次/1周施工组织管理及作业情况1次/1周备注:1.正常情况下,巡视按此表执行;2.临时支撑安装拆除、工序转换等关键工序,断面变化、复杂大跨、联络通道等关键部位,巡视项目出现预警等情况下,均应增大巡视频率; 3.相应巡视部位的监测项目数据稳定后,该部位不再继续巡视。
3.3 监测点布置原则各类监测内容的测点布置根据监控分中心优化后的设计文件要求结合实地情况进行布设。
水准基点、工作基点、监测点的埋设须严格按照相应规范进行,以确保监测数据可靠,并保证其不容易被破坏。
基准点埋设在施工影响范围以外。
监测点在开工前及时布设,待点位稳定后立即进行观测,取三次观测数据的平均值作为初始值,并设置保护套管及盖板进行保护。
对于断面变化部位、马头门处应加强监测。
建筑物沉降测点要布设在建(构)筑物主体结构的角点、中点和承重墙上。
对于设置在建筑物上的工作基点应采用直径20mm的L形钢筋,测头垂直向上,并应牢固地设置在所选择建筑物的无裂损混凝上结构上。
地下管线的测点布设时尽可能利用检查井来进行布设,可以直接布设在检查井的管上,对于无法利用检查井的,有条件的地区在管线位置上方钻孔,孔深50~80cm,然后将预埋件放入,用水泥沙浆固定,并采取相应保护措施,布设在煤气、上水及其他重要管线井(如压力管井)的接头处和其它重要部位。
对于无法进行钻孔的管线,除利用检查井外,可采用间接测试法进行测定,直接布设在管线的上方,类似于地表测点。
3.4 监测实施方法3.4.1 地质情况观察及描述同《地铁1号线一期土建施工05合同段施工监测方案》3.4.1条。
3.4.2 地表及道路沉降监测地表及道路沉降测点现场应结合管线测点进行布置,原则上纵向每10m布置一测点,具体布置见附图。