1.1.3集合间的基本运算
- 格式:ppt
- 大小:959.00 KB
- 文档页数:27
§1.1.3 集合的基本运算(教案)一、并集(重点)定义:一般地,由所有属于集合A 或属于集合B 的所有元素所组成的集合,称为集合A 与集合B 的并集(union set ),记作A B (读作“A 并B ”), 其数学语言表示形式为:{|AB x x A =∈,或}.x B ∈注意1:两个集合求并集,实际上也是一种运算,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只看成一个元素)。
例子:{3,5,6,8},{4,5,7,8}A B ==,则{3,4,5,6,7,8}A B =,而不是{3,5,6,8,4,5,7,8}.A B = 用Venn 图表示两个集合间的“并”运算(求并集):与子集的联系:A AB ⊆,B A B ⊆性质:由并集的定义及韦氏图不难看出,并集具有以下性质: ○1A A A =(吸收律); ○2A ∅=A ; ○3A B B A =(交换律); ○4()()A B C A B C =(结合律)..例1、(1)设集合{1,2,3},{2,3,4,5}A B ==,求AB ; {1,2,3,4,5}(2)设集合{|35}A x x =-<≤,{26}B x =<≤,求AB . {|36}.x x -<≤二、交集(重点)、定义:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集(intersection set ),记作A B (读作“A 交B ”), 其数学语言表示形式为:{|,AB x x A =∈且}.x B ∈注意2:正如并集一样,两个集合的交集仍然是一个集合,所不同的是交集是由两个集合中的共同元素所组成的集合.也就是说,交集是由那些既属于集合A 又属于集合B 的所有元素组成的. 例子:{1,2,3,4,5},{2,4,5,8,9}A B ==,{2,4,5}.AB =用Venn 图表示两个集合间的“交”运算(求交集):A ∪B与子集的联系:AB A ⊆,A B B ⊆性质:由交集的定义及韦氏图不难看出,交集具有以下性质: ○1A A A =(吸收律); ○2A ∅=∅; ○3A B B A =(交换律); ○4()()A B C A B C =(结合律). 随堂练习1: 把例1中的“求AB ”改为“求A B ”重做{2,3};{|25}.x x <≤例2、(1)集合A={x|x 2+5x -6≤0},B={x|x 2+3x>0},求A ∪B 和A∩B . (2)集合A={x |x 是等腰三角形}, B={x |x 是直角三角形}, 求A ∩B, A ⋃B解:(1)∵A={x|x 2+5x -6≤0}={x|-6≤x≤1}, B={x|x 2+3x>0}={x|x<-3或x>0}.A ∪B=R .AB {|63x x=-≤<-或01}.x <≤(2)A ∩B={x |x 是等腰三角形}∩{x |x 是直角三角形}={x |x 是等腰直角三角形},A ∪B={x |x 是等腰三角形}∪{x |x 是直角三角形}={x |x 是等腰三角形或直角三角形} 三、补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(universe set),通常记作.U补集:对于一个集合A,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementanry set),简称为集合A 的补集,记作U A ð,读作全集U 中集合A 的补集. 其数学语言表示形式为:{|,U A x x U =∈ð且}x A ∉,例子:历史老师? 注意3:(1)全集并不是一成不变的,它是依据所研究问题的来加以选择的。