【高等数学 东南大学】习题课(23)
- 格式:pptx
- 大小:1.13 MB
- 文档页数:22
第 1 页东 南 大 学 考 试 卷( A 卷)课程名称 高等数学(非电) 考试学期 04-05-2得分适用专业非电类各专业考试形式 闭卷 考试时间长度 150分钟一. 填空题(每小题4分,共20分) 1.函数()⎥⎥⎦⎤⎢⎢⎣⎡+=x x f 11的间断点 是第 类间断点.2. 已知()x F 是()x f 的一个原函数,且()()21xx xF x f +=,则()=x f . 3.()()=-+⎰--x x x x xd e e1112005.4. 设()t u u x f xtd d 10sin 14⎰⎰⎪⎭⎫ ⎝⎛+=,则()=''0f . 5. 设函数()()01d 23>+=⎰x tt x f x x,则当=x 时,()x f 取得最大值.二. 单项选择题(每小题4分,共16分)1. 设当0x x →时,()()x x βα,都是无穷小()()0≠x β,则当0x x →时,下列表达式中不一定为无穷小的是[ ] (A)()()x x βα2 (B)()()xx x 1sin22βα+ (C)()()()x x βα⋅+1ln(D)()()x x βα+2. 曲线()()211arctane 212+-++=x x x x y x的渐近线共有[ ] (A) 1条 (B) 2条 (C) 3条 (D) 4条第 2 页3. 下列级数中收敛的级数是[ ] (A)∑∞=121n n(B) ∑∞=⎪⎭⎫⎝⎛+111ln n n (C) ()nn nn n ⎪⎭⎫⎝⎛+-∑∞=111(D)∑⎰∞=+1104d 1n n x xx4. 下列结论正确的是[ ](A) 若[][]b a d c ,,⊆,则必有()()⎰⎰≤badcx x f x x f d d .(B) 若()x f 在区间[]b a ,上可积,则()x f 在区间[]b a ,上可积. (C) 若()x f 是周期为T 的连续函数,则对任意常数a 都有()()⎰⎰+=TTa ax x f x x f 0d d .(D) 若()x f 在区间[]b a ,上可积,则()x f 在[]b a ,内必有原函数. 三. (每小题7分,共35分)1. ()()3020d cos ln limx t t t xx ⎰+→. 2. 判断级数∑∞=-1354n n n n的敛散性. 3. x x x x d cos cos 042⎰-π. 4. ⎰∞+13d arctan x x x .5. 求初值问题 ()()⎪⎩⎪⎨⎧-='=+=+''210,10sin y y xx y y 的解.四.(8分) 在区间[]e ,1上求一点ξ,使得图中所示阴影部分绕x 轴旋转所得旋转体的体积最小五.(7分) 设b a <<0,求证()ba ab a b +->2ln. xln第 3 页六.(7分) 设当1->x 时,可微函数()x f 满足条件()()()0d 110=+-+'⎰xt t f x x f x f且()10=f ,试证:当0≥x 时,有 ()1e≤≤-x f x成立.七.(7分) 设()x f 在区间[]1,1-上连续,且()()0d tan d 1111==⎰⎰--x x x f x x f ,证明在区间()1,1-内至少存在互异的两点21,ξξ,使()()021==ξξf f .04-05-2高等数学(非电)期末试卷答案及评分标准 05.1.14一. 填空题(每小题4分,共20分) 1. 0,一; 2.21x Cx +; 3. 1e 4-; 4. 1; 5. 343. 二. 单项选择题(每小题4分,共16分) 1. A; 2.B; 3. D; 4.C. 三. (每小题7分,共35分) 1. 原式=()分分分261)2(1cos lim 3131)3(3cos ln lim 20220 =-+=+→→x x x x x x x2. 分515453153154lim 354354lim lim11111<=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⋅=--=+∞→+++∞→+∞→n nn n n n n n n n nn n a a由比值法知原级数收敛. 分2 3. 原式=()()分分分222d cos sin 3d cos sin 220πππππ==⎰⎰x x x x x x第 4 页4. 原式()分31d arctan 2112212⎥⎦⎤⎢⎣⎡+--=⎰∞+∞+x x x xx=()分分2212d 111218122 =⎪⎭⎫⎝⎛+-+⎰∞+x x x π5. 对应的齐次方程的通解为 分2sin cos 21 xC x C y +=非齐次方程x y y =+''的一个特解为()分11 x y =,非齐次方程x y y sin =+''的一个特解为()分1cos 22 x xy -=,原方程的通解为x xx x C x C y cos 2sin cos 21-++=)1(分 ,利用初值条件可求得 1,121-==C C , 原问题的解为分2cos 2sin cos xxx x x y -+-=四.(8分)()()()()()()()()()[]()()()()()0e ),1(e2,01ln 223ln 4ln 2e 2ln 2ln 2ln 2ln 2)d ln 1(2d ln 212122e212e212>⎪⎪⎭⎫ ⎝⎛''==-='-+-=-++--+-=-+=⎰⎰V t t t V t t t t t txx x x x x x x x x x x x x t V tttt 且分得分令分分 πππππ因此21e=t 是()t V 在[]e ,1上的唯一的极小值点,再由问题的实际意义知必存在最小体积,故21e =ξ是最小值点.分1五.(7分) 设t a b =,原不等式等价于()1,112ln >+->t t t t , 即等价于 ()()()分31,012ln 1 >>--+=t t t t t f()()()分101,11ln ,01 ='-+='=f tt t f f第 5 页()1,0112≥≥-=''t tt t f ,且等号当且仅当1=t 时成立 分1因此()t f '单增,()()1,01>='>'t f t f 从而()t f 单增,()()1,01>=>t f t f ,原不等式得证. 分2六.(7分)由题设知()10-='f , 分1 所给方程可变形()()()()()⎰=-++'+xt t f x f x x f x 00d 11两端对x 求导并整理得 ()()()()分1021 ='++''+x f x x f x这是一个可降阶的二阶微分方程,可用分离变量法求得()分21e xC x f x+='-由于()10-='f ,得()()x f xx f C x,01e ,1<+-='-=-单减,而(),10=f 所以当0≥x 时, ())1(1分 ≤x f ,对()01e <+-='-xx f x在[]x ,0上进行积分()()分2e d e 1d 1e 00-0 xx t xtt t t f x f --=-≥+-=⎰⎰七.(7分) 记()()⎰-=xtt f x F 1d ,则()x F 在[]1,1-上可导,且()()分2011 ==-F F若()x F 在()1,1-内无零点,不妨设()()1,1,0-∈>x x F()()()()0d sec d sec tan )(d tan d tan 0112112111111<-=-===⎰⎰⎰⎰-----x x x F x x x F x x F x F x x x x f 此矛盾说明()x F 在()1,1-内至少存在一个零点分2,0 x对()x F 在[][]1,,,100x x -上分别使用Rolle 定理知存在()()1,,,10201x x ∈-∈ξξ,使得()(),021='='ξξF F 即 ()()分3021 ==ξξf f第 6 页东 南 大 学 考 试 卷(A 卷)课程名称 工科数学分析 考试学期 04-05-2(期末) 得分适用专业 上课各专业 考试形式 闭考试时间长度 150分钟第 7 页4.下列结论正确的是 [ ]一.填空题(每小题4分,共20分) 1.设121-=x y ,则)10(y (1)= 。
共 5 页 第 1 页东 南 大 学 考 试 卷( A 卷)一. 填空题1.设一平面过原点及点()6,3,2-,且与平面428x y z -+=垂直,则此平面的方程是 .2. 幂级数()()1112ln 1nn nn x n ∞=-+∑的收敛域为 . 3. 交换积分次序:()()122001d ,d d ,d y yy f x y x y f x y x -+=⎰⎰⎰⎰.4. 设曲线C 为圆周221x y +=,则曲线积分()223d Cxy x s +-=⎰ .二. 单项选择题1.曲面24e 3zxy z +-=在点()1,2,0处的法线与直线12112x y z --==-的夹角为 [ ] (A) 4π (B) 3π (C) 2π(D) 0 2.设区域D 由直线,y x y x ==-和1x =围成,1D 是D 位于第一象限的部分,则[ ] (A )()()1sin d d 2d d DD xy y xy x y xy x y +=⎰⎰⎰⎰(B )()()()1sin d d 2sin d d DD xy y xy x y y xy x y +=⎰⎰⎰⎰(C )()()()()1sin d d 2sin d d DD xy y xy x y xy y xy x y +=+⎰⎰⎰⎰(D )()()sin d d 0Dxy y xy x y +=⎰⎰3.设∑为上半球面z =,则曲面积分∑的值为 [ ](A )4π (B )165π (C )163π (D )83π共 5 页 第 2 页4.二元函数(),f x y 在点()00,x y 处的两个偏导数()()0000,,,x y f x y f x y 存在是函数f 在该点可微的 [ ] (A ) 充分而非必要条件 (B )必要而非充分条件 (C )充分必要条件 (D )既非充分也非必要条件 三. (本题共5小题,每小题7分,满分3 5分)1.设(),z z x y =是由方程()2223x z f y z -=-所确定的隐函数,其中f 可微,求23z zyx x y∂∂+∂∂ .2.将函数()()2ln 2f x x x =+-展成2x -的幂级数。
第1章 复数与复变函数1.1 复数及复平面1-1若1||1,n nz z z ω==+(n 是正整数),则(). (A )Re()0ω=(B )Im()0ω=(C )arg()0ω=(D )arg()πω=解由||1z =知1z z=,因此1n n n n z z z z+=+为实数,故Im()0ω=. 选(B )||1z =时n z =1/.n n z z =1-23311()()22n n--+=(). (A )(1)2n -(B )1(1)2n --(C )2 (D )2-解2i π3e =2i π3e =知,等式中两项皆为1. 选(C )1-3i |(1e )|n θ+=().(A )2cos2n nθ(B )2sin2n nθ(C )/222(1cos )n n θ+(D )/222(1sin )n n θ+解i 222|1e |(1cos )sin 2(1cos )θθθθ+=++=+故i /22|(1e )|2(1cos ).n nn θθ+=+选(C )本题容易错选(A)项,因为2(1+2cos )4cos 2θθ=得i |1e |θ+=2cos .2θ错在cos 2θ应加上绝对值.1-442max{|i |||1}z z z +≤=(). (A(BC(D )2 解由4242|i |||||2,z z z z +≤+≤而当i4e z π=时,πi4i π2422e 1,i ie 1,|i |2z z z z ==-==-+=,故最大值为2.选(D )用不等式确定最大值是常用方法. 1-5对任意复数12,z z ,证明不等式121212||||||||||||.z z z z z z -≤±≤+证1121212*********|||()|||||||||||||||||z z z z z z z z z z z z z z z -=+-≤+-=+=+-≤++故1212||||||z z z z -≤+,同理2112||||||z z z z -≤+ 即121212||||||||z z z z z z -+≤-≤+ 也就是1212||||||||.z z z z -≤+证2(代数法)设i (1,2)k k k z x y k =+= 则只要证222121122||||2||||||z z z z z z +≤++即只要证1212x x y y +≤1) 只要证2222212121122()()()x x y y x y x y +≤++ 此不等式等价于22221221112220x y x y x y x y +-≥由于,k k x y 皆是实数,上式左边是完全平方式,故此不等式成立,也就是1212||||||z z z z +≤+成立,以下同证1.证3(三角法).设12i i 1122e ,e ,z r z r θθ==则2221211221122||(cos cos )(sin sin )z z r r r r θθθθ+=+++222212*********cos()2r r r r r r r r θθ=+-≤+ 21212()(||||)r r z z =+=+即1212||||||z z z z +≤+成立,以下同证1.1-6 当1||≤z 时,求||α+nz 的最大与最小值,n 是正整数,a 是复常数. 解1(代数法).由1-5题知.||1||||||||||||αα+≤+≤+≤-a z z z z n n n我们知道,当1||=nz ,且向量n z 与α夹角为0°时右边不等式等号成立.故||α+nz 的最大值是.||1α+对左边不等式,要分情况讨论.(1)若1||>α,则.1||||||||-≥-≥+αααnnz z 等号当,1||=z 且nz 与α方向相反时成立.这时最小值是.1||-α(2)若1||≤α,则由0||≥+αn z ,当α-=nz 时等号成立,最小值为0.总之,不论α为何复数,|1|+nz 的最大值是||1α+;而当1||>α时,最小值为1||-α.当1||≤α时,最小值为0.解2 (几何法).我们仅就1||>α加以证明.由1||≤z 知1||≤nz 。
东南大学高数(上)至年期末考试(附答案)作者:日期:x 3.一、单项选择题 1.设函数03〜10级高等数学 2003级高等数学( (每小题 4分,共16分) y (x )由方程1"dt (A )(上册)期末试卷A )(上)期末试卷x 确定,则 (C)e-1(A)e 1;(B)1-e;(D)2e .(A ) y (C ) y * 二、填空题 Acos2x;Ax cos2x Bxsin2x;(B) (D)1. x m 0(e x2.(每小题 1X)x 2arcta n— x 3分,共18 分)e f 仏x),其中f 可导,则dydx .1 、八 一、 x sin-, 设 f(x) x0, Axcos2x; Asi n2x若导函数f (X )在x 0处连续,则 的取值范围是4.若 f (x)x 2t 4_ 3 dt,则f (x)的单增区间为,单减区间为5•曲线y xe X 的拐点是6.微分方程 y 4y 4y 0的通解为y三、计算下列各题(每小题 6分,共36 分)dx计算积分一dx一2 cosx5.设f(x)连续,在x 0处可导,且f (0)x 0(t t f(u)du)dt0, f (0) 4,求 lim —一 ------------x 0x sinx1计算积分arcta n x . —dxx 2)2 (1.计算积分5COS x寸223.计算积分x 3e x dx4.6.求微分方程2xydy (x22y2)dx 0的通解四.(8分)求微分方程3y 2y 2xe x满足条件y0的特解xo 0,y五.(8分)设平面图形x2y22x与y x所确定,试求D绕直线x 2旋转一周所生成的旋转体的体积。
x5t 2 (7分)设质量均匀分布的平面薄板由曲线 C::y t2a[a, a],使得 a f (x)dx七.(7分)设函数f (X )在[a,a ]上有连续的二阶导数,且 f (0) 0,证明:至少存在一t与X 轴所围成,试求其质量m2t1. 2. 3. 4. 5. .填空题 函数f 已知F 设函数2004级高等数学(A )(上)期末试卷(每小题4分,共20分)1X ——1—的间断点 X 是第 类间断点.x 是f X 的一个原函数,且f X 0,则 f X 1 X 2X 2005 e x e x dxSint/—U 4du dt ,则 f 0 2xdt 。
满足条件满足条件 12a > 时,级数-+33n n acos的取值范围是的取值范围是 12a > .arctann应满足的条件是 0p > 。
处的泰勒级数及收敛域为处的泰勒级数及收敛域为 03ln ,(,)!n n n x x n ¥=Î-¥+¥å 。
的和为的和为11sin - 。
的和函数及收敛域为 111121ln ,(,)x x x +Î-- 。
的收敛域为 3122[,)-- 。
处条件收敛,则该幂级数的收敛半径为处条件收敛,则该幂级数的收敛半径为 4R = 。
)的和为 22ln e + 。
. 8 B)(v u ln nn( C ) (D ) n p A A 1+u 1+uD u D []naC D n u D(A )01p <£(B )12p <<(C )2p ³(D )012或p p <£³9、设111110,(1,2,),lim 1,(1)()且则级数n n n n n n n n u n u u u ¥+®¥=+¹==-+å( C ). (A )发散,(B )绝对收敛,(C )条件收敛,(D )敛散性不能判定)敛散性不能判定 10、正项级数1n n u ¥=å收敛是级数21n n u ¥=å收敛的( A ) (A )充分条件)充分条件 (B )必要条件)必要条件 (C )充要条件)充要条件 (D )非必要非充分条件三、常数项级数敛散性1、讨论级数å¥=-+-1])3(4[4)1(n nn nnn 的敛散性,若收敛是绝对收敛还是的敛散性,若收敛是绝对收敛还是条件条件收敛?收敛? 2、常数p 取什么值时,级数å¥=-1ln )1(n pnn n是(1)发散;(2)条件收敛;(3)绝对收敛的?)绝对收敛的? 3、讨论级数)0()1()1(1>+-å¥=a a n a n nn的绝对收敛与条件收敛。
东 南 大 学 考 试 卷 ( A 卷)课 程 名 称 高等数学 A 期末 考试学期 06 - 0 7 - 3 得分 适 用 专 业 选学 A 的各专业 考试形 式 闭卷 考试时间长度 150 分钟(10330)1.已知曲面z xy 上一点M0 ( x 0 , y 0 , z 0 ) 处的法线垂直于平面x 3y z 9 0 ,则x 0, y 0,z 0;22 交换积分次序 1d xf ( x , y ) d y ;3 设r x , y , z , r ,则 d i v ; r 2 2C5.设幂级数 a n x n 的收敛半径为3 ,则幂级数 na n (x 1) n 1 的收敛区间为 ;n 0 n 16 设 f ( x ) e x,则 f ( 2 n )( 0 ) ;7. 设 f ( x ) ,其以2 为周期的F o u rie r 级数的和函数记为S ( x ) , 则1 x , 0 xS ( 3 ) ;8.设正向圆周C : z 1 ,则 d z ;C9.函数 f ( z ) z c o s 的孤立奇点z 0 的类型是 (如为极点, 应指明是几级极z 点), R e s f ( z ) , 0 ; 10 使二重积分 4 4 x2y2d 的值达到最大的平面闭区域D 为 .D( 2 8 16)n4 22 2 2x y z 0 , x 0c o s z 1 1 xzr3132n 1判断级数 n n 的敛散性.4 设正向闭曲线C : x y 1 ,则曲线积分 x y d x xy d y ;.求幂级数 x n 1的收敛域与和函数.n 1将函数 f ( x ) x x 在( 1, 1] 上展开为以 2 为周期的F o u rie r 级数. 14 将函数 f ( z ) z 4 z 3在圆环域 1 3 内展开为L a u r e n t 级数.15(9)验证表达式 (c o s x 2 xy 1) d x ( x2y23) d y 为某一函数的全微分, 并求其原函数.16( 9 )利用留数计算反常积分0 4d x .17(10)已知流体的流速函数 v ( x , y , z ) y 3 z 3 , z 3 x 3 , 2 z 3 ,求该2 2 2 218( 8 ) 设函数 f C ( [ 0 , 1] ) ,且 0 f ( x ) 1 ,利用二重积分证明不等11f ( x ) 0f ( x ) d x1 f ( x ) 1 0f ( x ) d xz 式: d x 12 n n n 111 x12流体流过由上半球面z 1与锥面 z 所围立体表面的外侧的流量.06 - 07 - 3 AA(10330)1 、x 03 , y 01 , z 031 1 x 02 、 1 d xf ( x , y ) d y 1d y1f ( x , y ) d x 0d y1 y1 yf ( x , y ) d xr 2 2 ( 2 n )( 2 n ) !r n !7、S ( 3 ) 8、 d z 2 i 9、R e s f ( z ) , 0 10、 ( x , y ) x y 12 C z2 4 ( 2 8 16 )n na 3 n,b 4 2 4 n b n n 1 n 1 4 2n12 、记 a n, n 1lim n 1 2 ,R ,收敛区间为 , ,在收敛区间的 na n 2 2 2两端点处, 级数都发散, 故收敛域为 , 2 2(2)2 n n 1 1 2x 21 n1 n 1 n 12 n 1 n 1 1 2x 2P ( t )tn1 ,P (2 x ) ln (1 2 x ) 2 x ,S ( x )( 2 9 18 )ln (1 2 x ) (3 )1 2 x 213 、 a 0 2 0x d x 1 , a n 2 0x c o s n x d x 2 ( ( 1) n 1) ,(1+3)n 1b n2 0x s i n n x d x , n 1, 2 , (3 )2 2 c o s ( 2 n 1) x s in n x (2 )14 、2 z 63 1 1z 3C1 c o s z 12 121 4 12 ( 1)n 1f ( x ) , 1 x 1 2 n 1 ( 2 n 1) n 1 n 1 , x 1a 1 1 11 121 1 1 z n12 ( 1)n 11 t3 3 1 11 x 1( n )2 nn1 y222n 1nz24 z 3 2 z 3 z 1 2 z 1 6 zn 0 n 0 S ( x )x n 1 x ( 2 x ) n ( 2 x ) n 1P ( 2 x ) (3 )11、记 a n n n n n,则 li m n1 ,而 b n 收敛, 故 n n 收敛.(8 )3 、d i v 3 04 、 x y d x xy d y 05 、( 2 , 4 )6 、 f ( 0 )1 y92 22x ,所验证的表达式确是某一函数的全微分.x y(3采用凑微分法2 2 2 2= d ( s in x x x 2 y y 3 3 y ) d u ,故原函数为u s i n x x x 2 y y 3 3 y C .3 39110 1 x4d x211, e 4 R e s1 z4, e 4 (2+2)11i2 2 ( i 1) 2 2 (1 i ) 2 2 410V d S( y3 z3 ) d y d z( z3 x3 ) d z d x 2 z3 d x d y(2)S S6 z2 d v 6d4 c o s 2 s in d4 d 9 (3+3+2)8所证不等式等价于不等式:d x(1 f( x ) ) d xf( x ) d x,(2)而0 1 f( x ) 0 0 1 f( x ) 0d y (1 f( x ) ) d x d1(f(x)f(y))(1f(x)f(y))4f(x)f(y)2D(1 f( x) ) (1 f( y ) )12122dd(f(x)f(y))d f(x)d x其中D [ 0 , 1] [ 0 , 1] (4)1 f( x )1 f( x ) 1 1 f( x ) 11f(y)11f(x)f(x)f(y)f(y)f(x)f(y)D(1 f( x) ) (1 f( y ) ) 2D( f( x) f( y ) ) (1 f( x) ) (1 f( y ) ) 1 1(f(x)f(y))(1f(x)f(y))(f(x)f(y))D(1 f( x) ) (1 f( y ) )111 f( x ) 1 1i1i32 2 c o sd(2)0 1 f( y ) 0 2D1 f( x) 1 f( y )d x (1 f( x ) ) d x d x (1 f( y ) ) d yi i (2+2)+(1)(c o s x 2 xy 1) d x( x y3) d y (c o s x 1) d x( y3) d y 2 xy d x x d y( x y 3 ) (c o s x 2 xy1)。