6二次根式及其运算
- 格式:ppt
- 大小:295.00 KB
- 文档页数:20
二次根式的化简与运算规则二次根式是指具有形如√a的数学表达式,其中a是一个非负实数。
化简与运算二次根式是数学中的重要概念,本文将详细讨论二次根式的化简与运算规则。
一、二次根式的化简1. 化简含有相同因数的二次根式当二次根式中的被开方数具有相同的因数时,可以利用同底数幂的乘法规则将二次根式合并为一个较简单的表达式。
例如:√(4x^2) = 2x√(9y^6) = 3y^32. 化简含有互质因数的二次根式当二次根式中的被开方数的因数互质时,我们无法简化二次根式,只能保留原始形式。
例如:√(2x) 无法化简,保留原始形式3. 化简分数形式的二次根式当二次根式中的被开方数为分数时,可以将分子和分母分别进行开平方操作,然后将得到的结果进行约分。
例如:√(4/9) = 2/3二、二次根式的运算规则1. 加减法规则当两个二次根式相加或相减时,要求它们的被开方数和指数相同。
可以直接对被开方数进行加减操作,同时保留相同的根号。
例如:√5 + √5 = 2√52√3 - √3 = √32. 乘法规则当两个二次根式相乘时,我们可以利用指数运算规则对被开方数进行乘法操作,再将结果开平方。
例如:√2 × √3 = √(2 × 3) = √63. 除法规则当两个二次根式相除时,我们可以利用指数运算规则对被开方数进行除法操作,再将结果开平方。
例如:√8 / √2 = √(8 / 2) = √4 = 2三、例题解析1. 化简二次根式√(18x^2y^4z^6)解:√(18x^2y^4z^6) = √(9 × 2 × (xy^2z^3)^2)= 3xy^2z^3√22. 计算二次根式的和:√2 + √8解:√2 + √8 = √2 + √(4 × 2)= √2 + 2√2= 3√23. 计算二次根式的积:(2√6)(3√3)解:(2√6)(3√3) = 6√18= 6√(9 × 2)= 18√2四、总结二次根式的化简与运算规则是数学中的重要内容。
二次根式的运算与简化规则二次根式是高中数学中的重要内容之一,它与代数、几何等学科密切相关。
在学习二次根式的过程中,我们需要掌握其运算与简化规则,以便更好地应用于解题和实际问题中。
首先,我们来了解一下二次根式的定义。
二次根式是指形如√a的表达式,其中a是一个非负实数。
在二次根式中,根号下的数称为被开方数。
我们常见的二次根式有平方根、立方根等。
在进行二次根式的运算时,我们需要掌握以下几个基本规则:1. 同底数的二次根式相加减:当两个二次根式的底数相同时,我们可以直接对它们的系数进行加减运算,而保持底数不变。
例如,√2 + 2√2 = 3√2。
2. 二次根式的乘法:当两个二次根式相乘时,我们可以将它们的底数相乘,并将系数相乘。
例如,√3 × √5 = √15。
3. 二次根式的除法:当两个二次根式相除时,我们可以将它们的底数相除,并将系数相除。
例如,√6 ÷ √2 = √3。
4. 二次根式的乘方:当一个二次根式进行乘方运算时,我们可以将其底数进行乘方,并将系数进行乘方。
例如,(2√2)² = 4 × (√2)² = 4 × 2 = 8。
了解了二次根式的运算规则后,我们还需要学会简化二次根式。
简化二次根式是指将一个二次根式化简成最简形式,即使被开方数不含有平方数因子。
简化二次根式有以下几个常用的规则:1. 提取公因数:当一个二次根式的被开方数可以分解为两个因子的乘积时,我们可以将其中一个因子提取出来,成为一个因子的二次根式。
例如,√12 = √(4 × 3) = 2√3。
2. 合并同类项:当一个二次根式中含有相同底数的项时,我们可以将它们合并为一个项,并将系数相加。
例如,3√2 + 2√2 = 5√2。
3. 化简平方数:当一个二次根式的被开方数是一个平方数时,我们可以直接将其化简为该平方数的值。
例如,√9 = 3。
通过掌握二次根式的运算与简化规则,我们可以更加灵活地应用于解题和实际问题中。
根式及其运算二次根式的概念、性质以及运算法则是根式运算的基础,在进行根式运算时,往往用到绝对值、整式、分式、因式分解,以及配方法、换元法、待定系数法等有关知识与解题方法,也就是说,根式的运算,可以培养同学们综合运用各种知识和方法的能力.下面先复习有关基础知识,然后进行例题分析.二次根式的性质:二次根式的运算法则:设a,b,c,d,m是有理数,且m不是完全平方数,则当且仅当两个含有二次根式的代数式相乘时,如果它们的积不含有二次根式,则这两个代数式互为有理化因式.例1 化简:法是配方去掉根号,所以因为x-2<0,1-x<0,所以原式=2-x+x-1=1.=a-b-a+b-a+b=b-a.说明若根式中的字母给出了取值范围,则应在这个范围内进行化简;若没有给出取值范围,则应在字母允许取值的范围内进行化简.例2 化简:分析两个题分母均含有根式,若按照通常的做法是先分母有理化,这样计算化简较繁.我们可以先将分母因式分解后,再化简.解法1 配方法.配方法是要设法找到两个正数x,y(x>y),使x+y=a,xy=b,则解法2 待定系数法.例4 化简:(2)这是多重复合二次根式,可从里往外逐步化简.分析被开方数中含有三个不同的根式,且系数都是2,可以看成解设两边平方得②×③×④得(xyz)2=5×7×35=352.因为x,y,z均非负,所以xyz≥0,所以xyz=35.⑤⑤÷②,有z=7.同理有x=5,y=1.所求x,y,z显然满足①,所以解设原式=x,则解法1 利用(a+b)3=a3+b3+3ab(a+b)来解.将方程左端因式分解有(x-4)(x2+4x+10)=0.因为x2+4x+10=(x+2)2+6>0,所以x-4=0,x=4.所以原式=4.解法2说明解法2看似简单,但对于三次根号下的拼凑是很难的,因此本题解法1是一般常用的解法.例8 化简:解(1)本小题也可用换元法来化简.解用换元法.解直接代入较繁,观察x,y的特征有所以3x2-5xy+3y2=3x2+6xy+3y2-11xy=3(x+y)2-11xy=3×102-11×1=289.例11 求分析本题的关键在于将根号里的乘积化简,不可一味蛮算.解设根号内的式子为A,注意到1=(2-1),及平方差公式(a+b)(a-b)=a2-b2,所以A=(2-1)(2+1)(22+1)(24+1)…(2256+1)+1=(22-1)(22+1)(24+1)(28+1)…(2256+1)+1=(24-1)(24+1)(28+1)(216+1)…(2256+1)+1=…=(2256-1)(2256+1)+1=22×256-1+1=22×256,的值.分析与解先计算几层,看一看有无规律可循.解用构造方程的方法来解.设原式为x,利用根号的层数是无限的特点,有两边平方得两边再平方得x4-4x2+4=2+x,所以x4-4x2-x+2=0.观察发现,当x=-1,2时,方程成立.因此,方程左端必有因式(x +1)(x-2),将方程左端因式分解,有(x+1)(x-2)(x2+x-1)=0.解因为练习1.化简:2.计算:3.计算:。
第06讲二次根式的混合运算与化简求值一.解答题1.(2023秋•新蔡县期中)计算:;【分析】(1)先计算二次根式的除法,再算减法,即可解答;【解答】解:(1)=3﹣2+=3﹣2+2=3;2.(2023秋•和平区校级期中)计算:(1)()﹣1+(1﹣)0+|﹣2|;(2)÷﹣×+.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先计算二次根式的乘除法,再算加减,即可解答.【解答】解:(1)()﹣1+(1﹣)0+|﹣2|=2+1+2﹣=5﹣;(2)÷﹣×+=﹣+4=﹣+4=4﹣2+4=2+4.3.(2023秋•金塔县期中)计算:(1);(2);(3);(4).【分析】(1)把各个二次根式化成最简二次根式,然后合并同类二次根式即可;(2)先把各个二次根式化成最简二次根式,然后利用乘法分配律进行计算即可;(3)先根据二次根式的乘法法则进行计算,再把二次根式化成最简二次根式,进行合并即可;(4)先根据二次根式的除法法则进行计算,再把二次根式化成最简二次根式,进行合并即可;【解答】解:(1)原式==;(2)原式==9+1=10;(3)原式===;(4)原式===4.(2023秋•太原期中)计算下列各题:(1);(2);(3);(4).【分析】(1)先化简,然后合并同二次根式即可;(2)先算乘法,再化简即可;(3)根据完全平方公式将式子展开,然后合并同类二次根式和同类项即可;(4)先化简,然后合并同二次根式即可.【解答】解:(1)=3﹣5+4=2;(2)===;(3)=20﹣4+1+4=21;(4)=﹣3+5=.5.(2023秋•郓城县期中)计算:(1)﹣+;(2)|﹣1|+﹣;(3)+×﹣|2﹣|;(4)﹣(+1)2﹣(+3)×(﹣3).【分析】(1)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答;(3)先化简各式,然后再进行计算即可解答;(4)利用完全平方公式,平方差公式,进行计算即可解答.【解答】解:(1)﹣+=3﹣2+=2;(2)|﹣1|+﹣=﹣1+3﹣2=;(3)+×﹣|2﹣|=2+5×﹣(﹣2)=2+2﹣+2=3+2;(4)﹣(﹣(+3)×(﹣3)=﹣(4+2)﹣(5﹣9)=﹣4﹣2+4=﹣2.6.(2023秋•太和区期中)计算:(1);(2);(3);(4);(5);(6).【分析】(1)先计算二次根式的乘法,再算加减,即可解答;(2)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答;(3)先计算二次根式的乘除法,再算加减,即可解答;(4)先计算二次根式的乘除法,零指数幂,再算加减,即可解答;(5)先化简各式,然后再进行计算即可解答;(6)利用完全平方公式,平方差公式进行计算,即可解答.【解答】解:(1)=﹣5=6﹣5=1;(2)=+3﹣3=;(3)=(﹣)÷=÷﹣÷=﹣=2﹣;(4)=+1﹣=+1﹣4=﹣3;(5)=﹣3+4﹣+﹣1=0;(6)=3﹣2+2﹣(6﹣1)=3﹣2+2﹣5=﹣2.7.(2022秋•青羊区校级期末)计算:(1);(2)|﹣2|+(2023+π)0+﹣(﹣)﹣2.【分析】(1)先计算二次根式的乘法,再算加减,即可解答;(2)先计算二次根式的乘除法,再算加减,即可解答.【解答】解:(1)=2+﹣3+=3﹣2;(2)|﹣2|+(2023+π)0+﹣(﹣)﹣2=2﹣+1+﹣4=2﹣+1+3﹣4=2﹣.8.(2023秋•锦江区校级期中)计算:(1);(2).【分析】(1)先化简各式,然后再进行计算即可解答;(2)利用平方差公式,完全平方公式进行计算,即可解答.【解答】解:(1)=1+|5﹣5|﹣=1+5﹣5﹣3=5﹣7;(2)=3﹣4+4﹣(3﹣2)=3﹣4+4﹣1=6﹣4.9.(2023秋•汝阳县期中)计算:(1)5;(2)()2﹣(2+3)2024(2﹣3)2023.【分析】(1)先计算二次根式的乘法,再算加减,即可解答;(2)先计算二次根式的乘法,再算加减,即可解答.【解答】解:(1)5=+﹣×﹣×2=+﹣5﹣2=﹣5;(2)()2﹣(2+3)2024(2﹣3)2023.=2﹣2+1﹣[(2+3)2023(2﹣3)2023]×(2+3)=2﹣2+1﹣[(2+3)(2﹣3)]2023×(2+3)=2﹣2+1﹣(8﹣9)2023×(2+3)=2﹣2+1﹣(﹣1)2023×(2+3)=2﹣2+1﹣(﹣1)×(2+3)=2﹣2+1+2+3=6.10.(2023秋•皇姑区校级期中)计算:(1)﹣(+1)2+(+1)(﹣1).(2)﹣(﹣1)2023+(π﹣2021)0﹣|5﹣|﹣()﹣2;【分析】(1)利用平方差公式,完全平方公式进行计算,即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)﹣(+1)2+(+1)(﹣1)=3﹣(2+2+1)+3﹣1=3﹣2﹣2﹣1+3﹣1=﹣1;(2)﹣(﹣1)2023+(π﹣2021)0﹣|5﹣|﹣()﹣2=﹣(﹣1)+1﹣(﹣5)﹣4=1+1﹣3+5﹣4=3﹣3.11.(2023秋•潞城区校级期中)阅读与思考.下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.双层二次根式的化简二次根式的化简是一个难点,稍不留心就会出错,我在上网还发现了一类带双层根号的式子,就是根号内又带根号的式子、它们能通过完全平方公式及二次根式的性质消掉外面的一层根号.例如:要化简,可以先思考(根据1)..通过计算,我还发现设(其中m,n,a,b都为正整数),则有a+b.∴a=m2+2n2,b=2mn.这样,我就找到了一种把部分化简的方法.任务:(1)文中的“根据1”是完全平方式,b=2mn.(2)根据上面的思路,化简:.(3)已知,其中a,x,y均为正整数,求a的值.【分析】(1)根据完全平方公式进行解答即可;(2)根据题干中提供的信息,进行变形计算即可;(3)根据,得出a=x2+3y2,4=2xy,根据x,y为正整数,求出x=2,y=1或x=1,y=2,最后求出a的值即可.【解答】解:(1)的根据是完全平方公式;∵,∴a=m2+2n2,b=2mn.故答案为:完全平方公式;2mn.(2)===.(3)由题意得,∴a=x2+3y2,4=2xy,∵x,y为正整数,∴x=2,y=1或x=1,y=2,∴a=22+3×12=7或a=12+3×22=13.12.(2023秋•龙泉驿区期中)已知x=,y=.(1)求x2+y2+xy的值;(2)若x的小数部分是m,y的小数部分是n,求(m+n)2021﹣的值.【分析】(1)先利用分母有理化化简x和y,从而求出x+y和xy的值,然后再利用完全平方公式进行计算,即可解答;(2)利用(1)的结论可得:m=2﹣,n=﹣1,然后代入式子中进行计算,即可解答.【解答】解:(1)∵x===2﹣,y===2+,∴x+y=2﹣+2+=4,xy=(2﹣)(2+)=4﹣3=1,∴x2+y2+xy=(x+y)2﹣xy=42﹣1=16﹣1=15;(2)∵1<<2,∴﹣2<﹣<﹣1,∴0<2﹣<1,∴2﹣的小数部分是2﹣,∴m=2﹣,∵1<<2,∴3<2+<4,∴2+的小数部分=2+﹣3=﹣1,∴n=﹣1,∴(m+n)2021﹣=(2﹣+﹣1)2021﹣(n﹣m)=12021﹣[﹣1﹣(2﹣)]=1﹣(﹣1﹣2+)=1﹣+1+2﹣=4﹣2.13.(2023秋•双流区校级期中)阅读下列材料,然后回答问题.在进行二次根式运算时,我们有时会碰上这样的式子,其实我们还可以将其进一步化简:﹣1,以上这种化简的步骤叫作分母有理化.(1)化简:;(2)已知的整数部分为a,小数部分为b,求a2+b2的值.(3)计算:+++…++.【分析】(1)利用分母有理化进行计算,即可解答;(2)先利用分母有理化进行化简,然后再估算出的值的范围,从而估算出2+的值的范围,进而可求出a,b的值,最后代入式子中进行计算,即可解答;(3)先利用分母有理化化简各式,然后再进行计算即可解答.【解答】解:(1)===﹣,故答案为:﹣;(2)===2+,∵1<3<4,∴1<<2,∴3<2+<4,∴2+的整数部分是3,小数部分=2+﹣3=﹣1,∴a=3,b=﹣1,∴a2+b2=32+(﹣1)2=9+3﹣2+1=13﹣2;(3)+++…++=+++…++=﹣1+﹣+﹣+…+﹣+﹣=﹣1=10﹣1=9.14.(2023秋•大东区期中)观察下列各式:第一个式子:=1=1+(1﹣);第二个式子:=1=1+();第三个式子:=1=1+();…(1)求第四个式子为:;(2)求第n个式子为:(n为正整数)(用n表示);(3)求+…+的值.【分析】(1)观察题中所给式子各部分的变化规律即可解决问题.(2)利用(1)中的发现即可解决问题.(3)根据(2)中的结论即可解决问题.【解答】解:(1)观察题中所给式子可知,第四个式子为:.故答案为:.(2)由(1)中的发现可知,第n个式子为:.故答案为:(n为正整数).(3)原式==1×2022+=2022+1﹣=.15.(2023秋•晋中期中)阅读与思考:观察下列等式:第1个等式=;第2个等式;第3个等式:;…按照以上规律,解决下列问题:(1)=4﹣;(填计算的结果)(2)计算:.【分析】(1)利用分母有理化进行化简计算,即可解答;(2)利用材料的规律进行计算,即可解答.【解答】解:(1)===4﹣,故答案为:4﹣;(2)=(﹣1+﹣+2﹣+…+﹣)×(+1)=(﹣1)×(+1)=2023﹣1=2022.16.(2023秋•郁南县期中)综合探究:像,…两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如与,2与等都是互为有理化因式.在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.例如:;.根据以上信息解答下列问题(1)与+互为有理化因式;(2)请你猜想=﹣;(n为正整数)(3)<(填“>”“<”或“=”);(4)计算:(+++…+)×(+1).【分析】(1)利用互为有理化因式的定义,即可解答;(2)利用分母有理化进行化简计算,即可解答;(3)先求出它们的倒数,然后再进行比较,即可解答;(4)利用分母有理化先化简各数,然后再进行计算即可解答.【解答】解:(1)与+互为有理化因式,(2)==﹣,故答案为:﹣;(3)∵==+,==+,+>+,∴>,∴<,故答案为:<;(4)(+++…+)×(+1)=[+++…+]×(+1)=(+++…+)×(+1)=(﹣1+﹣+﹣+…+﹣)×(+1)=(﹣1)×(+1)=×(2023﹣1)=×2022=1011.17.(2023秋•平阴县期中)阅读下列材料,然后解决问题.在进行二次根式的化简时,我们有时会遇到形如,,的式子,其实我们可以将其进一步化简:,=,如上这种化简的步骤叫做“分母有理化”.(1)化简=,=,=﹣.(2)化简:.【分析】(1)利用例题的解题思路进行计算,即可解答;(2)先进行分母有理化,然后再进行计算即可解答.【解答】解:(1)==,==,===﹣,故答案为:;;﹣;(2)=+++=+++=(﹣1+﹣+﹣+﹣)=.18.(2023春•莱芜区月考)观察下列一组等式,然后解答问题:,,,,…….(1)利用上面的规律,计算:;(2)请利用上面的规律,比较与的大小.【分析】(1)归纳总结得到一般性规律,计算即可求出式子的值;(2)利用得出的规律将与进行转化,再进行比较即可.【解答】解:(1)原式===;(2)由题意得,,,∵,∴.19.(2023春•宁海县期中)已知:a=+2,b=﹣2,求:(1)ab的值;(2)a2+b2﹣3ab的值;(3)若m为a整数部分,n为b小数部分,求的值.【分析】(1)代入求值即可;(2)代入求值,可将(1)的结果代入;(3)根据题意估算出m、n的值,代入分式,化简计算.【解答】解:(1)∵a=+2,b=﹣2,∴ab=(+2)(﹣2)=7﹣4=3;(2)∵a=+2,b=﹣2,ab=3,∴a2+b2﹣3ab=a2+b2﹣2ab﹣ab=(a﹣b)2﹣ab=[(+2)﹣(﹣2)]2﹣3=(+2﹣+2)2﹣3=42﹣3=16﹣3=13;(3)∵m为a整数部分,n为b小数部分,a=+2,b=﹣2,∴m=4,n=b=﹣2∴===,∴的值.20.(2023•沈丘县校级开学)已知a,b,c是△ABC的三边长.(1)若a,b,c满足(a﹣b)(b﹣c)=0,试判断△ABC的形状;(2)化简:﹣.【分析】(1)根据若ab=0,则a=0或b=0,求出a与b,b与c的关系,进行解答即可;(2)先根据三角形三边关系,判断a+b﹣c和a﹣b﹣c的正负,再利用二次根式的性质进行计算化简即可.【解答】解:(1)∵a,b,c满足(a﹣b)(b﹣c)=0,∴a﹣b=0或b﹣c=0,∴a=b或b=c,∴△ABC是等腰三角形;(2)∵a,b,c是△ABC的三边长,∴a+b>c,a﹣b<c,∴a+b﹣c>0,a﹣b﹣c<0,∴=a+b﹣c﹣(﹣a+b+c)=a+b﹣c+a﹣b﹣c=2a﹣2c21.(2023•江北区开学)求值:(1)若,,求的值;(2)若的整数部分为a,小数部分为b,求的值.【分析】(1)先求出ab和a+b的值,然后利用完全平方公式进行计算即可解答;(2)先利用分母有理化进行化简可得=,然后估算出的值的范围,从而求出a,b 的值,然后代入式子中进行计算,即可解答.【解答】解:(1)∵,,∴ab=(﹣1)(+1)=3﹣1=2,a+b=﹣1++1=2,∴=====4,∴的值为4;(2)==,∵4<7<9,∴2<<3,∴5<3+<6,∴<<3,∴的整数部分为2,小数部分为﹣2=,∴a=2,b=,∴=22+(1+)×2×+=4+7﹣1+=10+=,∴的值为.22.(2023春•清江浦区期末)像、、…两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式,例如,和、与、与等都是互为有理化因式,在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)计算:①=,②=;(2)计算:.【分析】(1)①分子、分母都乘即可;②分子、分母都乘即可;(2)第一项分子、分母都乘以,第二项分子、分母都乘以,再计算即可.【解答】解:(1)①,故答案为:;②,故答案为:;(2)===2+﹣﹣1=1.23.(2023春•珠海校级期中)观察式子:,反过来:,∴,仿照上面的例子:(1)化简①;②;(2)如果x+y=m,xy=n且x>y>0,化简.【分析】(1)模仿示例将更号里面算式变形为完全平方式的形式进行化简;(2)将算式变形为,再运用二次根式的性质进行化简.【解答】解:(1)①====+1;②====;(2)∵x+y=m,xy=n且x>y>0,∴====+.24.(2023春•濮阳期中)已知,,求下列代数式的值.(1)a2﹣2ab+b2;(2)a2﹣b2.【分析】(1)先计算a+b和a﹣b的值,将原式分解因式,再将a﹣b的值代入计算即可;(2)将原式分解因式,再将a+b和a﹣b的值代入计算即可.【解答】解:(1)∵,,∴,,∴a2﹣2ab+b2=(a﹣b)2=42=16;(2)a2﹣b2=(a+b)(a﹣b)==.25.(2023春•张店区期末)阅读材料,解答下列问题.材料:已知,求的值.小明同学是这样解答的:∵==5﹣x﹣2+x=3,∵,∴,这种方法称为“构造对偶式”.问题:已知.(1)求的值;(2)求x的值.【分析】(1)利用例题的解题思路进行计算,即可解答;(2)利用(1)的结论可得2=5,从而可得=2.5,进而可得9+x=6.25,然后进行计算即可解答.【解答】解:(1)∵(﹣)(+)=()2﹣()2=9+x﹣3﹣x=6,∵,∴=2,∴的值为2;(2)由(1)得:﹣=2,+=3,∴2=5,∴=2.5,∴9+x=6.25,∴x=﹣2.75,∴x的值为﹣2.75.。
二次根式运算
二次根式,又称二次方程式,是一类关于一元二次多项式的方程。
它的一般形式是:ax2+bx+c=
0,其中a、b、c都是实数,a不等于
0。
二次根式有两个根,可以用二次型式解法求解。
解二次根式的一般方法是:(1)先将二次根式化简,a、b、c三个系数全部变为正数;(2)将二次根式化为标准型,
即ax2+bx+c=0;(3)用公式求出根,即:x1=(-b+√(b2-4ac))/2a;x2=(-b-√(b2-4ac))/2a;(4)最后,将求出的根代入原式,验证其正确性。
对于二次根式的解法而言,其实现在的计算机软件已经可以完成大部分求解工作,处理起来非常方便,但是对于那些没有计算机的朋友来说,如果想要解决二次根式的问题,那就只能依靠自己的能力和计算机软件的支持,首先要把二次根式化简成标准型,然后用公式求出根,最后将求出的根代入原式验证其正确性。
二次根式的解法不仅可以用于计算机软件,而且在数学上也有着重要的意义,它可以帮助我们更加深入地理解数学的概念和原理,还能够让我们更好地掌握一些数学方法和技巧,从而帮助我们解决更复杂的数学问题。
总之,二次根式是一个很重要的数学概念,一般解法及其实现方法也是非常重要的,在日常科学研究及数学运算中,都有着重要的应用价值。
二次根式的概念与运算二次根式是指形如√a的数,其中a为非负实数。
在数学中,我们常常遇到二次根式的概念与运算,本文将详细介绍二次根式的概念与运算方法。
一、二次根式的概念及表示二次根式是一种特殊的无理数形式,具有根号(√)作为符号,其表示如下:√a其中,a表示被开方数,且a必须是非负实数。
如果a为正实数,则二次根式具有两个相等的实数解;如果a为0,则二次根式等于0;如果a为负实数,则二次根式无实数解,但可以表示为复数形式。
二次根式可以进一步扩展,形式如下:b√a其中,b为系数,a为被开方数,同样要求a为非负实数。
二、二次根式的运算法则1. 二次根式的加减法:当二次根式的被开方数相同,即√a与√a相加或相减时,可以直接对系数进行加减运算。
例如:2√3 + 3√3 = 5√34√5 - √5 = 3√5当二次根式的被开方数不同,即√a与√b相加或相减时,无法简化为一个二次根式,需要保持原样。
例如:2√3 + 3√53√7 - 5√22. 二次根式的乘法:二次根式相乘时,可以分别对系数和被开方数进行乘法运算,并合并结果。
例如:2√3 * 3√2 =6√64√5 * 2 = 8√53. 二次根式的除法:二次根式相除时,可以分别对系数和被开方数进行除法运算,并合并结果。
例如:3√6 / √2 = 3√(6/2) = 3√34√10 / 2 = 2√10三、二次根式问题的简化与应用在实际问题中,我们常常需要对二次根式进行简化,使其表达更加简洁和明确。
1. 简化二次根式:当二次根式的被开方数可以被分解为完全平方数与非完全平方数的乘积时,可以进行简化。
例如:√18 = √(9 * 2) = 3√22. 二次根式的应用:二次根式在几何学、物理学等领域具有广泛应用。
例如,计算三角形的边长、面积等问题中常常涉及到二次根式的运算。
四、总结本文对二次根式的概念与运算进行了详细的介绍。
二次根式是一种特殊的无理数形式,具有根号作为符号。
二次根式的运算二次根式是数学中常见的一种运算形式,它包含了一个根号和一个数的平方。
在进行二次根式的运算时,我们可以使用一些特定的方法和规则,以便简化运算并得到准确的结果。
本文将探讨二次根式的运算方法和应用。
一、二次根式的定义和性质二次根式是指形如√a的运算,其中a代表一个非负实数。
二次根式的运算有一些基本性质,我们来逐一了解。
性质1:非负实数的二次根式仍然是非负实数。
无论a是多少,√a的结果都是非负实数。
这是因为根号运算的结果必须是非负实数,不包括负数。
性质2:二次根式乘法的运算规则。
对于两个非负实数a和b,它们的二次根式的乘法运算规则可以表示为:√a * √b = √(a * b)。
换句话说,两个二次根式相乘,可以将它们内部的数乘起来再开方。
性质3:二次根式的开方法则。
对于一个非负实数a和b,它们的二次根式的开方法则可以表示为:√(a * b) = √a * √b。
这个法则与性质2相反,即将一个二次根式分解为两个二次根式的乘积。
性质4:二次根式的加法和减法运算规则。
对于两个非负实数a和b,它们的二次根式的加法和减法运算规则可以表示为:√a ± √b = √(a ± b)。
这表示二次根式可以与同样含有根号的数进行加减运算。
二、二次根式的运算方法在进行二次根式的运算过程中,我们可以运用以上的性质和规则来简化运算和求解结果。
以下将介绍一些常见的运算方法。
方法1:合并同类项当二次根式中含有多个相同根号内的数时,我们可以合并它们,从而简化运算。
例如,√2 + √2 = 2√2。
方法2:分解二次根式如果二次根式内部含有可以分解的数或者因式,我们可以将其分解为更小的二次根式,从而便于运算。
例如,√12可以分解为√(4 * 3),再进一步分解为2√3。
方法3:有理化分母当二次根式出现在分母中时,我们可以采取有理化分母的方法,将分母中的根号去除,转化为整数或者带有根号的有理数。
例如,1/√2可以有理化为√2/2。
数学二次根式的运算二次根式是代数中常见的表达式,它可以用来表示开方运算。
在数学中,我们经常需要对二次根式进行运算,包括加减乘除等操作。
本文将探讨二次根式的运算规则及其应用。
一、二次根式的定义二次根式是指形如√a的表达式,其中a为非负实数。
√a表示a的平方根,也就是一个数的平方等于a。
例如,√9=3,√16=4。
二次根式的运算可以分为简化、加减、乘法和除法四种基本形式。
下面我们分别来介绍这些运算规则。
二、二次根式的简化当二次根式的下标含有完全平方因子时,我们可以将其进行简化。
例如,√12=√(4×3)=2√3。
这里,我们将12拆分成4和3,然后把4的平方根提取出来。
简化二次根式的关键是找到下标的因子,并将其拆分成完全平方。
这样,我们就可以把其中的完全平方根提取出来,从而得到更简洁的表达式。
三、二次根式的加减对于二次根式的加减运算,我们首先要保证它们的下标相同。
如果下标不同,我们需要进行二次根式的化简,使其下标相同。
然后,根据运算法则,将相同下标的系数相加或者相减即可。
例如,√2+√2=2√2,√5-√3无法进行运算,因为它们的下标不同。
如果需要进行运算,我们可以采用化简的方法,将√5写成√(25/5)=√5/√5。
四、二次根式的乘法二次根式的乘法运算很简单,只需要将系数和下标分别相乘即可。
例如,√2×√3=√(2×3)=√6。
在乘法运算中,如果有完全平方因子,我们可以提取其平方根。
例如,√2×√8=√(2×4×2)=2√2。
五、二次根式的除法二次根式的除法运算可以通过乘以倒数来实现。
例如,(√2)/(√3)=√2/√3=√(2/3)。
除法运算中,如果有完全平方因子,同样可以进行化简。
例如,(√12)/(√4)=(√(4×3))/(√4)=√3。
六、二次根式的应用二次根式的运算在数学中有广泛的应用,尤其在几何和物理学中常见。
例如,在计算三角形的边长时,可能会遇到涉及二次根式的运算。
二次根式及其运算1、二次根式的定义和性质: (1)定义:形如a(a ≥0)的式子叫做二次根式,“ ”称为二次根号,a 叫做被开方数.要使二次根式在实数范围内有意义,必须满足被开方数是非负数. (2)性质:①a (a ≥0)是一个非负数,即(a ≥0)=2)(a (a ≥0)⎪⎩⎪⎨⎧<=>==)0___()0___()0___(____2a a a a(3)2)(a 与2a 的区别:①运算顺序不同:2)(a 先 ,后 .2a 先 ,后 ;②字母取值范围不同:2)(a 中的a ,2a 中的a ;③运算结果不同:2)(a = ,2a = .错误!未找到引用源。
2、二次根式的乘除法:(1)二次根式相乘,等于被开方数相乘,根指数不变,即a ·b= (a ≥0,b ≥0).(2)二次根式相除,被开方数相除,根指数不变,即 a b= (a ≥0,b>0).3、二次根式的乘除:(1)计算公式:{⎪⎩⎪⎨⎧>≥=≥≥=⋅)0,0___()0,0___(b a b ab a b a 除法运算:乘法运算: (2)化简公式:⎪⎩⎪⎨⎧>≥=≥≥=⋅)0,0___()0,0___(b a b a b a b a 当被除式与除式的被开方数恰好能整除时,直接利用这个公式计算很方便.二次根式的除法运算,通常是采用化去分母中的根号的方法来进行的. 4、最简二次根式:①分母中不含根号,根号中不含分母及小数;②被开方数中不含含能开得尽方的因数或因式.这样的二次根式叫做最简二次根式.5、同类二次根式:(1)被开放数不含分母;(2)被开放数中不含开得尽方的因数或因式。
6、分母有理化:(1)概念:①把分母中的根号化去,叫做分母有理化.②两个含有二次根式的代数式相乘时,如果它们的积不含二次根式,我们就说这两个代数式互为有理化因式.常用有互为有理化因式有以下几种:a与a(这里的a为最简二次根式)互为有理化因式;a+b与a–b互为有理化因式;a+b与a–b或m a+n b 与m a–n b互为有理化因式.(2)方法:直接约分化去分母中的根号;根据分式的基本性质,分子和分母都乘以分母的有理化因式,可以使分母不含根号.7、二次根式化简求值步骤:(1)“一分”:分解因数(因式)、平方数(式);(2)“二移”:根据算术平方根的概念,把根号内的平方数或者平方式移到根号外面;(3)“三化”:化去被开方数中的分母。
②合并同类二次根式与整式中的合并同类项类似,只需把同类二次根式前面的有理数(或有理式)相加减就行了。
题型1:题型2:二次根式的性质及简单运算例1:化简 (1(2 (3 (4.11)1(到根号里面中的根号外面的因式移将aa --例2:计算 (1)2(x ≥0) (2)2(3)2 (4))2题型3:最简二次根式和同类二次根式 例1: 把下列两组中的各二次根式分别化为最简二次根式,并指出哪些是同类二次根式。
(1) (2)例2:已知是最简二次根式,它与是同类二次根式,求a 与n 的值。
题型4:二次根式的运算例1:101531251812775,,,-3453x x y x y x y x y,,-7--a n a 328n (.)()052131875---例2:把下列各式分母有理化(1) (2)例3:(1)(+)×(2) (4632)22-÷.例4:19961997(3(3+-三、课堂达标检测 1. ,则( )A .a <B . a ≤C .a > D . a ≥ 2.已知,则的值为( )A .B .C .D . 3.当实数x 的取值使得有意义时,函数y =4x +1中y 的取值范围是( ) A .y ≥-7 B . y ≥9 C . y >9 D . y ≤94. 有意义,则的取值范围是 。
5. 在实数范围内分解因式:。
5. 当1≤x<5。
1945-322322-+12a -121212123y =2xy 15-15152-1522-x 11m +m 429__________,2__________x x -=-+=5_____________x -=6. 把的根号外的因式移到根号内等于 。
7.成立的条件是 。
8. 若互为相反数,则。
9.,求x 、y 的值。
10. 已知的值。
11.数轴上与1,2对应的点分别为A 、B ,点B 关于点A 的对称点为点C ,设点C 表示的数为x ,则=+-xx 22 .12.计算:21-2-38232-+⨯+13.已知3232-=+=b a ,,试求a b b a -的值.1x =+1x+1a b -+()2005_____________a b -=2440y y -+=2310x x -+=。
初中数学二次根式的运算考试要求:重难点:1.(0)a≥的内涵,(0)a≥是一个非负数;2a=(0)a≥;a=(0)a≥ 及其运用.2.二次根式乘除法的规定及其运用.3.二次根式的加减运算.例题精讲:模块一二次根式的加减运算二次根式的加减法法则:二次根式加减时,可以先将二次根式化成最简二次根式,再对同类二次根式进行合并.二次根式加减法的实质是合并同类二次根式,合并时只把系数相加减,根指数和被开方数不变.二次根式的加减法步骤:(1)将每一个二次根式化成最简二次根式;(2)找出并合并同类二次根式.【例1】计算:(1)(2【难度】1星【解析】如果几个二次根式的被开方数相同,可以直接进行加减运算;如果所给的二次根式不是最简二次根式应该先化简,再进行加减运算.(1)(3=+;(2(2==+【答案】(1);(2).【巩固】485127-=______.【难度】1星【解析】485127-7=5(14⨯⨯=-=-【答案】-【例2】计算:(1)(2【难度】1星【解析】先化简成最简二次根式,再对同类二次根式进行合并.(1)1132(41)242=⨯⨯⨯-+;(2=1443(212)99⨯⨯-+=【答案】(1(2【巩固】计算:(1) (2【难度】2星 【解析】(1)1(64)5=+=-+=(2)=1(22=--= 【答案】(1(2).【例3】 如图,一架长为10m 的梯子AB 斜靠在墙上,梯子的顶端距地面的垂直距离为8m .如果梯子的顶端下滑1m ,那么它的底端是否也下滑1m ?【难度】1星【解析】如图所示,在RT ABC ∆中,由勾股定理,得BC = 当AC=8m时,6BC ==m ; 当AC=7m时,BC =,所以梯子的顶端下滑1m6 1.1≈m .【答案】梯子的顶端下滑1m ,那么它的底端不是下滑1m ,而是滑动1.1m .模块二 二次根式的混合运算在进行二次根式的混合运算时,要注意几点: (1) 整式和分式的运算法则仍然适用.如CBA=== (2) 多项式的乘法法则及乘法公式在运算中同样是适用的.乘法公式:22()()a b a b a b +-=-;222()2a b a b ab ±=+±.【例4】 计算:(1 (26x 【难度】1星【解析】(1)原式==(2)原式=23223⋅=-【答案】(1(2)-【例5】 计算:(1)2 (2)(2(3)22(2(2-+ (4)20112012(3(3-【难度】2星 【解析】(1)用完全平方公式;(2)逆用平方差公式;(3)用平方差公式;(4)逆用平方差公式.(1)2222184866=-⨯=-=-(2)(2=22[224(82484-+=-=-+=----(3)22(2(2-+(2224(==⨯-=- ;(4)20112012(3(320112011[(3(3(98)(33=-+=-+=+【答案】(1)66- (2)4--(3) -; (4)3+【巩固】(1) (2(3) (4)3ab (0,0a b ≥≥) 【难度】2星【解析】在二次根式的乘除法中,首先确定结果的符号,同时要注意指数和运算顺序,最后的结果必须化成最简二次根式.(1)2(1218624==++-=+;(21=;(3)(61834=⨯⨯⨯⨯;(4)3ab3ab a ==-【答案】(1)24+; (2)1; (3) (4)a -.【例6】 解方程或不等式:(1))11x x +>- (21+=【难度】2星【解析】解不等式时,在系数化为1时,要注意系数的正负.(1))11x x +>- (21x +=x >=x <x =13x <+ x =x【答案】(1)13x <+ (2.【巩固】已知1018222=++a a a a,求a 的值. 【难度】2星【解析】先化原方程中的二次根式为最简二次根式,然后按着解一般整式方程的步骤去解即可.10=10=2=a =【答案】a =模块三 二次根式的化简求值【例7】 (2008年西城二模)先化简,再求值:2221412211m m m m m m --⋅÷+-+-,其中m =. 【难度】1星【解析】2221412211m m m m m m --⋅÷+-+-21(2)(2)(1)(1)(1)(2)2(1)m m m m m m m m m --+=⋅⋅-+=+-+-22m m =--,当m 时,原式21-=【答案】1【例8】 (2009年西城二模)先化简,再求值222x y xyx y x y x y +++--,其中x =-,y =.【难度】1星【解析】222x y xyx y x y x y +++-- 222()()22()()()()()()()()()()()x x y y x y xy x xy y xy xy x y x y x y x y x y x y x y x y x y x y x y x y x y-+-+++++=++===+-+-+-+-+--.当x =-y =时,原式15==.【答案】15【巩固】(2011年东城区一模)先化简,再求值:2232()111x x xx x x +÷---,其中1x =. 【难度】1星【解析】原式232132[]2(1)(1)111x x x x x x x x x x x --=-⨯=-=-+-++,当1x =时,原式1===-【答案】1【巩固】(2011年东城区二模)先化简,再求值:2(21)(2)(2)4(1)x x x x x +++--+,其中x =. 【难度】2星 【解析】原式222441444x x x x x =+++---23x =- .当x =时 ,原式227153344=-=-=⎝⎭.【答案】154总结:解此类题目时,一定要先化简再代入求值.【例9】已知x =,y =,求2y x x y ++的值.【难度】2星【解析】当分母中含有根号时,要先化简再求值.x ==231)+,y231)=-=, ∴2y xx y ++222(3336===+-=. 【答案】36【例10】 已知121x x +=,121x x ⋅=-,求12x x 的值. 【难度】3星【解析】12x x -==,12x x ∴-=22221111212221122()()22x x x x x x x x x x x x ⋅++-∴==⋅21212121212[()2][()()]2x x x x x x x x x x +-++-==.总结:该类题目直接将a ,b (或a ,b 化简后的结果)代入所求的式子中,计算都相对繁琐.在类似的题目中,要灵活的应用公式的变形,以便使计算过程大大的简化.【例11】2011++的值. 【难度】2星【解析】通过观察可以知道,先进行分母有理化,通过前几项的分母有理化发现,每一项的结果都是分母的后一项前去分母前一项,这样把每项展开,即可相加减,也就得出了结果. 原式1201211+-=-+【答案】1-+【例12】【巩固】2011+【难度】2星【解析】原式=2[1)(20122(12⨯---=-⨯-+=-【答案】2-总结:=利用这个公式解题.【例13】当a=,求代数式2963a aa-++-的值.【难度】2星【解析】原式=211(3)33(1)(1)a aaaa a aa a---+=-+---,2)212a a=-∴=-=<+原式=111333(1)(1)a aa a aa a a a a---+=-+=----,当a=时,原式= 2321+=.【答案】1【巩固】已知13a=-,12b=【难度】2星【解析】由题可知,0b a->,∴原式13a=-,12b=时,原式=115231622+==⨯.总结:在这类题目中,依然是对原题目进行化简,化简过程中出现了绝对值,此时应特别注意绝对值里面式子的正负,不能贸然的去掉绝对值符号.模块四二次根式的大小比较通过平方比较大小【例14】比较大小(1)1+(2)133-【难度】1星【解析】比较大小可以左右平方,比较平方数的大小,对于两个正数,平方大的就大;对于两个负数,平方大的反而小.(1)2(13=+23=,3223+>,1∴(2)2(10=,221101001(3)()113399-===,110119<,133-.【巩固】比较大小:【难度】1星【解析】略 【答案】>【巩固】实数-3-的大小关系是 .(用“>”表示) 【难度】1星【解析】通过比较平方数的大小来比较原数的大小.【答案】3->-.总结:在比较两个数或式子的大小时,如果只是数,可以平方之后再比较原数的大小;如果是式子且每个式子只含有一个根号时,可以采用平方法比较大小.通过做差比较大小【例15】 比较大小【难度】2星【解析】直接比较大小,无从入手,所以可以通过做差的方法比较大小.0=,<通过取倒数比较大小【例16】 比较大小(1 (2【难度】2星【解析】(1=====65+(2=2011+,【答案】(1<;(2<.总结:在比较两个式子的大小,且每一个式子都含有两个二次根式,可以通过取倒数比较大小.由上题我模块五 非负数性质的综合应用0≥且0a ≥,以前所学的平方和绝对值同样具有非负性,这也是中考中必考的三个非负性.【例17】 2(4)0y -=,则y x 的值等于 . 【难度】1星【解析】对二次根式和平方非负性的直接考察. 【答案】1【例18】 如果2y =,则2x y += . 【难度】1星【解析】对二次根式非负性的直接考察. 解:注意到230320x x -≥-≥,, 0230230x x ∴≤-≤-=, 232x y ∴==, 25x y ∴+=. 【答案】5【例19】 当x【难度】1星【解析】因为二次根式的被开方数大于或等于零,所以222012x x x≥-+.因为x >,.【巩固】已知0a <的值.【难度】2星【解析】原式= (*)因为21()0a a --≥但21()0a a --≤故只有21()0a a --=即1a a=又0a <,所以1a =- 代入(*)得:原式=2-. 【答案】2-【例20】 已知实数x ,y ,z满足2144104x y z z -+-+=,求2()x z y +⋅的值. 【难度】2星【解析】对绝对值、二次根式和平方非负性的考察.原式可化为1441()02x y z -+-=,441020102x y y z z ⎧⎪-+=⎪∴+=⎨⎪⎪-=⎩,解得121412x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩22111()()()0224x z y ∴+⋅=-+⨯-=.【答案】0【巩固】已知实数a ,b ,c满足212102a b c c -+-+=,求()a b c +【难度】2星【解析】略【答案】14-课堂检测:【练习1】下列计算正确的是( )A B C D【难度】1星【解析】考察二次根式的运算.【答案】A【练习22得( ).A 2B C D【难度】1星【解析】 因为230x -≥,23232x x ≥=-,,所以210|21|21x x x ->-=-221(23)2x x =---=.故选A .【答案】A【练习3化简,然后自选一个合适的x 值,代入化简后的式子求值.【难度】2星【解析】这是一道结论开放题,它留给我们较大的发挥和创造空间.但要注意x 的取值范围是2x >.原式===2,x >∴取4x =,原式=2.【答案】2(合理即可)【练习4】设22a b c==-==,则a,b,c的大小关系是()A a b c>>B a c b>> C c b a>> D b c a>>【难度】2星【解析】1a===,同理1122b c=220>>,所以1110,c b ac b a>>><<.故选A.【答案】A【练习53x=+,求11xy++的值.【难度】2星【解析】考察的是非负性,同时也对分式进行了考察.3x=+,2309030x yxx-=⎧⎪∴-=⎨⎪+≠⎩,解得31xy=⎧⎨=⎩,1312111xy++∴==++.【答案】2课后作业:1.化简时,==,乙的解法:==,以下判断正确的是().A 甲的解法正确,乙的解法不正确B 甲的解法不正确,乙的解法正确C 甲、乙的解法都正确D 甲、乙的解法都不正确【难度】2星【解析】甲是将分子和分母同乘以进行分母有理化,乙是利用3=进行约分,所以二人都是正确的,故选C .【答案】C2. 计算:(1)(2) 【难度】1星【解析】题中每个二次根式都不是最简二次根式,应“先化简——再判断——最后合并”.(1)原式=1121023⎛⎛=+-- ⎝⎝= (2)原式=2a b b a b =⎛=- -⎝= 【答案】(1(23.化简 【难度】1星 【解析】初看此题像没有给出化简条件,但充分发掘隐含条件,由二次根式的定义可知10a->,即.故用分母有理化化简的第三步中1a 应为1a -. 原式1a a a a ===⋅=- 【答案】4.已知x=,y=222)x xy y x y+++-的值.【难度】2星【解析】x=2)2==2222)())x xy y x y x y x y∴+++-=++-,把x y==代入得原式=2402416=-=.【答案】165.请先化简下列式子,再选取两个能使原式有意义,而你又喜爱的数代入化简后的式子中求值.÷【难度】2星【解析】原式====当2x=时,原式=当3x=时,原式=.2x=时,原式=3x=时,原式=.6.=a、x、y是两两不同的实数,求22223x xy yx xy y+--+的值.【难度】3星【解析】由题可知,()0()0a x aa y ax aa y-≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩,解得x aaa ya≥⎧⎪≥⎪⎨≥⎪⎪≤⎩,0a∴=,此时,原式变为0,x y=-把x y=-代入有222222222222222233()()3()()3x xy y y y y y y y y yx xy y y y y y y y y y+--+----∴===-+---+++,a、x、y是两两不同的实数,0y∴≠,原式13=.【答案】13。