勾股定理教学设计最终版.doc
- 格式:doc
- 大小:259.00 KB
- 文档页数:6
《17.1勾股定理》教学设计一、内容和内容解析1.内容勾股定理的探究、证明及简单应用2.内容解析勾股定理的内容是:如果直角三角形的两条直角边长分别为,a b斜边长为c,那么222+=.它揭示了直角三角形三边之间的数量关系.在直角三角形中,已知任意两边长,a b c就可以求出第三边长.勾股定理常用来求解线段长度或距离问题.二、目标和目标分析1.教学目标(1)理解并掌握运用面积关系得到勾股定理的证明及其应用.(2)通过勾股定理证明的学习,培养学生学会从特殊到一般的探索和证明方法.(3)通过合作探究,感受古代数学的伟大成就和贡献,培养学生的民族自豪感.2.目标分析(1)学生通过观察直角三角形的三边为边长的正方形面积之间的关系,归纳并合理地用数学语言表示勾股定理的结论.(2)学生能运用勾股定理进行简单的计算,关键是通过直角三角形的两边长能求第三条边的长度.三、学生学情分析对于直角三角形,学生对角的关系已有学习,但对于边的数量关系了解不多。
新课标要求学生体验勾股定理的探索过程,会运用勾股定理解决简单问题。
教学中让学生直接发现“直角三角形两条直角边的平方和等于斜边的平方”有一定的难度,因此需要由浅入深地设置问题,先从等腰直角三角形入手,容易发现规律,再从特殊到一般,探究一般直角三角形是否满足规律。
其简单变形,而后过渡到其后的拓展练习,分层布置,有一定的梯度性,为学有余力的同学提供了展示才能的空间,体现了因材施教,符合新课标的要求.四、教学策略分析本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,倡导学生主动参与数学实践活动,让学生经历数学知识的形成与应用过程。
五、教学过程设计1.创设情景,引入新课展示2002年国际数学家大会会场的图片,指出会场上会徽图标。
提问: 你知道这个图案吗?有哪些基本图案组成?前面学习了三角形的有关知识,我们知道三角形有三个角和三个边。
课题:17.1 探索勾股定理教学设计(第1课时)一、教材地位作用这节课内容部编版八年级下册第十七章第一节勾股定理第一课时。
勾股定理是学生在学习了直角三角形有关性质的基础上进行本课学习,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,在实际生活中用途很大。
通过课题的学习,学生可以经历从实际问题观察、发现、抽象出数学问题,猜想并验证直角三角形三条边之间满足的数量关系,到综合应用已学知识联想、证明的全过程,从而加深对相关知识的理解,提高思维能力。
本节课学习过程中渗透了数形结合、从特殊到一般和方程思想等重要数学思想,同时为勾股定理逆定理和后续解直角三角形的学习奠定了基础,也为高中学习的一般三角形中余弦定理和平面解析几何的部分公式做铺垫。
二、教学重点、难点勾股定理的学习是建立在掌握一般三角形的性质、直角三角形以及三角形全等的基础上, 是直角三角形性质的拓展。
本节课主要是对勾股定理的探索和勾股定理的证明。
勾股定理的证明方法很多,本节课介绍的是等积法。
通过本节课的教学,引领学生从不同的角度发现问题、用多样化策略解决问题,从而提高学生分析、解决问题的能力。
基于以上考虑,本节课的教学重点为:探索、验证、证明勾股定理过程。
八年级学生已初步具备几何的观察能力和说理能力,也有了一定的空间想象和动手操作能力,但是他们的推理能力较弱、抽象思维能力不足。
而本节课先采用的是等积法证明。
对于其他的证明方法,由于需要合理的发散思维和联想,没有教师的启发引领,学生不容易独立想到。
难点:用拼图的方式利用等积法证明勾股定理,并结合方程思想尝试从不同角度理解、证明勾股定理。
三、目标和目标解析本节活动课应当恰当发展学生的几何直观、推理能力和模型思想的数学核心观念与数学能力,还要注重发展学生的创新意识。
知识技能目标(1)经历勾股定理的探索过程,理解并掌握勾股定理;(2)能尝试从不同角度证明勾股定理。
数学思考目标:(1)让学生切实经历“观察—猜想---验证---证明”的探索过程;(2)发展合情推理能力,分析勾股定理的证明思路;(3)体会数形结合,从特殊到一般,化归和方程思想方法。
勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
《勾股定理》教学设计一、教学目标:(一)知识与技能目标:掌握勾股定理的几种证明方法,能够熟练地运用勾股定理由直角三角形的任意两边求得第三边。
(二)过程与方法目标:通过探究勾股定理的发现与证明,渗透数形结合的思想方法,增强逻辑思维能力,操作探究能力和培养学生的探索精神和合作交流的能力。
(三)情感态度与价值观目标:通过对勾股定理的探索,培养学生对数学问题孜孜以求的探究精神和科学态度.通过了解我国古代在勾股定理研究方面的成就,激发热爱祖国,热爱祖国悠久文化的思想感情。
二、教学重、难点:1.探索和证明勾股定理。
2. 用拼图方法证明勾股定理。
三、教学方法:启发、合作交流和直观演示。
四、教具准备:相同规格的直角三角形纸片若干张。
五、教学过程:(一)故事引入,激发兴趣毕达哥拉斯有次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺着是正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言;这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形磁砖,但毕达哥拉斯不只是欣赏磁砖的美丽,而是想到它们和[数]之间的关系,于是拿了画笔并且蹲在地板上划来划去,回到家中不停演算,最后证明了勾股定理。
你想知道毕达哥拉斯是怎样利用地砖证明这个定理的吗?(二)故事场景,发现新知(1)观察两个正方形面积与两个小正方形面积关系。
(2)用a、b、c三个字母表示直角三角形三边,用这三个字母来表示这三个正方形的面积关系。
(3)是不是所有的三角形三边都满足这样的关系呢?(三) 深入探究,交流归纳(1)等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也具有“两直角边的平方和等于斜边的平方”呢?(2)想一想,怎样利用小方格计算正方形A、B、C面积?直角三A 积B 单位A 角形三边关系、B 、C 面积关系图2图1C 的面(单位面积)的面积(面积)的面积(单位面积)(3)正方形A 、B 、C 面积之间的关系是什么?(4)直角三角形三边之间的关系用命题形式怎样表述? 师生共同讨论、交流、逐步完善,得到命题1:如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么a 2 + b 2 =c 2 (四)拼图验证,加深理解:(1)用手中的四个全等的三角形平成一个正方形。
17.1勾股定理(1)一、教学目标:1.体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法,掌握勾股定理并会用它解决身边与实际生活相关的数学问题。
2.在学生经历观察、归纳、猜想、探索勾股定理过程中,发展合情推理能力,体会数形结合思想,并在探索过程中,发展学生的归纳、概括能力。
3.通过探索直角三角形的三边之间关系,培养学生积极参与、合作交流的意识,体验获得成功的喜悦,通过介绍勾股定理在中国古代的研究情况,提高学生民族自豪感,激发学生热爱祖国、奋发学习的热情。
二、教学重点、难点:重点:探索和验证勾股定理过程; 难点:通过面积计算探索勾股定理。
三、教学方法及教学手段:采用探究发现式的教学方法,通过计算面积为学生设计一个数学实验的平台,结合多媒体课件的演示,培养学生动手实践能力和合作交流的意识。
四、教学过程:1.创设情境,导入课题多媒体演示勾股树图片,激发学生求知欲,成功导入本节课题。
2.自主探索,合作交流 活动一:动脑想一想小明用一边长为cm 1的正方形纸片,沿对角线折叠,你知道折痕有多长吗?①这个问题你是怎样想的?请说出你的想法。
②若把折叠后的直角三角形纸片放在如图所示的格点图中(每个小正方形边长为cm 1),你能知道斜边的长吗?③观察图形,并填空:⑴正方形P 的面积为2cm , 正方形Q 的面积为2cm , 正方形R 的面积为2cm 。
⑵你能发现图中正方形P 、Q 、R 的面积之间有什么关系?从中你发现了什么?活动二:动手做一做其它一般的直角三角形,是否也有类似的性质呢?(你打算用什么方法来研究?共同讨论方法后再确立研究方向) (图中每一小方格表示21cm )⑴正方形P 的面积为2cm ,正方形Q 的面积为2cm , 正方形R 的面积为2cm 。
⑵正方形P 、Q 、R 的面积之间的关系 是什么?⑶你会用直角三角形的边长表示正方形P 、Q 、R 的面积吗?你能发现直角三角形三边长度之间存在什么关系吗?与你的同伴进行交流。
第十八章勾股定理. 勾股定理(一)―、教学目标.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
.培养在实际生活中发现问题总结规律的意识和能力。
.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
二、重点、难点.重点:勾股定理的内容及证明。
.难点:勾股定理的证明。
三、例题的意图分析例(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维, 锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。
激发学生的民族自豪感,和爱国情怀。
例使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。
进一步让学生确信勾股定理的正确性。
四、课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。
我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。
这个事实可以说明勾股定理的重大意义。
尤其是在两千年前,是非常了不起的成就。
让学生画一个直角边为和的直角△,用刻度尺量出的长。
以上这个事实是我国古代多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角, 两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是,长的直角边(股)的长是,那么斜边(弦)再画的长是。
一个两直角边为和的直角八,用刻度尺量的长。
你是否发现与的关系,和的关系,即,,那么就有勾股弦。
对于任意的直角三角形也有这个性质吗?五、例习题分析例(补充)已知:在△中,Z°, Z, /、Z的对边为、、。
求证:+。
分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。
⑵拼成如图所示,其等量关系为:△小正大正X-+ (-),化简可证。
2⑶发挥学生的想象能力拼出不同的图形,进行证明。
2024年八年级数学《勾股定理》教案(通用篇)八年级数学《勾股定理》教案 1教学目标1、知识与技能目标学会观察图形,勇于探索图形间的关系,培养学生的空间观念.2、过程与方法(1)经历一般规律的探索过程,发展学生的抽象思维能力.(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.3、情感态度与价值观(1)通过有趣的问题提高学习数学的兴趣.(2)在解决实际问题的过程中,体验数学学习的实用性.教学重点:探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.教学难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.教学准备:多媒体教学过程:第一环节:创设情境,引入新课(3分钟,学生观察、猜想)情景:如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的.蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?第二环节:合作探究(15分钟,学生分组合作探究)学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。
让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算.学生汇总了四种方案:(1)(2)(3)(4)学生很容易算出:情形(1)中A→B的路线长为:AA’+d,情形(2)中A→B的路线长为:AA’+πd/2所以情形(1)的路线比情形(2)要短.学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短.如图:(1)中A→B的路线长为:AA’+d;(2)中A→B的路线长为:AA’+A’B>AB;(3)中A→B的路线长为:AO+OB>AB;(4)中A→B的路线长为:AB.得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算AB?在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12c,底面半径为3c,π取3,则.第三环节:做一做(7分钟,学生合作探究)教材23页李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,(1)你能替他想办法完成任务吗?(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD 长是50厘米,AD边垂直于AB边吗?为什么?(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?第四环节:巩固练习(10分钟,学生独立完成)1.甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走.上午10:00,甲、乙两人相距多远?2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.3.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长?第五环节课堂小结(3分钟,师生问答)内容:1、如何利用勾股定理及逆定理解决最短路程问题?第六环节:布置作业(2分钟,学生分别记录)内容:作业:1.课本习题1.5第1,2,3题.要求:A组(学优生):1、2、3B组(中等生):1、2C组(后三分之一生):1板书设计:教学反思:八年级数学《勾股定理》教案 21、勾股定理勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2.即直角三角形两直角的平方和等于斜边的平方.因此,在运用勾股定理计算三角形的边长时,要注意如下三点:(1)注意勾股定理的使用条件:只对直角三角形适用,而不适用于锐角三角形和钝角三角形;(2)注意分清斜边和直角边,避免盲目代入公式致错;(3)注意勾股定理公式的变形:在直角三角形中,已知任意两边,可求第三边长.即c2=a2+b2,a2=c2-b2,b2=c2-a2.2.学会用拼图法验证勾股定理拼图法验证勾股定理的基本思想是:借助于图形的面积来验证,依据是对图形经过割补、拼接后面积不变的原理.如,利用四个如图1所示的直角三角形三角形,拼出如图2所示的三个图形.请读者证明.如上图示,在图(1)中,利用图1边长为a,b,c的'四个直角三角形拼成的一个以c为边长的正方形,则图2(1)中的小正方形的边长为(b-a),面积为(b-a)2,四个直角三角形的面积为4×ab=2ab.由图(1)可知,大正方形的面积=四个直角三角形的面积+小正方形的的面积,即c2=(b-a)2+2ab,则a2+b2=c2问题得证.请同学们自己证明图(2)、(3).3.在数轴上表示无理数将在数轴上表示无理数的问题转化为化长为无理数的线段长问题.第一步:利用勾股定理拆分出哪两条线段长的平方和等于所画线段(斜边)长的平方,注意一般其中一条线段的长是整数;第二步:以数轴原点为直角三角形斜边的顶点,构造直角三角形;第三步:以数轴原点圆心,以斜边长为半径画弧,即可在数轴上找到表示该无理数的点.二、典例精析例1如果直角三角形的斜边与一条直角边的长分别是13cm和5cm,那么这个直角三角形的面积是cm2.分析:欲求直角三角形的面积,已知一直角三角形的斜边与一条直角边的长,则求得另一直角边的长即可.根据勾股定理公式的变形,可求得.解:由勾股定理,得132-52=144,所以另一条直角边的长为12.所以这个直角三角形的面积是×12×5=30(cm2).例2如图3(1),一只蚂蚁沿棱长为a的正方体表面从顶点A爬到顶点B,则它走过的最短路程为()A.B.C.3aD.分析:本题显然与例2属同种类型,思路相同.但正方体的各棱长相等,因此只有一种展开图.解:将正方体侧面展开八年级数学《勾股定理》教案 3重点、难点分析本节内容的重点是勾股定理的逆定理及其应用。
《勾股定理》教学设计
泸水市鲁掌中学王晓荣
一、教材分析
(一)教材的地位与作用
勾股定理是数学中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。
它在数学的发展中起着重要的作用,在现实世界中也有着广泛的应用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标
基于以上分析和数学课程标准的要求,制定了本节课的教学目标。
知识与技能:
1、了解勾股定理的文化背景,体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法。
2、了解勾股定理的内容。
3、能利用已知两边求直角三角形另一边的长。
过程与方法:
1、通过拼图活动,体验数学思维的严谨性,发展形象思维。
2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。
情感与态度:
1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾
股定理的研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。
2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇
气,培养合作意识和探索精神。
(三)教学重、难点
重点:探索和证明勾股定理
难点:用拼图方法证明勾股定理
二、学情分析
学生对几何图形的观察,几何图形的分析能力已初步形成。
部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。
现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望。
三、教学策略
本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。
四、教学程序
新知探究(一)
毕达哥拉斯是古希腊著名的数学家。
相传在
2500年以前,他在朋友家做客时,发现朋友家用
地砖铺成的地面反映了直角三角形的三边的某种
数量关系。
(1)同学们,请你也来观察下图中的地面,
看看能发现些什么?
图18.1-1
问题:(2)你能找出图18.1-1中正方形A、
B、C面积之间的关系吗?
(3)图中正方形A、B、C所围等腰直角三角形
三边之间有什么特殊关系?
通过讲述故事来
进一步激发学生学
习兴趣,使学生在不
知不觉中进入学习
的最佳状态。
“问题是思维的起
点”,通过层层设问,
引导学生发现新知。
深入探究交流归纳
活动一
(1)等腰直角三角形是特殊的直角三角形,
一般的直角三角形是否也具有“两直角边的平方
和等于斜边的平方”呢?
图18.1-2
如图18.1-2,每个小方格的面积均为1,以
格点为顶点,有一个直角边分别是2、3的直角三
角形。
仿照上一活动,我们以这个直角三角形的
三边为边长向外作正方形。
(2)想一想,怎样利用小方格计算正方形A、
B、C面积?
渗透从特殊到
一般的数学思想.为
学生提供参与数学
活动的时间和空间,
发挥学生的主体作
用;培养学生的类比
迁移能力及探索问
题的能力,使学生在
相互欣赏、争辩、互
助中得到提高。
再验证加深理解猜想:直角三角形两直角边的平方和等于斜边的
平方。
活动二
(1)多媒体图片演示验证
(2)多媒体课件展示过程及证明过程,理解数学
的严密性。
活动三
看图,公元 3 世纪我国汉代的赵爽在注解《周髀
算经》时给出的,人们称它为“赵爽弦图”.赵爽
根据此图指出:四个全等的直角三角形(红色)
可以如图围成一个大正方形,中间的部分是一个
小正方形(黄色).
(再次验证勾股定理)
通过这些实际
操作,学生进行一步
加深对数形结合的
理解,拼图也会产生
感性认识,也为论证
勾股定理做好准备。
利用分组讨论,
加强合作意识。
1、经历所拼图形与
多媒体展示图形的
联系与区别。
2、加强数学严密教
育。
从而更好地理解
代数与图形相结合
应用新知解决(1)做一做
P的面积=
AB= BC=
让学生有机地
把握所学的知识技
能,用来解决实际问
题,加强对定理的理
解,从而突出重点。
P
625
400
B
A
C。