乘法公式公式的应用(能力提高试题)
- 格式:doc
- 大小:195.00 KB
- 文档页数:13
人教版八年级数学14.2乘法公式培优训练一、选择题(本大题共10道小题)1. 下列各式中,运算结果是9m2-16n2的是()A.(3m+2n)(3m-8n)B.(-4n+3m)(-4n-3m)C.(-3m+4n)(-3m-4n)D.(4n+3m)(4n-3m)2. 下列各式中,能用完全平方公式计算的是()A.(x-y)(x+y) B.(x-y)(x-y)C.(x-y)(-x-y) D.-(x+y)(x-y)3. 若M·(2x-y2)=y4-4x2,则M应为()A.-(2x+y2)B.-y2+2xC.2x+y2D.-2x +y24. 化简(-2x-3)(3-2x)的结果是()A.4x2-9 B.9-4x2C.-4x2-9 D.4x2-6x+95. 为了运用平方差公式计算(x+2y-1)(x-2y+1),下列变形正确的是()A.[x-(2y+1)]2B.[x+(2y-1)][x-(2y-1)]C.[(x-2y)+1][(x-2y)-1]D.[x+(2y-1)]26. 计算(x+1)(x2+1)·(x-1)的结果是()A.x4+1 B.(x+1)4C.x4-1 D.(x-1)47. 如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成了一个长方形(如图②),则这个长方形的面积为()A.a2-4b2B.(a+b)(a-b)C .(a +2b )(a -b )D .(a +b )(a -2b )8. 若n 为正整数,则(2n +1)2-(2n -1)2的值( )A .一定能被6整除B .一定能被8整除C .一定能被10整除D .一定能被12整除9. 若(x +a )2=x 2+bx +25,则()A .a =3,b =6B .a =5,b =5或a =-5,b =-10C .a =5,b =10D .a =-5,b =-10或a =5,b =1010. 如果a ,b ,c 是ABC △三边的长,且22()a b ab c a b c +-=+-,那么ABC △是( )A. 等边三角形.B. 直角三角形.C. 钝角三角形.D. 形状不确定.二、填空题(本大题共6道小题)11. 多项式x 2+1添加一个单项式后可变为完全平方式,则添加的单项式可以是________(任写一个符合条件的即可).12. 填空:()()22552516a a a b +-=-13. 如果(x +my )(x -my )=x 2-9y 2,那么m =________.14. 如图,在边长为a 的正方形中剪去一个边长为b 的小正方形(a b >),把剩下的部分拼成一个梯形,分别计算这两个图形的面积,验证了公式_________________.15. 如图,四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a 、b 的恒等式___________.a bb a16.根据图①到图②的变化过程可以写出一个整式的乘法公式,这个公式是____________________.三、解答题(本大题共4道小题)17. 运用完全平方公式计算:(1)(2a +3b )2; (2)(12m +4)2;(3)(-x -14)2; (4)(-13+3b )2.18. 王红同学计算(2+1)(22+1)(24+1)的过程如下:解:原式=(2-1)(2+1)(22+1)(24+1) =(22-1)(22+1)(24+1) =(24-1)(24+1) =28-1.请根据王红的方法求(2+1)(22+1)(24+1)(28+1)…(232+1)+1的个位数字.19. 认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应地,我们可以计算出多项式的展开式,如:(a +b )1=a +b ,(a +b )2=a 2+2ab +b 2,(a +b )3=a 3+3a 2b +3ab 2+b 3,…. 下面我们依次对(a +b )n 展开式的各项系数进一步研究发现,当n 取正整数时可以单独列成如图所示的形式:上面的多项式展开系数表称为“杨辉三角形”.仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)(a +b )n 展开式中共有多少项? (2)请写出多项式(a +b )5的展开式.20. 计算:2111111111124162562n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭答案一、选择题(本大题共10道小题)1. 【答案】C [解析] 因为结果是9m 2-16n 2,9m 2应是相同的项的平方,所以相同项应为3m 或-3m ,16n 2应是相反项的平方,相反项应为-4n 和4n.2. 【答案】B3. 【答案】A[解析] M 与2x -y 2的相同项应为-y 2,相反项应为-2x 与2x ,所以M 为-2x -y 2,即-(2x +y 2).4. 【答案】A[解析] 原式=(-2x -3)(-2x +3)=(-2x)2-32=4x 2-9.5. 【答案】B6. 【答案】C[解析] (x +1)(x 2+1)(x -1)=(x +1)(x -1)(x 2+1) =(x 2-1)(x 2+1) =x 4-1.7. 【答案】A[解析] 根据题意得(a +2b )(a -2b )=a 2-4b 2.8. 【答案】B[解析] 原式=(4n 2+4n +1)-(4n 2-4n +1)=8n ,则原式的值一定能被8整除.9. 【答案】D[解析] 因为(x +a)2=x 2+bx +25,所以x 2+2ax +a 2=x 2+bx +25.所以⎩⎨⎧2a =b ,a 2=25,解得⎩⎨⎧a =5,b =10或⎩⎨⎧a =-5,b =-10.10. 【答案】A【解析】已知关系式可化为2220a b c ab bc ac ++---=,即2221(222222)02a b c ab bc ac ++---=, 所以2221[()()()]02a b b c a c -+-+-=,故a b =,b c =,c a =.即a b c ==.选A .二、填空题(本大题共6道小题)11. 【答案】2x (或-2x 或14x 4) 【解析】x 2+2x +1=(x +1)2;x 2-2x +1=(x -1)2;14x 4+x 2+1=(12x 2+1)2.12. 【答案】()()2254542516a b a b a b +-=- 【解析】()()2254542516a b a b a b +-=-13. 【答案】±3[解析] (x +my)(x -my)=x 2-m 2y 2=x 2-9y 2,所以m 2=9.所以m=±3.14. 【答案】22()()a b a b a b +-=-【解析】左图中阴影部分的面积为22a b -,右图中阴影部分的面积为1(22)()()()2b a a b a b a b +-=+-,故验证了公式22()()a b a b a b +-=-(反过来写也可)15. 【答案】224()()ab a b a b =+--【解析】22()()4a b a b ab -=+-或224()()ab a b a b =+--16. 【答案】(a +b)(a -b)=a 2-b 2三、解答题(本大题共4道小题)17. 【答案】解:(1)原式=4a 2+12ab +9b 2. (2)原式=14m 2+4m +16. (3)原式=x 2+12x +116. (4)原式=19-2b +9b 2.18. 【答案】解:原式=(2-1)(2+1)(22+1)(24+1)(28+1)…(232+1)+1 =(22-1)(22+1)(24+1)(28+1)…(232+1)+1 =(24-1)(24+1)(28+1)…(232+1)+1 =… =264-1+1 =264.因为264的个位数字是6,所以(2+1)(22+1)(24+1)(28+1)…(232+1)+1的个位数字是6.19. 【答案】解:(1)由已知可得:(a +b)1展开式中共有2项, (a +b)2展开式中共有3项, (a +b)3展开式中共有4项, ……则(a +b)n 展开式中共有(n +1)项. (2)(a +b)1=a +b , (a +b)2=a 2+2ab +b 2,(a +b)3=a 3+3a 2b +3ab 2+b 3,…则(a +b)5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5.20. 【答案】41122n --【解析】原式211111************n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭4411121222n n -⎛⎫=-=- ⎪⎝⎭.。
专题15 乘法公式的应用专题探究(一)利用乘法公式求面积:【类题训练】1.如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后用剩余的部分剪开后拼成一个长方形,上述操作能验证的等式是()A.a2+ab=a(a+b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)【分析】用代数式分别表示左图、右图的涂色部分的面积即可.【解答】解:左图,涂色部分的面积为a2﹣b2,拼成右图的长为(a+b),宽为(a﹣b),因此面积为(a+b)(a﹣b),因此有:a2﹣b2=(a+b)(a﹣b),故选:D.2.如图1,将边长为a的正方形纸片,剪去一个边长为b的小正方形纸片.再沿着图1中的虚线剪开,把剪成的两部分(1)和(2)拼成如图2的平行四边形,这两个图能解释下列哪个等式()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2+b2=(a+b)(a﹣b)D.a2﹣b2=(a+b)(a﹣b)【分析】用代数式分别表示各个部分的面积,再根据拼图前后面积之间的关系可得结论.【解答】解:图1中(1)(2)两部分的面积和可以看作两个正方形的面积差,即a2﹣b2,图2是由(1)(2)两部分拼成的底为a+b,高为a﹣b的平行四边形,因此面积为(a+b)(a﹣b),因此有a2﹣b2=(a+b)(a﹣b),故选:D.3.如图,将大正方形通过剪、割、拼后分解成新的图形,利用等面积法可证明某些乘法公式,在给出的4幅拼法中,其中能够验证平方差公式的有()A.①②③④B.①②③C.①③D.③④【分析】根据各个图形的拼图的面积计算方法分别用等式表示后,再进行判断即可.【解答】解:图1可以验证的等式为:a2﹣b2=(a+b)(a﹣b),因此图1可以验证乘法公式;图2可以验证的等式为:a2=(a﹣b)2+b2+2b(a﹣b),因此图2不能验证乘法公式;图3可以验证的等式为:a2﹣b2=(a+b)(a﹣b),因此图3可以验证乘法公式;图4可以验证的等式为:(a+b)2=(a﹣b)2+4ab,因此图4不能验证乘法公式;所以能够验证乘法公式的是:图1,图3,故选:C.4.如图,M是AG的中点,B是AG上一点.分别以AB、BG为边,作正方形ABCD和正方形BGFE,连接MD和MF.设AB=a,BG=b,且a+b=10,ab=21,则图中阴影部分的面积为()A.46B.33C.28D.52【分析】用两个正方形的面积之和,减去两个空白三角形的面积进行列式计算.【解答】解:∵(a+b)2=a2+2ab+b2,∴a2+b2=(a+b)2﹣2ab,由题意得,图中阴影部分的面积为:a2+b2﹣(+)=(a+b)2﹣2ab﹣,=﹣2ab,∴当a+b=10,ab=21时,原式=﹣2×21=75﹣42=33,故选:B.5.如图,有两个正方形纸板A,B,纸板A与B的面积之和为34.现将纸板B按甲方式放在纸板A的内部,阴影部分的面积为4.若将纸板A,B按乙方式并列放置后,构造新的正方形,则阴影部分的面积为()A.30B.32C.34D.36【分析】先设A,B的边长分别是a,b,再用a,b边上阴影部分的面积求解.【解答】解:设A的边长a,B的边长是b,则a2+b2=34,根据题意得:(a﹣b)2=4,∴a2+b2﹣2ab=4,∴2ab=30,∴乙图阴影部分的面积为:(a+b)2﹣a2﹣b2=2ab=30,故选:A.6.如图①,现有边长为b和a+b的正方形纸片各一张,长和宽分别为b,a的长方形纸片一张,其中a<b.把纸片Ⅰ,Ⅲ按图②所示的方式放入纸片Ⅱ内,已知图②中阴影部分的面积满足S1=6S2,则a,b满足的关系式为()A.3b=4a B.2b=3a C.3b=5a D.b=2a【分析】用含a,b的代数式表示出S1,S2,即可得出答案.【解答】解:由题意得,,,∵S1=6S2,∴2ab=6(ab﹣a2),2ab=6ab﹣6a2,∵a≠0,∴b=3b﹣3a,∴2b=3a,故选:B.7.在数学活动课上,一位同学用四张完全一样的长方形纸片(长为a,宽为b,a>b)搭成如图一个大正方形,面积为132,中间空缺的小正方形的面积为28.下列结论中,正确的有()①(a﹣b)2=28;②ab=26;③a2+b2=80;④a2﹣b2=64A.①②③B.①②④C.①③④D.②③④【分析】根据拼图得出,(a+b)2=132,(a﹣b)2=28,ab==26,再根据公式变形逐项进行判断即可.【解答】解:由拼图可知,大正方形的面积的边长为a+b,中间空缺的小正方形的边长为a﹣b,根据题意可知,(a+b)2=132,(a﹣b)2=28,ab==26,∴a2+2ab+b2=132,∴a2+b2=132﹣2×26=80,由于(a+b)2=132,(a﹣b)2=28,而a>b,∴a+b=,a﹣b=,∴a2﹣b2=(a+b)(a﹣b)=4,因此①②③正确,④不正确,故选:A.8.边长为a的正方形ABCD与边长为b的正方形DEFG按如图所示的方式摆放,点A,D,G在同一直线上.已知a+b=10,ab=24.则图中阴影部分的面积为.【分析】用代数式表示阴影部分的面积,再利用公式变形后,代入计算即可.【解答】解:由S阴影部分=S正方形ABCD+S正方形DEFG﹣S△ABC﹣S△AFG可得,S阴影部分=a2+b2﹣a2﹣b(a+b)=a2+b2﹣ab=(a2+b2﹣ab)=[(a+b)2﹣3ab]=×(100﹣72)=14,故答案为:14.9.数学活动课上,小明同学尝试将正方形纸片剪去一个小正方形,剩余部分沿虚线剪开,拼成新的图形.现给出下列3种不同的剪、拼方案,其中能够验证平方差公式的方案是.(请填上正确的序号)【分析】针对每一种拼法,利用代数式表示拼接前、后的面积,适当化简或变形可得答案.【解答】解:在图①中,左边的图形阴影部分的面积=a2﹣b2,右边图形中阴影部分的面积=(a+b)(a﹣b),故可得:a2﹣b2=(a+b)(a﹣b),可以验证平方差公式;在图②中,阴影部分的面积相等,左边阴影部分的面积=a2﹣b2,右边阴影部分面积=(a+b)•(a﹣b),可得:a2﹣b2=(a+b)(a﹣b),可以验证平方差公式;在图③中,阴影部分的面积相等,左边阴影部分的面积=(a+b)2﹣(a﹣b)2=4ab,右边阴影部分面积=2a•2b=4ab,可得:(a+b)2﹣(a﹣b)2=2a•2b,不可以验证平方差公式.故答案为:①②.10.建党100周年主题活动中,702班浔浔设计了如图1的“红色徽章”其设计原理是:如图2,在边长为a的正方形EFGH四周分别放置四个边长为b的小正方形,构造了一个大正方形ABCD,并画出阴影部分图形,形成了“红色徽章”的图标.现将阴影部分图形面积记作S1,每一个边长为b的小正方形面积记作S2,若S1=6S2,则的值是.【分析】利用正方形ABCD的面积减去空白部分的面积求出阴影部分的面积S1,结合S1=6S2,求出a与b的比值.【解答】解:∵S1=(a+2b)2﹣b2﹣a(a+2b)﹣b2﹣(a+b)2=2ab+b2,S2=b2,S1=6S2,∴2ab+b2=6b2,∴.故答案为:.11.如图是A型卡片(边长为a的正方形)、B型卡片(长为a、宽为b的长方形)、C型卡片(边长为b的正方形).现有4张A卡片,11张B卡片,7张C卡片,取其中的若干张卡片(3种类型卡片都要取到)无缝隙、无重叠地拼正方形或长方形,下列说法正确的是.(只填序号)①可拼成边长为a+3b的正方形;②可拼成长、宽分别为2a+4b、2a+b的长方形;③用所有卡片可拼成一个大长方形;④最多可拼出4种面积不同的正方形.【分析】根据长方形、正方形的面积,结合完全平方公式确定所需卡片型号和数量即可.【解答】解:∵边长为a+3b的正方形的面积为a2+9b2+6ab,∴需要1张A型卡片,9张C型卡片,6张B型卡片,∵C型卡片只有7张,∴不能拼成边长为a+3b的正方形;故①不符合题意;∵长、宽分别为2a+4b、2a+b的长方形的面积为(2a+4b)(2a+b)=4a2+10ab+4b2,∴需要4张A型卡片,4张C型卡片,10张B型卡片,∴可拼成长、宽分别为2a+4b、2a+b的长方形;故②符合题意;所有卡片的面积和为4a2+11ab+7b2=(a+b)(4a+7b),∴用所有卡片能可拼成一个大长方形,长方形的长为4a+7b,宽为a+b,故③符合题意;∵(a+b)2=a2+b2+2ab,需要1张A型卡片,1张C型卡片,2张B型卡片,(a+2b)2=a2+4ab+4b2,需要1张A型卡片,4张C型卡片,4张B型卡片,(2a+b)2=4a2+4ab+b2,需要4张A型卡片,1张C型卡片,4张B型卡片,(2a+2b)2=4a2+8ab+4b2,需要4张A型卡片,4张C型卡片,8张B型卡片,∴最多可拼出4种面积不同的正方形;故④符合题意;故答案为:②③④.12.如图1所示,将一张长为2m,宽为n(m>n)的长方形纸片沿虚线剪成4个直角三角形,拼成如图2的正方形ABCD(相邻纸片之间不重叠,无缝隙),若正方形ABCD的面积为20,中间空白处的正方形EFGH的面积为4,则:(1)m+n=;(2)原长方形纸片的周长是.【分析】(1)由拼图可知m2+n2=AB2=20,mn=8,由完全平方公式可求出答案;(2)原长方形的周长为2m+2n,利用(1)的结论进行计算即可.【解答】解:(1)∵正方形ABCD的面积为20,中间空白处的正方形EFGH的面积为4,∴m2+n2=AB2=20,mn=8,又∵(m+n)2=m2+n2+2mn=36,∴m+n=6,(取正值)故答案为:6;(2)∵m+n=6,mn=8,且m>n,∴m=4,n=2,∴原长方形的周长为4m+2n=16+4=20,故答案为:24013.两个边长分别为a和b的正方形(a>b)如图放置(图1,2,3),若阴影部分的面积分别记为S1,S2,S3.(1)用含a,b的代数式分别表示S1,S2,S3;(2)若S1=1,S3=3,求S2的值;(3)若对于任意的正数a、b,都有S1+mS3=kS2(m,k为常数),求m,k的值.【分析】(1)图1中,直接求出阴影的边长,都是a﹣b;图2中,两个正方形的面积与两个白色三角形的面积的和的差;图3中,阴影部分是直角三角形,直接用直角边长的乘积除以2.(2)把S1=1,和S3=3代入(1)中,便可解出ab=6,a2+b2=13值,整体代入S2=a2﹣ab+b2=(a2+b2)﹣ab=﹣3=;(3)把(1)中的三个等式代入S1+mS3=kS2,经过整理,有点巧,再由待定系数法解得.【解答】解:(1)图1中,阴影的边长都是a﹣b,所以S1=(a﹣b)2;图2中,阴影面积S2=(a2+b2)﹣[a2+(a+b)b]=a2﹣ab+b2;图3中,S3=ab.(2)当S1=1,S3=3时,,解得ab=6,a2+b2=13,代入S2,得,S2=a2﹣ab+b2=(a2+b2)﹣ab=﹣3=,(3)因为S1=(a﹣b)2;S2=a2﹣ab+b2;S3=ab.对于任意的正数a、b,都有S1+mS3=kS2(m,k为常数),则(a﹣b)2+m(ab)=k(a2﹣ab+b2),整理得:2(a²+b²)+ab(m﹣4)=(a²+b²)k+ab(﹣k),由于m,k为常数,故由待定系数法得:k=2,m﹣4=﹣k,解得m=2,k=2.14.图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的边长等于;(2)观察图2写出三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系;(3)若mn=﹣3,m﹣n=5,则:①(m+n)2的值为;②m2+n2的值为;③m4+n4的值为.【分析】(1)根据线段的差可得结论;(2)方法1,阴影部分的面积等于大正方形的面积减去4个长方形面积,方法2,阴影部分小正方形的边长为m﹣n,即可计算出面积,可得两次计算的都是阴影部分的面积,即可得出答案;(3)分别根据完全平方公式可解答.【解答】解:(1)图2中的阴影部分的正方形的边长等于m ﹣n ;故答案为:m ﹣n ;(2)根据题意,方法1:阴影部分的面积等于大正方形的面积减去4个长方形面积,即(m +n )2﹣4mn ;方法2,阴影部分小正方形的边长为m ﹣n ,则面积为(m ﹣n )2;∴(m ﹣n )2=(m +n )2﹣4mn ;故答案为:(m ﹣n )2=(m +n )2﹣4mn ;(3)由(2)知:(m ﹣n )2=(m +n )2﹣4mn ,∵mn =﹣3,m ﹣n =5,①(m +n )2=52+4×(﹣3)=25﹣12=13;故答案为:13;②m 2+n 2=(m +n )2﹣2mn =13﹣2×(﹣3)=13+6=19;故答案为:19;③m 4+n 4=(m 2+n 2)2﹣2m 2n 2=192﹣2×(﹣3)2=361﹣18=343;故答案为:343.(二)乘法公式的直接运用:1.平方差公式:()()22b a b a b a -=-+2.完全平方公式:()()2222222;2b ab a b a b ab a b a +-=-++=+【类题训练】1.计算:(2x ﹣y )2﹣(x ﹣2y )2.【分析】用平方差公式计算.【解答】解:原式=[(2x ﹣y )+(x ﹣2y )][(2x ﹣y )﹣(x ﹣2y )]=(3x ﹣3y )(x +y )=3(x ﹣y )(x +y )=3(x 2﹣y 2)=3x 2﹣3y 2.2.计算:(x ﹣2y +3)(x +2y ﹣3).【分析】原式利用平方差公式,及完全平方公式化简即可得到结果.【解答】解:原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.3.已知x=,求(3x﹣1)2+(1+3x)(1﹣3x)的值.【分析】根据完全平方公式、平方差公式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(3x﹣1)2+(1+3x)(1﹣3x)=9x2﹣6x+1+1﹣9x2=﹣6x+2,当x=时,原式=﹣6×+2=﹣1+2=1.4.先化简,再求值:(x+2y)2﹣(x﹣2y)2﹣(x+2y)(x﹣2y)﹣4y2,其中x=﹣2,y =.【分析】利用完全平方公式和平方差公式计算乘方和乘法,然后去括号,合并同类项进行化简,最后代入求值.【解答】解:原式=x2+4xy+4y2﹣(x2﹣4xy+4y2)﹣(x2﹣4y2)﹣4y2=x2+4xy+4y2﹣x2+4xy﹣4y2﹣x2+4y2﹣4y2=﹣x2+8xy,当x=﹣2,y=时,原式=﹣(﹣2)2+8×(﹣2)×=﹣4﹣8=﹣12.5.先化简,再求值:(2m+1)(2m﹣1)﹣(m﹣1)2+(2m)3÷(﹣8m),其中m2+m ﹣2=0.【分析】先算乘方,再算乘法和除法,再合并同类项,最后代入求出即可.【解答】解:原式=4m2﹣1﹣(m2﹣2m+1)+8m3÷(﹣8m)=4m2﹣1﹣m2+2m﹣1﹣m2=2m2+2m﹣2=2(m2+m)﹣2,∵m2+m﹣2=0,∴m2+m=2,当m2+m=2时,原式=2×2﹣2=2.6.观察下列各式:(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4;…根据这一规律计算:(1)(a﹣b)(a4+a3b+a2b2+ab3+b4)=;(a﹣b)(a n+a n﹣1b+a n﹣2b2+…+ab n﹣1+b n)=;(2)22021+22020+22019+…+22+2+1.【分析】(1)根据规律即可得出答案;(2)原式变形成公式的形式,用公式即可得出答案.【解答】解:(1)根据规律得:(a﹣b)(a4+a3b+a2b2+ab3+b4)=a5﹣b5;(a﹣b)(a n+a n﹣1b+a n﹣2b2+…+ab n﹣1+b n)=a n+1﹣b n+1;故答案为:a5﹣b5;a n+1﹣b n+1;(2)解:原式=(2﹣1)(22021+22020•1+⋯+2•12020+12021)=22022﹣1.(三)运用乘法公式进行简便计算:【类题训练】1.运用乘法公式进行简便计算:(1)2022+202×198+982(2)20162﹣2017×2015(3)1992.(4)1232﹣122×124.(5)1007×993;(6)32×20.22+0.68×2022.(7)1002-992+982-972+962-952+……+22-12【分析】(1)根据完全平方公式以及平方差公式化简计算即可;(2)根据完全平方公式以及平方差公式化简即可.(3)原式变形后,利用平方差公式计算即可得到结果;(4)由1992=(200﹣1)2,再用完全平方公式计算即可.(5)根据平方差公式简便计算即可;(6)原式变形成0.32×2022+0.68×2022,逆用乘法分配律即可(7)每两个分组,再利用平方差公式,最后原式可化简为100+99+98+97+……+1,再利用首末项和公式求解即可【解答】解:(1)原式=(200+2)2+(200+2)(200﹣2)+(100﹣2)2=2002+800+4+2002﹣4+1002﹣400+4=40000+800+40000+10000﹣400+4=90404;(2)原式=20162﹣(2016+1)×(2016﹣1)=20162﹣(20162﹣1)=20162﹣20162+1=1;(3)1992=(200﹣1)2=2002﹣400+1=39601.(4)1232﹣122×124=1232﹣(123﹣1)×(123+1)=1232﹣(1232﹣12)=1.(5)原式=(1000+7)(1000﹣7)=10002﹣72=1000000﹣49=999951;(6)原式=0.32×2022+0.68×2022=2022×(0.32+0.68)=2022×1=2022.(7)1002-992+982-972+962-952+……+22-12=(1002-992)+(982-972)+(962-952)+……+(22-12)=(100-99)(100+99)+(98-97)(98+97)+……+(2-1)(2+1)=100+99+98+97+……+2+1=½·(100+1)·100=5050(四)完全平方公式的变形应用:完全平方公式的变形公式:()()ab b a b a 422+-=+()()()()222-222222b a b a ab b a ab b a b a -++=+-=+=+ ()()()()4-2-2-22222222b a b a b a b a b a b a ab -+=-+=++=)()( 【类题训练】1.若(a +b )2=25,a 2+b 2=13,则ab 的值为( )A .6B .﹣6C .12D .﹣12【分析】利用完全平方公式(a +b )2=a 2+2ab +b 2=25,且a 2+b 2=13,即可求ab .【解答】解:∵(a +b )2=a 2+2ab +b 2=25,a 2+b 2=13,∴2ab =25﹣13=12,∴ab =6,故选:A .2.已知:(2021﹣a )(2020﹣a )=3,则(2021﹣a )2+(2020﹣a )2的值为( )A .7B .8C .9D .12【分析】根据完全平方公式(a ±b )2=a 2±2ab +b 2,即可求出答案.【解答】解:设x =2021﹣a ,y =2020﹣a ,∴x ﹣y =2021﹣a ﹣2020+a =1,∵(2021﹣a )(2020﹣a )=3,∴xy =3,∴原式=x 2+y 2=(x﹣y)2+2xy=1+2×3=7,故选:A.3.已知a+b=10,ab=﹣5,则a2+b2=.【分析】根据完全平方公式进行计算即可.【解答】解:∵a+b=10,ab=﹣5,∴a2+b2=(a+b)2﹣2ab=102﹣2×(﹣5)=100+10=110.故答案为:110.4.已知:x+y=0.34,x+3y=0.86,则x2+4xy+4y2=.【分析】原式利用完全平方公式化简,将已知等式变形后代入计算即可求出值.【解答】解:∵x+y=0.34,x+3y=0.86,∴2x+4y=1.2,即x+2y=0.6,则x2+4xy+4y2=(x+2y)2=0.36.故答案为:0.36.5.若a+9=b+8=c+7,则(a﹣b)2+(b﹣c)2﹣(c﹣a)2=.【分析】由a+9=b+8=c+7可得:a﹣b=﹣1,b﹣c=﹣1,c﹣a=2,将其代入即可.【解答】解:∵a+9=b+8=c+7,∴a﹣b=﹣1,b﹣c=﹣1,c﹣a=2,∴原式=(﹣1)2+(﹣1)2﹣22=﹣2,故答案为:﹣2.6.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.若a+b=8,ab=10,则S1+S2=;当S1+S2=40时,则图3中阴影部分的面积S3=.【分析】根据拼图可用a、b的代数式表示S1,S2,进而根据a+b=8,ab=10,求出S1+S2的值即可;由第一问可知,当S1+S2=40时,就是a2+b2﹣ab=40,再利用a、b的代数式表示S3,变形后再整体代入计算即可求出答案.【解答】解:由图1可得,S1=a2﹣b2,由图2可得,S2=2b2﹣ab,因为a+b=8,ab=10,所以S1+S2=a2﹣b2+2b2﹣ab=a2+b2﹣ab=(a+b)2﹣3ab=82﹣3×10=64﹣30=34;由图3可得,S3=a2+b2﹣b(a+b)﹣a2=a2+b2﹣ab=(a2+b2﹣ab)=(S1+S2)=×40=20;故答案为:34,20.7.已知a+b=5,ab=.(1)求a2+b2的值;(2)求a﹣b的值.【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【解答】解:(1)∵a+b=5,ab=,∴(a+b)2=25,∴a2+2ab+b2=25,∴a2+b2=25﹣2ab=25﹣=;(2)∵a2+b2=,ab=,∴a2+b2﹣2ab=16,∴(a﹣b)2=16,∴a﹣b=±4.8.若,求:①(b﹣c)2+3(b﹣c)+3的值;②2a2+2b2+2c2﹣2ab﹣2bc﹣2ac的值.【分析】①根据,得,代入(b﹣c)2+3(b﹣c)+3,计算即可;②先拆项,再配成完全平方形式,再把,,代入,计算即可.【解答】解:①由得,∴(b﹣c)2+3(b﹣c)+3=+3×(﹣)+3=﹣+3=;②2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=a2﹣2ab+b2+b2﹣2bc+c2+a2﹣2ac+c2=(a﹣b)2+(b﹣c)2+(a﹣c)2当,时,原式==.9.阅读理解:若x满足(80﹣x)(x﹣60)=30,求(80﹣x)2+(x﹣60)2的值.解:设80﹣x=a,x﹣60=b,则(80﹣x)(x﹣60)=ab=30,a+b=(80﹣x)+(x﹣60)=20,∴(80﹣x)2+(x﹣60)2=a2+b2=(a+b)2﹣2ab=202﹣2×30=340.解决问题(1)若x满足(20﹣x)(x﹣10)=﹣10,求(20﹣x)2+(x﹣10)2的值;(2)若x满足(2022﹣x)2+(2020﹣x)2=4048,求(2022﹣x)(2020﹣x)的值.【分析】(1)根据题目所给解题方法,设20﹣x=a,x﹣10=b,则a+b=10,根据a2+b2=(a+b)2﹣2ab,即可得出答案;(2)设(2022﹣x)=a,(2020﹣x)=b,则a﹣b=2,根据a2+b2=(a﹣b)2+2ab,即可得出答案.【解答】解:(1)设(20﹣x)=a,(x﹣10)=b,则(20﹣x)(x﹣10)=ab=﹣10,a+b=(20﹣x)+(x﹣10)=10,所以(20﹣x)2+(x﹣10)2=a2+b2=(a+b)2﹣2ab=102+2×10=120;(2)设(2022﹣x)=a,(2020﹣x)=b,则a﹣b=(2022﹣x)﹣(2020﹣x)=2,因为(2022﹣x)2+(2020﹣x)2=4048,所以(2022﹣x)2+(2020﹣x)2=a2+b2=(a﹣b)2+2ab=4048,即22+2×(2022﹣x)(2020﹣x)=4048,(2019﹣x)(2017﹣x)=2022.(五)综合应用:1.若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p=2q B.q=2p C.p+2q=0D.q+2p=0【分析】利用多项式乘多项式法则计算,令一次项系数为0求出p与q的关系式即可.【解答】解:(x2+px+q)(x﹣2)=x3﹣2x2+px2﹣2px+qx﹣2q=x3+(p﹣2)x2+(q﹣2p)x﹣2q,∵结果不含x的一次项,∴q﹣2p=0,即q=2p.故选:B.2.已知a,b是常数,若化简(﹣x+a)(2x2+bx﹣3)的结果不含x的二次项,则36a﹣18b ﹣1的值为()A.﹣1B.0C.17D.35【分析】把式子展开,找到所有x2项的系数,合并后令其为0,再进行计算.【解答】解:原式=﹣2x3﹣bx2+3x+2ax2+abx﹣3a=﹣2x3+(2a﹣b)x2+(3+ab)x﹣3a∵(﹣x+a)(2x2+bx﹣3)结果不含x的二次项∴2a﹣b=0∵式子36a﹣18b﹣1=18(2a﹣b)﹣1∴36a﹣18b﹣1=18×0﹣1=﹣1故选:A.3.若代数式x2+3x+2可以表示为(x﹣1)2+a(x﹣1)+b的形式,则a+b的值是()A.10B.11C.12D.13【分析】利用x2+3x+2=(x﹣1)2+a(x﹣1)+b,将原式进行化简,得出a,b的值,进而得出答案.【解答】解:∵x2+3x+2=(x﹣1)2+a(x﹣1)+b=x2+(a﹣2)x+(b﹣a+1),∴a﹣2=3,∴a=5,∵b﹣a+1=2,∴b﹣5+1=2,∴b=6,∴a+b=5+6=11,故选:B.4.已知代数式x2+y2+4x﹣6y+13=0,则(y+1)x的值为()A.16B.﹣16C.﹣D.【分析】把含x和y的项分别写成完全平方公式的形式,根据非负数的性质求出x,y,再计算代数式的值.【解答】解:∵x2+y2+4x﹣6y+13=0,∴x2+4x+4+y2﹣6y+9=0,∴(x+2)2+(y﹣3)2=0,∴x+2=0,y﹣3=0,∴x=﹣2,y=3,∴原式=(3+1)﹣2=4﹣2=,故选:D.5.若2m×8n=32,,则的值为.【分析】已知等式利用幂的乘方与积的乘方运算法则,同底数幂的乘除法则计算,得到关于m与n的方程,组成方程组,求出方程组的解得m与n的值,即可求出所求.【解答】解:∵2m×8n=2m×23n=2m+3n=32=25,2m÷4n=2m÷22n=2m﹣2n==2﹣4,∴m+3n=5,m﹣2n=﹣4,两式相加得:2m+n=1,则原式=(2m+n)=.故答案为:.6.已知x2+xy+y=14①,y2+xy+x=28②,则x+y的值为.【分析】先把两个方程相加,得到关于(x+y)的一元二次方程,然后利用因式分解法解方程即可.【解答】解:①+②得,x2+2xy+y2+x+y=42,∴(x+y)2+(x+y)﹣42=0,∴(x+y+7)(x+y﹣6)=0,∴x+y=﹣7或x+y=6,故答案为:﹣7或6.7.已知a+b=1,ab=﹣2,则代数式(a+1)(b+1)的值是.【分析】原式利用多项式乘以多项式法则计算,整理后把a+b与ab的值代入计算即可求出值.【解答】解:原式=ab+a+b+1=ab+(a+b)+1,当a+b=1,ab=﹣2时,原式=﹣2+1+1=0,故答案为:0.8.已知x=+1,则代数式x2﹣2x+1的值为.【分析】根据x的值和完全平方差公式可以解答本题.【解答】解:∵x=+1,∴x2﹣2x+1=(x﹣1)2=(+1﹣1)2=()2=2,故答案为:2.9.若a2+ma+25是一个完全平方式,则实数m=.【分析】根据完全平方式即可求出答案.【解答】解:∵(a±5)2=a2±10a+25,∴m=±10,故答案为:±10.10.若25x2+1加上一个单项式能成为一个完全平方式,这个单项式是.【分析】把25x2看作中间项或第一项,根据完全平方公式可解答,当加上的项是﹣1或﹣25x2时,同样成立.【解答】解:①25x2是平方项时,25x2±10x+1=(5x±1)2,∴可添加的项是10x或﹣10x,②25x2是乘积二倍项时,+25x2+1=,∴可添加的项是,③可添加﹣1或﹣25x2,综上所述可添加的项是:10x或﹣10x或﹣1或﹣25x2或.故答案为:10x或﹣10x或﹣1或﹣25x2或.11.下列有四个结论:①若(1﹣x)x+1=1,则x=﹣1;②若a2+b2=3,a﹣b=1,则(2﹣a)(2﹣b)的值为5﹣2;③若规定:当ab≠0时,a⊗b=a+b﹣ab,若a⊗(4﹣a)=0,则a=2;④若4x=a,8y=b,则24x﹣3y可表示为;⑤已知多项式x2+4x+m是完全平方式,则常数m=4.其中正确的是.(填序号)【分析】①可以是零指数幂,可以是1的任何次幂,可以是﹣1的偶数次幂;②先求出ab的值,再求出a+b的值,最后代入代数式求值即可;③根据新定义列出方程求解即可;④把a,b先化成底数为2的式子,然后再求值;⑤根据完全平方公式判断即可.【解答】解:①可以分为三种情况:当x+1=0时,x=﹣1;当1﹣x=1时,x=0;当1﹣x=﹣1,x+1为偶数时,x=2,但x+1=3不是偶数,舍去;综上所述,x=﹣1或0.∴①不符合题意;②(2﹣a)(2﹣b)=4﹣2b﹣2a+ab=4﹣2(a+b)+ab,∵a﹣b=1,∴(a﹣b)2=1,∴a2+b2﹣2ab=1,∴ab=1,∴(a+b)2=a2+b2+2ab=3+2=5,∴a+b=±,当a+b=时,原式=4﹣2+1=5﹣2;当a+b=﹣时,原式=4+2+1=5+2,∴a+b=5±2.∴②不符合题意;③根据定义得:a+4﹣a+a(4﹣a)=0,解得:a=2,∴③符合题意;④∵4x=(22)x=22x,8y=(23)y=23y,∴24x﹣3y===,∴④不符合题意;⑤∵x2+4x+m是完全平方式,∴m=()2=4,∴⑤符合题意,故答案为:③⑤.12.已知实数m,n满足m﹣n=1,则代数式m2+2n+4m﹣1的最小值为.【分析】根据题意把原式变形,根据配方法把原式写成含有完全平方的形式,根据偶次方的非负性解答.【解答】解:∵m﹣n=1,∴n=m﹣1,则m2+2n+4m﹣1=m2+2m﹣2+4m﹣1=m2+6m﹣3=m2+6m+9﹣12=(m+3)2﹣12,∵(m+3)2≥0,∴(m+3)2﹣12≥﹣12,即代数式m2+2n+4m﹣1的最小值等于﹣12.故答案为:﹣12.13.已知S=t2﹣2t﹣15,则S的最小值为.【分析】先根据完全平方公式配方,再根据偶次方的非负性即可求解.【解答】解:∵S=t2﹣2t﹣15=(t﹣1)2﹣16,∴当t=1时,S取得最小值为﹣16.故答案为:﹣16.14.如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“奇特数”,例如:8=32﹣12,16=52﹣32,24=72﹣52;则8、16、24这三个数都是奇特数.(1)填空:32奇特数,2018奇特数.(填“是”或者“不是”)(2)设两个连续奇数是2n﹣1和2n+1(其中n取正整数),由这两个连续奇数构造的奇特数是8的倍数吗?为什么?(3)如图所示,拼叠的正方形边长是从1开始的连续奇数…,按此规律拼叠到正方形ABCD,其边长为99,求阴影部分的面积.【分析】(1)根据32=92﹣72,以及8、16、24这三个数都是奇特数,他们都是8的倍数,而2018=2×1009,不是8的整数倍,进行判断.(2)利用平方差公式计算(2n+1)2﹣(2n﹣1)2=(2n+1+2n﹣1)(2n+1﹣2n+1)=4n•2=8n,得到两个连续奇数构造的奇特数是8的倍数;(3)利用阴影部分面积为:S阴影部分=992﹣972+952﹣932+912﹣892+…+72﹣52+32﹣12,进而求出即可.【解答】解:(1)∵32=8×4=92﹣72,∴32是奇特数,∵因为2018不能表示为两个连续奇数的平方差,∴2018不是奇特数,故答案为:是,不是;(2)由这两个连续奇数构造的奇特数是8的倍数,理由:∵(2n+1)2﹣(2n﹣1)2=(2n+1+2n﹣1)(2n+1﹣2n+1)=4n•2=8n,∴由这两个连续奇数构造的奇特数是8的倍数.(3)S阴影部分=992﹣972+952﹣932+912﹣892+…+72﹣52+32﹣12=(99+97)(99﹣97)+(95+93)(95﹣93)+(91+89)(91﹣89)+…+(7+5)(7﹣5)+(3+1)(3﹣1)=(99+97+95+…+3+1)×2=×2=5000.15.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为a、宽为b的长方形.用A种纸片一张,B种纸片一张,C种纸片两张可拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积(答案直接填写到题中横线上);方法1 ;方法2 .(2)观察图2,请你直接写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系;(3)类似的,请你用图1中的三种纸片拼一个图形验证:(a+b)(a+2b)=a2+3ab+2b2,请你将该示意图画在答题卡上;(4)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(x﹣2018)2+(x﹣2020)2=34,求(x﹣2019)2的值.【分析】(1)依据正方形的面积计算公式即可得到结论;(2)依据(1)中的代数式,即可得出(a+b)2,a2+b2,ab之间的等量关系;(3)画出长为a+2b,宽为a+b的长方形,即可验证:(a+b)(a+2b)=a2+3ab+2b2;(4)①依据a+b=5,可得(a+b)2=25,进而得出a2+b2+2ab=25,再根据a2+b2=11,即可得到ab=7;②设x﹣2019=a,则x﹣2018=a+1,x﹣2020=a﹣1,依据(x﹣2018)2+(x﹣2020)2=34,即可得到(x﹣2019)2的值.【解答】解:(1)方法一:图2大正方形的面积=(a+b)2方法二:图2大正方形的面积=a2+b2+2ab故答案为:(a+b)2,a2+b2+2ab;(2)由题可得(a+b)2,a2+b2,ab之间的等量关系为:(a+b)2=a2+2ab+b2故答案为:(a+b)2=a2+2ab+b2;(3)如图所示,(4)①∵a+b=5,∴(a+b)2=25,∴a2+b2+2ab=25,又∵a2+b2=11,∴ab=7;②设x﹣2019=a,则x﹣2018=a+1,x﹣2020=a﹣1,∵(x﹣2018)2+(x﹣2020)2=34,(a+1)2+(a﹣1)2=34,2a2+2=34,a2=16,∴(x﹣2019)2=16.16.【探究】如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿线剪开,如图所示,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积;;(2)比较两图的阴影部分面积,可以得到乘法公式:(用字母表示);【应用】请应用这个公式完成计算:2001×1999;【拓展】(2+1)(22+1)(24+1)(28+1)…(232+1)+1结果的个位数字为.【分析】(1)分别用代数式表示两个图形的阴影部分的面积即可;(2)根据两个图形中阴影部分的面积相等得出答案;【应用】将2001×1999转化为(2000+1)(2000﹣1),根据平方差公式进行计算即可;【拓展】配上因式(2﹣1)后连续利用平方差公式计算出(2+1)(22+1)(24+1)(28+1)…(232+1)+1的结果,再由“幂”的个位数字的呈现的规律得出答案.【解答】解:(1)图①中阴影部分的面积可以看作是两个正方形的面积差,即a2﹣b2,图②中阴影部分是长为a+b,宽为a﹣b的长方形,因此面积为(a+b)(a﹣b),故答案为:a2﹣b2,(a+b)(a﹣b);(2)由两个图形的阴影部分的面积相等可得,a2﹣b2=(a+b)(a﹣b),故答案为a2﹣b2=(a+b)(a﹣b);【应用】2001×1999=(2000+1)(2000﹣1)=4000000﹣1=3999999;【拓展】原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1)+1=(22﹣1)(22+1)(24+1)(28+1)…(232+1)+1=(24﹣1)(24+1)(28+1)…(232+1)+1=(28﹣1)(28+1)…(232+1)+1=264﹣1+1=264,而21=2,22=4,23=8,24=16,25=32,26=64,27=128……所以264的个位数字为6,故答案为:6.17.(1)填空:(a﹣b)(a+b)=;(a﹣b)(a2+ab+b2)=;(a﹣b)(a3+a2b+ab2+b3)=;(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=(其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:①211+210+29+28+27+…+23+22+2;②﹣511+510﹣59+58﹣57+…﹣53+52﹣5.【分析】(1)根据平方差公式,根据多项式乘多项式计算,然后合并同类项;(2)由(1)中的规律进行猜想;(3)①首先把1化为(2﹣1)形式,再把括号里的每一项写成乘以1的乘方形式,构成(2)中形式,从而写出结论,进行计算;②先提取符号,把1化为[5﹣(﹣1)]形式,再把括号里的每一项写成乘以(﹣1)的乘方形式,构成(2)中形式,从而写出结论,进行计算.【解答】解:(1)(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4+a3b+a2b2+ab3﹣a3b﹣a2b2﹣ab3﹣b4=a4﹣b4.故答案为:a2﹣b2、a3﹣b3、a4﹣b4.(2)(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=a n﹣b n;故答案为:a n﹣b n.(3)①211+210+29+28+27+…+23+22+2=(2﹣1)(211+210×1+29×12+28×13+27×14+…+23×18+22×19+2×110+111)﹣111=212﹣112﹣1=4094;②﹣511+510﹣59+58﹣57+…﹣53+52﹣5=﹣[511﹣510+59﹣58+57﹣…+53﹣52+5]=﹣{[5﹣(﹣1)][511+510×(﹣1)+59×(﹣1)2+⋯+52×(﹣1)9+5×(﹣1)10+(﹣1)11]]﹣1=﹣[(512﹣(﹣1)12)]﹣1=﹣﹣=﹣(511+1).18.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:.方法②:.请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:.(2)根据(1)中的等式,解决如下问题:①已知:a﹣b=5,a2+b2=20,求ab的值;②已知:(x﹣2020)2+(x﹣2022)2=12,求(x﹣2021)2的值.【分析】(1)利用平移将草坪相对集中为边长为(a﹣b)米的正方形,可表示面积,再利用整体面积减去路的面积即可;(2)①根据完全平方公式进行变形即可;②设x﹣2020=m,x﹣2022=n,则m﹣n=2,m2+n2=(x﹣2020)2+(x﹣2022)2=12,利用完全平方公式可求出mn=4,进而求出(m+n)2=20,要求(x﹣201)2的值,即求()2的值即可.【解答】解:(1)方法①,通过平移两条路,草坪可看作边长为(a﹣b)米的正方形,因此面积为(a﹣b)2(平方米),方法②,从大正方形面积里减去两条路的面积,即(a2﹣ab﹣ab+b2)平方米,也就是(a2﹣2ab+b2)平方米,所以有(a﹣b)2=a2﹣2ab+b2,故答案为:(a﹣b)2,a2﹣2ab+b2,(a﹣b)2=a2﹣2ab+b2;(2)①∵a﹣b=5,∴a2﹣2ab+b2=25,又∵a2+b2=20,∴ab=﹣;②设x﹣2020=m,x﹣2022=n,则m﹣n=2,m2+n2=(x﹣2020)2+(x﹣2022)2=12,∴m2﹣2mn+n2=4,即12﹣2mn=4,∴mn=4,∴(m+n)2=(m﹣n)2+4mn=4+16=20,∴(x﹣201)2=()2===5,答:(x﹣2021)2的值为5.3132。
2017春七年级数学下册2.2.3 运用乘法公式进行计算习题(新版)湘教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017春七年级数学下册2.2.3 运用乘法公式进行计算习题(新版)湘教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017春七年级数学下册2.2.3 运用乘法公式进行计算习题(新版)湘教版的全部内容。
2。
2.3 运用乘法公式进行计算基础题知识点1 运用乘法公式进行计算1.运用公式(a+b)(a-b)=a2-b2计算(a+b-1)(a-b+1),下列变形正确的是(C) A.[a-(b+1)]2B.[a+(b+1)]2C.[a-(b-1)][a+(b-1)]D.[(a-b)+1][(a-b)-1]2.计算(-a+1)(a+1)(a2+1)的结果是(D)A.a4-1 B.a4+1C.a4+2a2+1 D.1-a43.计算(x-y+1)(x+y-1)的结果是(D)A.x2-2xy+y2-1 B.x2-y2-2y-1C.x2+y2-1 D.x2-y2+2y-14.计算(a+1)2(a-1)2的结果是(D)A.a4-1 B.a4+1C.a4+2a2+1 D.a4-2a2+15.若(a-b-c)·M=(a-c)2-b2,则M=a+b-c.6.计算:(1)(x+2y)(x2-4y2)(x-2y);解:原式=[(x+2y)(x-2y)](x2-4y2)=(x2-4y2)(x2-4y2)=x4-8x2y2+16y4.(2)(a+b-3)(a-b+3);解:原式=[a+(b-3)][a-(b-3)]=a2-(b-3)2=a2-(b2-6b+9)=a2-b2+6b-9。
专题复习:乘法公式知识点归纳及典例+练习题一、知识概述 1、平方差公式 由多项式乘法得到 (a+b)(a-b) =a -b . 即两个数的和与这两个数的差的积,等于它们的平方差. 2、平方差公式的特征 ①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数; ②右边是乘式中两项的平方差(相同项的平方减去相反项的平方); ③公式中的 a 和 b 可以是具体数,也可以是单项式或多项式; ④对于形如两数和与这两数差相乘的形式,就可以运用上述公式来计算. 3、完全平方公式 由多项式乘法得到(a±b) =a ±2ab+b2 2 2 2 2即两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的 2 倍. 推广形式:(a+b+c) =a +b +c +2ab+2bc+2ca 4、完全平方公式的特征 (a+b) =a +2ab+b 与(a-b) =a -2ab+b 都叫做完全平方公式,为了区别,我们把前者叫做两数 和的完全平方公式,后者叫做两数差的完全平方公式. ①两公式的左边:都是一个二项式的完全平方,二者仅有一个符号不同;右边:都是二次三项式,其 中有两项是公式左边两项中每一项的平方,中间是左边二项式中两项乘积的 2 倍,两者也仅有一个符号不 同. ②公式中的 a、b 可以是数,也可以是单项式或多项式. ③对于形如两数和(或差)的平方的乘法,都可以运用上述公式计算. 5、乘法公式的主要变式 (1)a -b =(a+b)(a-b); (2)(a+b) -(a-b) =4ab; (3)(a+b) +(a-b) =2(a +b ); (4)a +b =(a+b) -2ab=(a-b) +2ab (5)a +b =(a+b) -3ab(a+b). 熟悉这些变形公式,明确它们间联系,综合运用,常可简化解题过程. 注意:(1)公式中的 a,b 既可以表示单项式,也可以表示多项式. (2)乘法公式既可以单独使用,也可以同时使用. (3)这些公式既可以正用,也可以逆用,因此在解题时应灵活地运用公式,以计算简捷为宜.3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2二、典型例题讲解 例 1、计算: (1)(3a+2b)(2b-3a); (2)(x-2y)(-x-2y);(3) (4)(a+b+c)(a-b-c). 解:;(1)原式=(2b+3a)(2b-3a) =(2b) -(3a) =4b -9a2 2 2 2(2)原式=(-2y+x)(-2y-x) =(-2y) -x =4y -x2 2 2 2(3)原式=== (4)原式=[a+(b+c)][a-(b+c)] =a -(b+c)2 2 2 2=a -(b +2bc+c ) =a -b -2bc-c 例 2、计算: (1)2004 -19962 2 2 2 2 22(2)(x-y+z) -(x+y-z)2(3)(2x+y-3)(2x-y-3). 解:(1)2004 -1996 =(2004+1996)(2004-1996) =4000×8=32000 (2)(x-y+z) -(x+y-z)2 2 2 2=[(x-y+z)+(x+y-z)][ (x-y+z)-(x+y-z)]=2x(-2y+2z)=-4xy+4xz (3)(2x+y-3)(2x-y-3)=[(2x-3)+y][(2x-3)-y] =(2x-3) -y =4x -12x+9-y =4x -y -12x+9; 例 3、计算: (1)(3x+4y) ; (3)(2a-b) ;2 2 2 2 2 2 2 2 2(2)(-3+2a) ; (4)(-3a-2b)22解:(1)原式=(3x) +2·3x·4y+(4y) =9x +24xy+16y2 2 22(2)原式=(-3) +2·(-3)·2a+4a =4a -12a+922(3)原式=(2a) +2·2a·(-b)+(-b) =4a -4ab+b2 222(4)原式=[-(3a+2b)] =(3a+2b)2 22=(3a) +2·(3a)·2b+(2b) =9a +12ab+4b2 22例 4、已知 m+n=4, mn=-12,求(1);(2);(3).解:(1);(2);(3)2.例 5、多项式 9x +1 加上一个单项式后,使它能够成为一个整式的完全平方,那么加上的单项式可以是 ________(填上一个你认为正确的即可). 分析: 解答时,很多学生只习惯于课本上的完全平方的顺序,认为只有添加中间(两项的乘积的 2 倍)项,即 9x +1+6x=(3x+1) 或 9x -6x+1=(3x-1) ;但只要从多方面考虑,还会得出2 2 2 2,9x +1-1=9x =(3x) , 9x +1-9x =12, 所以添加的单项式可以是 6x,22222-6x,,-1,-9x .2答案:±6x 或 例 6、计算:或-1 或-9x2,并说明结果与 y 的取值是否有关. 解:从上述结果可以看出,结果中不含 y 的项,因此结果与 y 的取值无关. 点评: (1)利用平方差公式计算的关键是弄清具体题目中,哪一项是公式中的 a,哪一项是公式中的 b; (2)通常在各因式中, 相同项在前, 相反项在后, 但有时位置会发生变化, 因此要归纳总结公式的变化, 使之更准确的灵活运用公式. ①位置变化:(b+a)(-b+a)=(a+b)(a-b)=a -b ; ②符号变化:(-a-b)(a-b)=(-b-a)(-b+a)=(-b) -a =b -a ; ③系数变化:(3a+2b)(3a-2b)=(3a) -(2b) =9a -4b ; ④指数变化:(a +b )(a -b )=(a ) -(b ) =a -b ; ⑤连用公式变化:(a-b)(a+b)(a +b )(a +b ) =(a -b )(a +b )(a +b )=(a -b )(a +b ) =a -b ; ⑥逆用公式变化:(a-b+c) -(a-b-c)2 2 8 8 2 2 2 2 4 4 4 4 4 4 2 2 4 4 3 3 3 3 3 2 3 2 6 6 2 2 2 2 2 2 2 2 2 2=[(a-b+c)+(a-b-c)][(a-b+c)-(a-b-c)] =4c(a-b). 例 7、已知 .求 分析:的值.若直接代入求解则十分繁杂。
第一单元:小数乘法1、小数乘整数的意义与整数乘法的意义相同;就是求几个相同加数的和的简便运算。
如:1.2×5表示5个1.2是多少。
2、一个数乘纯小数的意义就是求这个数的十分之几、百分几、千分之几……是多少。
如:1.2×0.5表示求1.2的十分之五是多少。
3、小数乘法的计算方法:计算小数乘法;先按整数乘法算出积;再看因数中一共有几位小数;就从积的右边起数出几位;点上小数点。
乘得的积的小数位数不够;要在前面用0补足;再点上小数点。
4、一个数(0除外)乘1;积等于原来的数。
一个数(0除外)乘大于1的数;积比原来的数大。
一个数(0除外)乘小于1的数;积比原来的数小。
5、整数乘法的交换律、结合律和分配率;对于小数乘法也适用。
第二单元:小数除法1、小数除法的意义与整数除法的意义相同;是已知两个因数的积与其中一个因数;求另一个因数的运算。
如:2.4÷1.6表示已知两个因数的积是2.4与其中一个因数是1.6;求另一个因数是多少。
2、小数除以整数;按整数除法的方法去除;商的小数点要和被除数的小数点对齐。
如果除到末尾仍有余数;要添0再继续除。
3、被除数比除数大的;商大于1。
被除数比除数小的;商小于1。
4、计算除数是小数的除法;先移动除数的小数点;使它变成整数;除数的小数点向右移动几位;被除数的小数点也向右移动几位;数位不够的要添0补足。
再按照除数是整数的小数除法进行计算。
5、一个数(0除外)除以1;商等于原来的数。
一个数(0除外)除以大于1的数;商比原来的数小。
一个数(0除外)除以小于1的数;商比原来的数大。
6、A除以B=A÷B;A除B=B÷A;A去除B=B÷A;A被B除=A÷B。
7、一个数的小数部分;从某一位起;一个数字或者几个数字依次不断重复出现;这样的小数叫做循环小数。
8、小数部分的位数是有限的小数;叫做有限小数。
小数部分是无限的小数叫做无限小数。
完全平方公式专题训练试题精选(一)一.选择题(共30小题)1.(2014•六盘水)下列运算正确的是()A.(﹣2mn)2=4m2n2B.y2+y2=2y4C.(a﹣b)2=a2﹣b2D.m2+m=m32.(2014•本溪)下列计算正确的是()A.2a3+a2=3a5B.(3a)2=6a2C.(a+b)2=a2+b2D.2a2•a3=2a53.(2014•台湾)算式999032+888052+777072之值的十位数字为何?()A.1B.2C.6D.84.(2014•遵义)若a+b=2,ab=2,则a2+b2的值为()A.6B.4C.3D.25.(2014•南平模拟)下列计算正确的是()A.5a2﹣3a2=2 B.(﹣2a2)3=﹣6a6C.a3÷a=a2D.(a+b)2=a2+b2 6.(2014•拱墅区二模)如果ax2+2x+=(2x+)2+m,则a,m的值分别是()A.2,0 B.4,0 C.2,D.4,7.(2012•鄂州三月调考)已知,则的值为()A.B.C.D.无法确定8.(2012•西岗区模拟)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.x2+y2=x2y2C.x2y+xy2=x3y3D.x2÷x4=x﹣29.(2011•天津)若实数x、y、z满足(x﹣z)2﹣4(x﹣y)(y﹣z)=0,则下列式子一定成立的是()A.x+y+z=0 B.x+y﹣2z=0 C.y+z﹣2x=0 D.z+x﹣2y=010.(2011•深圳)下列运算正确的是()A.x2+x3=x5B.(x+y)2=x2+y2C.x2•x3=x6D.(x2)3=x611.(2011•浦东新区二模)下列各式中,正确的是()A.a6+a6=a12B.a4•a4=a16C.(﹣a2)3=(﹣a3)2D.(a﹣b)2=(b﹣a)212.(2010•台湾)若a满足(383﹣83)2=3832﹣83×a,则a值为()A.83 B.383 C.683 D.76613.(2010•钦州)下列各式运算正确的是()A.3a2+2a2=5a4B.(a+3)2=a2+9 C.(a2)3=a5D.3a2•2a=6a314.(2009•娄底)下列计算正确的是()A.(a﹣b)2=a2﹣b2B.a2•a3=a5C.2a+3b=5ab D.3﹣2=115.(2009•海南)在下列各式中,与(a﹣b)2一定相等的是()A.a2+2ab+b2B.a2﹣b2C.a2+b2D.a2﹣2ab+b216.(2009•顺义区一模)下列运算正确的是()A.a2+3a2=4a4B.3a2.a=3a3C.(3a3)2=9a5D.(2a+1)2=4a2+1 17.(2008•海淀区二模)如果实数x,y满足,那么xy的值等于()A.1B.2C.3D.518.(2007•云南)已知x+y=﹣5,xy=6,则x2+y2的值是()A.1B.13 C.17 D.2519.(2007•湘潭)下列计算正确的()A.x2•x3=x6B.(x﹣1)2=x2﹣1 C.D.3x2y﹣x2y=2x2y20.(2005•福州)小马虎在下面的计算中只做对了一道题,他做对的题目是()A.(a﹣b)2=a2﹣b2B.(﹣2a3)2=4a6C.a3+a2=2a5D.﹣(a﹣1)=﹣a﹣121.(2005•日照)某校数学课外活动探究小组,在老师的引导下进一步研究了完全平方公式.结合实数的性质发现以下规律:对于任意正数a、b,都有a+b≥2成立.某同学在做一个面积为3 600cm2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来作对角线用的竹条至少需要准备xcm.则x的值是()A.120B.60C.120 D.6022.(2005•黄冈)下列运算中正确的是()A.x5+x5=2x10B.﹣(﹣x)3•(﹣x)5=﹣x8C.(﹣2x2y)3•4x﹣3=﹣24x3y3D.(x﹣3y)(﹣x+3y)=x2﹣9y2 23.(2004•郑州)已知a=x+20,b=x+19,c=x+21,那么代数式a2+b2+c2﹣ab﹣bc﹣ac的值是()A.4B.3C.2D.124.(2004•临沂)如果x﹣=3,那么x2+=()A.5B.7C.9D.1125.(2003•宁夏)当x=﹣2时,代数式﹣x2+2x﹣1的值等于()A.9B.﹣9 C.1D.﹣126.(2001•重庆)已知,的值为()A.B.C.D.无解27.(1999•烟台)已知a+b=3,a3+b3=9,则ab等于()A.1B.2C.3D.428.(1999•南京)下列计算正确的是()A.(a+b)(a2+ab+b2)=a3+b3B.(a+b)2=a2+b2C.(a﹣b)(a2+2ab+b2)=a3﹣b3D.(a﹣b)2=a2﹣2ab+b229.(1998•台州)下列运算正确的是()A.B.(a+b)2=a2+b2C.|2﹣π|=π﹣2 D.(a2)3=a530.若M=3x2﹣8xy+9y2﹣4x+6y+13(x,y是实数),则M的值一定是()A.零B.负数C.正数D.整数完全平方公式专题训练试题精选(一)参考答案与试题解析一.选择题(共30小题)1.(2014•六盘水)下列运算正确的是()A.(﹣2mn)2=4m2n2B.y2+y2=2y4C.(a﹣b)2=a2﹣b2D.m2+m=m3考点:幂的乘方与积的乘方;合并同类项;完全平方公式.分析:运用积的乘方,合并同类项及完全平方公式计算即可.解答:解:A、(﹣2mn)2=4m2n2 故A选项正确;B、y2+y2=2y2,故B选项错误;C、(a﹣b)2=a2+b2﹣2ab故C选项错误;D、m2+m不是同类项,故D选项错误.故选:A.点评:本题主要考查了积的乘方,合并同类项及完全平方公式,熟记计算法则是关键.2.(2014•本溪)下列计算正确的是()A.2a3+a2=3a5B.(3a)2=6a2C.(a+b)2=a2+b2D.2a2•a3=2a5考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式.专题:计算题.分析:根据合并同类项法则、积的乘方、完全平方公式、单项式乘单项式判断即可.解答:解:A、2a3与a2不是同类项不能合并,故A选项错误;B、(3a)2=9a2,故B选项错误;C、(a+b)2=a2+2ab+b2,故C选项错误;D、2a2•a3=2a5,故D选项正确,故选:D.点评:本题考查了合并同类项法则、积的乘方、完全平方公式、单项式乘单项式,熟练掌握法则是解题的关键.3.(2014•台湾)算式999032+888052+777072之值的十位数字为何?()A.1B.2C.6D.8考点:完全平方公式.分析:分别得出999032、888052、777072的后两位数,再相加即可得到答案.解答:解:999032的后两位数为09,888052的后两位数为25,777072的后两位数为49,09+25+49=83,所以十位数字为8,故选:D.点评:本题主要考查了数的平方,计算出每个平方数的后两位是解题的关键.4.(2014•遵义)若a+b=2,ab=2,则a2+b2的值为()A.6B.4C.3D.2考点:完全平方公式.分析:利用a2+b2=(a+b)2﹣2ab代入数值求解.解答:解:a2+b2=(a+b)2﹣2ab=8﹣4=4,故选:B.点评:本题主要考查了完全平方公式的应用,解题的关键是牢记完全平方公式,灵活运用它的变化式.5.(2014•南平模拟)下列计算正确的是()A.5a2﹣3a2=2 B.(﹣2a2)3=﹣6a6C.a3÷a=a2D.(a+b)2=a2+b2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.分析:根据合并同类项,幂的乘方,同底数幂的除法及完全平方公式判定.解答:A、5a2﹣3a2=2a2≠2,故选项错误;B、(﹣2a2)3=﹣8a6≠﹣6a6,故选项错误;C,a3÷a=a2,故选项正确;D,(a+b)2≠a2+b2,故选项错误.故选:C.点评:本题主要考查了合并同类项,幂的乘方,同底数幂的除法及安全平方公式的运算,解题的关键是熟记法则运算6.(2014•拱墅区二模)如果ax2+2x+=(2x+)2+m,则a,m的值分别是()A.2,0 B.4,0 C.2,D.4,考点:完全平方公式.专题:计算题.分析:运用完全平方公式把等号右边展开,然后根据对应项的系数相等列式求解即可.解答:解:∵ax2+2x+=4x2+2x++m,∴,解得.故选D.点评:本题考查了完全平方公式,利用公式展开,根据对应项系数相等列式是求解的关键.7.(2012•鄂州三月调考)已知,则的值为()A.B.C.D.无法确定考点:完全平方公式.分析:把已知两边平方后展开求出a2+=8,再求出(a﹣)2的值,再开方即可.解答:解:∵a+=,∴两边平方得:(a+)2=10,展开得:a2+2a•+=10,∴a2+=10﹣2=8,∴(a﹣)2=a2﹣2a•+=a2+﹣2=8﹣2=6,∴a﹣=±,故选C.点评:本题考查了完全平方公式的灵活运用,注意:(a±b)2=a2±2ab+b2.8.(2012•西岗区模拟)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.x2+y2=x2y2C.x2y+xy2=x3y3D.x2÷x4=x﹣2考点:完全平方公式;合并同类项;同底数幂的除法.分析:根据完全平方式:(x±y)2=x2±2xy+y2,与幂的运算即可求得答案.解答:解:A、(x﹣y)2=x2﹣2xy+y2,故此选项错误;B、x2+y2≠x2y2,故此选项错误;C、x2y+xy2=xy(x+y),故此选项错误;D、x2÷x4=x﹣2,故此选项正确.故选D.点评:此题考查了幂的性质与完全平方式等知识.题目比较简单,解题要细心.9.(2011•天津)若实数x、y、z满足(x﹣z)2﹣4(x﹣y)(y﹣z)=0,则下列式子一定成立的是()A.x+y+z=0 B.x+y﹣2z=0 C.y+z﹣2x=0 D.z+x﹣2y=0考点:完全平方公式.专题:计算题;压轴题.分析:首先将原式变形,可得x2+z2+2xz﹣4xy+4xz+4y2﹣4yz=0,则可得(x+z﹣2y)2=0,则问题得解.解答:解:∵(x﹣z)2﹣4(x﹣y)(y﹣z)=0,∴x2+z2﹣2xz﹣4xy+4xz+4y2﹣4yz=0,∴x2+z2+2xz﹣4xy+4y2﹣4yz=0,∴(x+z)2﹣4y(x+z)+4y2=0,∴(x+z﹣2y)2=0,∴z+x﹣2y=0.故选D.点评:此题考查了完全平方公式的应用.解题的关键是掌握:x2+z2+2xz﹣4xy+4y2﹣4yz=(x+z﹣2y)2.10.(2011•深圳)下列运算正确的是()A.x2+x3=x5B.(x+y)2=x2+y2C.x2•x3=x6D.(x2)3=x6考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:根据合并同类项的法则、完全平方公式、同底数幂的乘法以及幂的乘方的性质即可求得答案.解答:解:A、x2+x3≠x5,故本选项错误;B、(x+y)2=x2+y2+2xy,故本选项错误;C、x2•x3=x5,故本选项错误;D、(x2)3=x6,故本选项正确.故选D.点评:此题考查了合并同类项的法则、完全平方公式、同底数幂的乘法以及幂的乘方的性质.解题的关键是熟记公式.11.(2011•浦东新区二模)下列各式中,正确的是()A.a6+a6=a12B.a4•a4=a16C.(﹣a2)3=(﹣a3)2D.(a﹣b)2=(b﹣a)2考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、合并同类项,系数相加即可.B、同底数幂的乘法运算法则解答;C、幂的乘方的计算法则解答;D、完全平方公式的运用.解答:解:A、合并同类项,系数相加,指数与底数均不变.所以a6+a6=2a6.故本选项错误;B、同底数的幂的乘法,底数不变,指数相加.所以a4•a4=a8.故本选项错误;C、幂的乘方,底数不变,指数相乘,所以(﹣a2)3=﹣(﹣a3)2.故本选项错误;D、(a﹣b)2=[﹣(a﹣b)]2=(b﹣a)2.故本选项正确;故选D.点评:本题综合考查了完全平方公式、合并同类项、同底数幂的乘法、幂的乘方与积的乘方.此题是基础题,难度不大.12.(2010•台湾)若a满足(383﹣83)2=3832﹣83×a,则a值为()A.83 B.383 C.683 D.766考点:完全平方公式.分析:首先利用完全平方公式把(383﹣83)2展开,然后根据等式右边的结果即可得到a的值.解答:解:∵(383﹣83)2=3832﹣2×383×83+832,而(383﹣83)2=3832﹣83×a,∴﹣83×a=﹣2×383×83+832,∴a=683.故选C.点评:此题主要考查了完全平方公式,利用公式展开后即可得到关于所求字母的方程,解方程即可解决问题.13.(2010•钦州)下列各式运算正确的是()A.3a2+2a2=5a4B.(a+3)2=a2+9 C.(a2)3=a5D.3a2•2a=6a3考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:分别根据合并同类项、完全平方公式、幂的乘方和积的乘方以及同底数幂的乘法法则计算即可判断正误.解答:解:A、应为3a2+2a2=5a2,故本选项错误;B、应为(a+3)2=a2+6a+9,故本选项错误;C、应为(a2)3=a6,故本选项错误;D、3a2•2a=6a3,正确.故选D.点评:本题考查合并同类项法则,幂的乘方和积的乘方的性质,完全平方公式,需熟练掌握且区分清楚,才不容易出错.14.(2009•娄底)下列计算正确的是()A.(a﹣b)2=a2﹣b2B.a2•a3=a5C.2a+3b=5ab D.3﹣2=1考点:完全平方公式;合并同类项;同底数幂的乘法.分析:根据完全平方公式、同底数幂的乘法、合并同类项法则,对各选项分析判断后利用排除法求解.解答:解:A、应为(a﹣b)2=a2﹣2ab+b2,故本选项错误;B、a2•a3=a2+3=a5,正确;C、2a与3b不是同类项,不能合并,故本选项错误;D、3与2不是同类二次根式,不能合并,故本选项错误.故选B.点评:本题考查了完全平方公式,同底数幂的乘法,合并同类项,熟练掌握法则和性质是解题的关键,完全平方公式学生出错率比较高.15.(2009•海南)在下列各式中,与(a﹣b)2一定相等的是()A.a2+2ab+b2B.a2﹣b2C.a2+b2D.a2﹣2ab+b2考点:完全平方公式.分析:根据完全平方公式:(a﹣b)2=a2﹣2ab+b2.判定即可.解答:解:(a﹣b)2=a2﹣2ab+b2.故选D.点评:本题考查完全平方公式.(a﹣b)2=a2﹣2ab+b2.易错易混点:学生易把完全平方公式与平方差公式混在一起.16.(2009•顺义区一模)下列运算正确的是()A.a2+3a2=4a4B.3a2.a=3a3C.(3a3)2=9a5D.(2a+1)2=4a2+1考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项法则,同底数幂的乘法法则,积的乘方的性质,完全平方公式,对各选项分析判断后利用排除法求解.解答:解:A、错误,应等于4a2;B、3a2.a=3a3,正确;C、错误,应等于9a6;D、错误,应等于4a2+4a+1.故选B.点评:本题考查了合并同类项、同底数幂的乘法,积的乘方的性质,完全平方公式,熟练掌握法则、性质和公式并灵活运用是解题的关键.17.(2008•海淀区二模)如果实数x,y满足,那么xy的值等于()A.1B.2C.3D.5考点:完全平方公式;非负数的性质:偶次方;非负数的性质:算术平方根;解一元一次方程.专题:计算题.分析:根据已知得出+(y﹣2)2=0,根据算术平方根、完全平方的非负性得出=0,y﹣2=0,求出即可.解答:解:,+(y﹣2)2=0,∴=0,y﹣2=0,∴x=1,y=2∴xy=1×2=2.故选B.点评:本题主要考查对完全平方公式,非负数的性质﹣偶次方、算术平方根,解一元一次方程等知识点的理解和掌握,能得出=0和y﹣2=0是解此题的关键.18.(2007•云南)已知x+y=﹣5,xy=6,则x2+y2的值是()A.1B.13 C.17 D.25考点:完全平方公式.专题:计算题;压轴题.分析:先把所求式子变形为完全平方式,再把题中已知条件代入即可解答.解答:解:由题可知:x2+y2=x2+y2+2xy﹣2xy,=(x+y)2﹣2xy,=25﹣12,=13.故选B.点评:本题考查了同学们对完全平方公式灵活运用能力.19.(2007•湘潭)下列计算正确的()A.x2•x3=x6B.(x﹣1)2=x2﹣1 C.D.3x2y﹣x2y=2x2y考点:完全平方公式;算术平方根;合并同类项;同底数幂的乘法.分析:根据同底数相乘,底数不变指数相加,完全平方公式,算术平方根,合并同类项法则,对各选项分析判断后利用排除法求解.解答:解:A、应为x2•x3=x2+3=x5,故本选项错误;B、应为(x﹣1)2=x2﹣2x+1,故本选项错误;C、应为=3,故本选项错误;D、3x2y﹣x2y=(3﹣1)x2y=2x2y,正确.故选D.点评:本题考查同底数幂的乘法,完全平方公式,算术平方根,合并同类项的法则,熟练掌握运算性质和法则是解题的关键.20.(2005•福州)小马虎在下面的计算中只做对了一道题,他做对的题目是()A.(a﹣b)2=a2﹣b2B.(﹣2a3)2=4a6C.a3+a2=2a5D.﹣(a﹣1)=﹣a﹣1考点:完全平方公式;合并同类项;去括号与添括号;幂的乘方与积的乘方.分析:根据完全平方公式,积的乘方的性质进行计算.解答:解:A、错误,应等于a2﹣2ab+b2;B、正确;C、错误,a3与a2不是同类项,不能合并;D、错误,﹣(a﹣1)=﹣a+1.故选B.点评:本题主要考查完全平方公式,积的乘方,合并同类项,去括号法则,熟练掌握性质和法则是解题的关键,运用完全平方公式时同学们经常漏掉乘积二倍项而导致出错.21.(2005•日照)某校数学课外活动探究小组,在老师的引导下进一步研究了完全平方公式.结合实数的性质发现以下规律:对于任意正数a、b,都有a+b≥2成立.某同学在做一个面积为3 600cm2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来作对角线用的竹条至少需要准备xcm.则x的值是()A.120B.60C.120 D.60考点:完全平方公式.专题:应用题;压轴题.分析:当一个四边形对角线长为a,b,且相互垂直时,其面积为:.解答:解:由题意得:=3600,则ab=7200,所以有a+b≥2,即a+b≥120.故选A.点评:此题是一道阅读理解类型题目,注意理解题目给出的条件,熟记对角线互相垂直的四边形的面积等于对角线乘积的一半是解题的关键.22.(2005•黄冈)下列运算中正确的是()A.x5+x5=2x10B.﹣(﹣x)3•(﹣x)5=﹣x8C.(﹣2x2y)3•4x﹣3=﹣24x3y3D.(x﹣3y)(﹣x+3y)=x2﹣9y2考点:完全平方公式;合并同类项;同底数幂的乘法;单项式乘单项式.分析:根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,单项式的乘法法则;完全平方公式,对各选项计算后利用排除法求解.解答:解:A、应为x5+x5=2x5,故本选项错误;B、﹣(﹣x)3•(﹣x)5=﹣(﹣x)3+5=﹣x8,正确;C、应为(﹣2x2y)3•4x﹣3=﹣8x6y3•4x﹣3=﹣8x3y3,故本选项错误;D、(x﹣3y)(﹣x+3y)=﹣(x﹣3y)2,故本选项错误.故选B.点评:本题考查合并同类项、同底数幂的乘法,单项式的乘法,完全平方公式,熟练掌握运算法则和性质是解题的关键.23.(2004•郑州)已知a=x+20,b=x+19,c=x+21,那么代数式a2+b2+c2﹣ab﹣bc﹣ac的值是()A.4B.3C.2D.1考点:完全平方公式.专题:压轴题.分析:已知条件中的几个式子有中间变量x,三个式子消去x即可得到:a﹣b=1,a﹣c=﹣1,b﹣c=﹣2,用这三个式子表示出已知的式子,即可求值.解答:解:法一:a2+b2+c2﹣ab﹣bc﹣ac,=a(a﹣b)+b(b﹣c)+c(c﹣a),又由a=x+20,b=x+19,c=x+21,得(a﹣b)=x+20﹣x﹣19=1,同理得:(b﹣c)=﹣2,(c﹣a)=1,所以原式=a﹣2b+c=x+20﹣2(x+19)+x+21=3.故选B.法二:a2+b2+c2﹣ab﹣bc﹣ac,=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ac),=[(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)],=[(a﹣b)2+(a﹣c)2+(b﹣c)2],=×(1+1+4)=3.故选B.点评:本题若直接代入求值会很麻烦,为此应根据式子特点选择合适的方法先进行化简整理,化繁为简,从而达到简化计算的效果,对完全平方公式的灵活运用是解题的关键.24.(2004•临沂)如果x﹣=3,那么x2+=()A.5B.7C.9D.11考点:完全平方公式.分析:根据完全平方公式:(a±b)2=a2±2ab+b2对等式两边平方整理即可求解.解答:解:原式=x2++2﹣2,=(x﹣)2+2,=9+2,=11.故选D.点评:本题主要考查完全平方公式,利用好乘积二倍项不含字母是解题的关键.25.(2003•宁夏)当x=﹣2时,代数式﹣x2+2x﹣1的值等于()A.9B.﹣9 C.1D.﹣1考点:完全平方公式.分析:先把代数式添加带“﹣”的括号,然后根据完全平方公式的逆用整理后代入数据计算即可.解答:解:﹣x2+2x﹣1,=﹣(x2﹣2x+1),=﹣(x﹣1)2,当x=﹣2时,原式=﹣(﹣2﹣1)2=﹣9.故选B.点评:本题考查完全平方公式,先添加带负号的括号是利用公式的关键.26.(2001•重庆)已知,的值为()A.B.C.D.无解考点:完全平方公式;实数的性质.分析:根据绝对值的性质去掉绝对值号,然后利用完全平方公式转化未知的式子变成已知的式子,求解即可.解答:解:(1)当a为负数时,整理得,+a=1,两边都平方得=1,∴=﹣1∴不合题意,应舍去.(2)当a为正数时,则,整理得,﹣a=1,两边都平方得=1,∴(+a)2=+2=5.解得=±.∵a是正数,∴值为.故选B.点评:本题考查了完全平方公式,关键是利用完全平方公式转化未知的式子为已知的式子.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.27.(1999•烟台)已知a+b=3,a3+b3=9,则ab等于()A.1B.2C.3D.4考点:完全平方公式.专题:计算题.分析:根据条件a+b=3,两边平方可求得a2+b2=9﹣2ab,再把条件a3+b3=9展成(a+b)和ab的形式,整体代入即可求得ab的值.解答:解:∵a+b=3,∴(a+b)2=a2+2ab+b2=9,∴a2+b2=9﹣2ab,∵a3+b3=(a+b)(a2﹣ab+b2)=(a+b)[(a+b)2﹣3ab)]=9,∴ab=2.故选B.点评:主要考查了完全公式的应用.要注意完全平方公式:(a±b)2=a2±2ab+b2,对a3+b3的准确分解是解本题的关键.28.(1999•南京)下列计算正确的是()A.(a+b)(a2+ab+b2)=a3+b3B.(a+b)2=a2+b2C.(a﹣b)(a2+2ab+b2)=a3﹣b3D.(a﹣b)2=a2﹣2ab+b2考点:完全平方公式.分析:根据多项式的乘法和完全平方公式,对各选项计算后利用排除法求解.解答:解:A、应为(a+b)(a2﹣ab+b2)=a3+b3,故本选项错误;B、应为(a+b)2=a2+2ab+b2,故本选项错误;C、应为(a﹣b)(a2+ab+b2)=a3﹣b3,故本选项错误;D、(a﹣b)2=a2﹣2ab+b2,正确.故选D.点评:本题主要考查完全平方公式和立方和(差)公式,熟记公式是解题的关键.29.(1998•台州)下列运算正确的是()A.B.(a+b)2=a2+b2C.|2﹣π|=π﹣2 D.(a2)3=a5考点:完全平方公式;算术平方根;幂的乘方与积的乘方.分析:是49的算术平方根,结果是7,(a+b)2是完全平方公式,结果应该有三项,绝对值的结果应该是非负数,幂的乘方,底数不变,指数相乘,应该是(a2)3=a6.解答:解:A、根据算术平方根的意义得:=7,故本选项错误;B、根据完全平方公式得:(a+b)2=a2+2ab+b2,故本选项错误;C、绝对值的意义可得,结果正确;D、幂的乘方得:(a2)3=a2×3=a6,故本选项错误.故选C.点评:本题主要考查了算术平方根,完全平方公式,绝对值的性质,幂的乘方的性质,熟练掌握运算性质和公式是解题的关键.30.若M=3x2﹣8xy+9y2﹣4x+6y+13(x,y是实数),则M的值一定是()A.零B.负数C.正数D.整数考点:完全平方公式;非负数的性质:偶次方.分析:本题可将M进行适当变形,将M的表达式转换为几个完全平方式的和,然后根据非负数的性质来得出M 的取值范围.解答:解:M=3x2﹣8xy+9y2﹣4x+6y+13,=(x2﹣4x+4)+(y2+6y+9)+2(x2﹣4xy+4y2),=(x﹣2)2+(y+3)2+2(x﹣2y)2>0.故选C.点评:本题主要考查了非负数的性质,将M的表达式根据完全平方公式的特点进行变形是解答本题的关键.。
第三讲 乘法公式【易错点剖析】1.注意乘法公式的特点,符合公式的特点的多项式乘法才能套用公式.2. 在混合运算时,运用乘法公式计算出来的积要添括号,如果前面是 “-〞要注意变号⑤()()2222x y x y +-⑥()()()()24832124515151...51+++++⑦221.2340.766 2.4680.766++⨯⑧2222211111111...11234910⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭【能力提高】整体思想1、 假设()223m -=,求246m m -+的值.2、 22227,+9a ab b a ab b ++=-=,求()2a b +的值.3、 5,4a b ab ++=,求〔1〕22a b +;〔2〕44a b +;〔3〕44a b -的值4A 、2510x x -+=,求〔1〕221x x+〔2〕322143x x x --+的值4B 、0a ≠,且满足()()()222112329147a a a a a +---+=-, 求〔1〕221a a +〔2〕24255a a a ++的值.5、 ()()22201820171a a -+-=,求()()20182017a a --的值配方法1、()22116x m x --+是一个完全平方式,那么m = .2、264A x x +-+是一个完全平方式,那么A = .1B 、()()2222116x xy y m x y ++--++是一个完全平方式,那么m = .2B 、()()()()222210024400a b k b a a b +++--是一个完全平方式,那么k = . 3、把代数式223x x --化为()2x m k -+的形式,那么m k += .4、假设2228170x y x y ++-+=,求y x 的值.5A 、当x 为多少时,代数式245x x -+有最小值,最小值为多少?5B 、求多项式222451213x xy y y -+-+的最小值及此时,x y 的值.6、试说明:无论x 取何值,225x x ++的值一定为一个正数.7、111100,99,101100100100a xb xc x =+=+=+,求222a b c ab bc ac ++---的值8、22234,52M x x N x x =++=++,试比拟M ,N 的大小.【课后练习】1、 225a b =+,那么()()33a b a b +-= . 2、 2210x x --=,那么221x x += ,441x x += 4、 假设()()2212x mx x x n +--+的展开式中不含2x 和3x 项,那么m = ,n = . 5、6224b a ==,那么23a b -= .6、()()()()241612121212++++的个位数是 .7、计算①()()223131x x +- ②()()2212a a +--8、4821-能被60和70之间的某两个整数整除,求这两个数.9、2220a b c ab bc ac ++---=,求,,a b c 之间的关系.10 、2781,1515P m Q m m =-=-〔x 任意实数〕,试比拟P ,Q 的大小.11、()()20172015100a a --=,求()()22201720156a a -+-+的值。
2022-2023学年人教版八年级数学上册单元测试定心卷第十四章 整式的乘法与因式分解(能力提升)时间:100分钟 总分:120分一、选择题目(每题3分,共24分)1.计算()2223x x ⋅-的结果是 ( )A .46x -B .56xC .52x -D .62x【解析】 解:()2223x x ⋅-=46x -,故选:A .【点睛】本题考查单项式乘单项式,熟练掌握运算法则是解答的关键.2.下列单项式中,使多项式216a M +能用平方差公式因式分解的M 是 ( )A .aB .2bC .-16aD .2b -【解析】解:A 、16a 2+a ,不符合平方差公式,不符合题意;B 、16a 2+b 2,不符合平方差公式,不符合题意;C 、16a 2-16a ,不符合平方差公式,不符合题意;D 、16a 2-b 2,符合平方差公式,符合题意.故选:D .【点睛】本题考查了平方差公式:a 2-b 2=(a+b )(a-b ),掌握平方差公式是解题的关键.3.若323b a =+,则代数式224129a ab b -+的值为 ( )A .1-B .9C .7D .5【解析】解:∵323b a =+,∴323b a -=∴()222412932a ab b b a -+=-23= =9.故选:B .【点睛】本题考查求代数式的值,完全平方式,解题关键能发现所给的条件等式与所求代数式之间的关系.4.把一块边长为a 米(5a >)的正方形土地的一边增加5米,相邻的另一边减少5米,变成一块长方形土地,你觉得土地的面积 ( )A .没有变化B .变大了C .变小了D .无法确定【解析】解:由题意得:长方形土地的长为()5a +米,宽为()5a -米,∴长方形的面积为()()()225525m a a a +-=-,正方形的面积为2a 平方米,∴2225a a >-,∴我觉得土地的面积变小了;故选C .【点睛】本题主要考查平方差公式,熟练掌握平方差公式是解题的关键.5.观察图形,用两种不同的方法计算大长方形面积,我们可以验证等式 ( )A .(a +b )(a +2b )=a2+3ab +2b2B .(a +b )(2a +b )=2a2+3ab +b2C .(a +b )(a +2b )=2a2+3ab +b2D .(a +b (2a +b )=a2+3ab +2b2【解析】解:∵长方形的面积=(a +b )(a +2b )长方形的面积=a 2+ab +ab +ab +b 2+b 2= a2+3ab +2b2,∴(a +b )(a +2b )= a 2+3ab +2b 2故选:A .【点睛】本题考查多项式乘以多项式的几何意义,通过几何图形之间的数量关系对多项式乘以多项式做出几何解释.6.阅读材料:数学课上,杨老师在求代数式245x x -+的最小值时,利用公式222)2(a ab b a b ±+=±,对式子作如下变形:22245441(2)1x x x x x ++=+++=++,因为2(2)0x +≥,所以2(2)11x ++≥,当2x =-时,2(2)11x ++=,因此245x x ++的最小值是1.通过阅读,解答问题:当x 取何值时,代数式289x x ---有最大或最小值,是多少?( )A .当4x =时,有最小值7-.B .当4x =-时,有最小值7.C .当4x =-时,有最大值7.D .当4x =时,有最大值7-.【解析】解:289x x ---=()289x x -++=()28167x x -+++=()247x -++∴当4x =-时,有最大值7,故选:C .【点睛】本题考查求代数式的最值,完全平方公式的应用,解题的关键是参照样例对代数式进行变形.7.如图,有两个正方形A ,B ,现将B 放置在A 的内部得到图甲,将A 、B 并列放置,以正方形A 与正方形B 的边长之和为新的边长构造正方形得到图乙,若图甲和图乙中阴影部分的面积分别为1和8,则正方形A 、B 的面积之和为 ( )A .8B .9C .10D .12【解析】解:设大小正方形边长分别为a 、b ,S 阴1=(a ﹣b )2=1,即a 2+b 2﹣2ab =1,S 阴2=(a +b )2﹣a 2﹣b 2=8,得:ab =4.∴a 2+b 2﹣2×4=1,∴a 2+b 2=9.故选:B .【点睛】考查了完全平方式的应用,把阴影部分表示出来是解题的关键.8.若()()35M x x =--,()()26N x x =--,则M 与N 的关系为 ( )A .M NB .M N >C .M N <D .不能确定【解析】 解:∵()()235815M x x x x =--=-+,()()226812N x x x x =--=-+,()228158123M N x x x x -=-+--+=>0,∴M N >.故选:B .【点睛】本题主要考查多项式乘以多项式、整式的加减.注意不要漏项,漏字母,有同类项的合并同类项,掌握多项式乘以多项式的法则是解题的关键.二、填空题目(每题3分,共24分)9.计算:(21)(21)x x -+--_________.【解析】解:(21)(21)x x -+--241x =-.故答案为:241x -【点睛】本题主要考查了平方差公式,熟练掌握平方差公式是解题的关键.10.计算:4.3×202.2+7.6×202.2-1.9×202.2=__________.【解析】解:4.3×202.2+7.6×202.2-1.9×202.2=202.2×(4.3+7.6-1.9)=202.2×10=2022,故答案为:2022.【点睛】本题考查提公因式法分解因式,掌握提公因式的方法是正确应用的前提.11.已知(1)(1)8x y --=,8x y +=,则xy =________.【解析】解:(1)(1)8,x y --=18,xy x y ∴--+=()18,xy x y ∴-++=()7,xy x y ∴=++8,x y ∴+=7815.xy ∴=+=故答案为:15.【点睛】本题主要考查了多项式乘多项式,熟练掌握多项式乘多项式乘法法则是解此题的根据.12.若2(3)9x m x +-+是完全平方式,则m =______.【解析】解:∵2(3)9x m x +-+是完全平方式,∴m −3=±6,解得:m =-3或9.故答案为:-3或9.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.已知21m x =+,132m y +=+,若用含x 的代数式表示y ,则y =______.【解析】∵21m x =+,132m y +=+,∴12m x -=,322m y -=⨯,∴3(1)2y x -=-⨯,即21y x =+,故答案为:21x +.【点睛】本题考查了同底数幂的乘法的逆用,掌握同底数幂的乘法是解答本题的关键.14.若n 满足22(2020)(2022)1n n -+-=,则(2020)(2022)n n --=________.【解析】解:()()()()()()222420202022=20202022+220202022n n n n n n ⎡⎤=-+--+---⎣⎦, 又22(2020)(2022)1n n -+-=,212(2020)(2022)24n n ∴+--==,3(2020)(2022)2n n ∴--=, 故答案为:32.【点睛】本题考查了完全平方公式,能灵活运用完全平方公式进行变形计算是解此题的关键.15.已知6m n -=,216730mn c c +++=,则m +n +c 的值为__________.【解析】解:∵m −n =6,∴m =n +6,∵216730mn c c +++=,∴n (n +6)+c 2+16c +73=0,∴n 2+6n +c 2+16c +73=0,∴n 2+6n +9+c 2+16c +64=0,∴(n +3)2+(c +8)2=0,∴n +3=0,c +8=0,∴n =−3,c =−8,∴m =n +6=−3+6=3,∴m +n +c =3+(−3)+(−8)=−8,∴m +n +c 的值为−8.故答案为:−8.【点睛】本题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.16.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”,他的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的.“杨辉三角”中有许多规律,如它的每一行的数字正好对应了()na b +(n 为非负整数)的展开式中a 按次数从大到小排列的项的系数,例如:()2222a b a ab b +=++展开式中的系数1,2,1恰好对应图中第三行的数字;()3322333a b a a b ab b +=+++展开式中的系数1,3,3,1恰好对应图中第四行的数字…….请认真观察此图,根据前面各式的规律,写出()5a b +的展开式:()5a b +=______.解:可得:(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4;则(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5.故答案为:a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.三、解答题(每题8分,共72分)17.计算(1)计算:(2x ﹣y )2﹣(2x +y )(2x ﹣y );(2)用简便方法计算:20212﹣2020×2022.【解析】(1)解:原式=4x 2-4xy +y 2-4x 2+y 2=-4xy +2y 2;(2)解:原式=(2020+1)2-2020×(2020+2)=20202+2×2020×1+1-20202-2020×2=1.【点睛】本题考查整式混合运算,完全平方公式,平方差公式,熟练掌握完全平方公式和平方差公式是解题的关键.18.以下是小鹏化简代数式()()()()221123a a a a a -++---的过程.(1)小鹏的化简过程在第______步开始出错,错误的原因是______.(2)请你帮助小鹏写出正确的化简过程,并计算当0.5a =-时代数式的值.【解析】(1)小鹏在第①步开始出错,(a -2)2≠a 2-2a +4,错误的原因是完全平方公式运用错误. 故答案为:①,完全平方公式运用错误.(2)(a -2)2+(a +1)(a -1)-2a (a -3)=a 2-4a +4+a 2-1-2a 2+6a=2a +3.∴当0.5a =-时,原式=2×(-0.5)+3=2.【点睛】本题考查了整式的混合运算,熟练掌握相关公式及运算法则是解题的关键.19.甲、乙两个同学因式分解2x ax b ++时,甲看错了a ,分解结果为()()48x x +-,乙看错了b ,分解结果为()()26x x -+.求多项式2x ax b ++分解因式的正确结果.【解析】解:∵()()248432x x x x +-=--,甲看错了a 的值,又∵()()226412x x x x -+=+-,乙看错了b 的值,∴4a =,∴多项式()()2243284x ax b x x x x ++=+-=+-.故答案为:()()84x x +-.【点睛】本题考查因式分解和整式化简之间的关系,牢记各自的特点并能灵活应用是解题关键.20.如图,学校有一块长为()2m a b +,宽为()m a b +的长方形土地,四个角留出四个边长为()m b a -的小正方形空地,剩余部分进行绿化.(1)用含a 、b 的式子表示要进行绿化的土地面积;(结果要化简)(2)当6a =,10b =时,求要进行绿化的土地面积.【解析】(1)解:由于S 绿化面积=S 长方形﹣4S 小正方形,因此有,(a +b )(a +2b )﹣4(b ﹣a )2=a 2+3ab +2b 2﹣4a 2+8ab ﹣4b 2=(11ab ﹣3a 2﹣2b 2)(m 2),答:绿化的面积为(11ab ﹣3a 2﹣2b 2)(m 2);(2)解:当a =6,b =10时,原式=660﹣108﹣200=352(m 2)答:当a =6,b =10时,绿化的土地面积为352m 2.【点睛】本题考查完全平方公式的几何背景,多项式乘多项式,单项式乘多项式,掌握完全平方公式的结构特征,多项式乘多项式,单项式乘多项式的计算方法是正确解答的前提.21.计算并观察规律,完成下列问题:例:计算:32022202120222023-⨯⨯解:设2022x =,则原式3(1)(1)x x x x =--⋅⋅+32(1)x x x =--x =2022=.(1)计算:2223224222-⨯;(2)若123456789123456786M =⨯,123456788123456787N =⨯,请比较M 、N 的大小.【解析】(1)设223=x,∴2232-224×122=x2-(x+1)(x-1)=x2-x2+1=1;(2)设123456786=x,∴M=123456789×123456786=(x+3)•x=x2+3x,N=123456788×123456787=(x+2)(x+1)=x2+3x+2,∴M<N.【点睛】本题考查了整式的混合运算,单项式乘多项式,理解例题的解题思路是解题的关键.22.初中数学的一些代数公式可以通过几何图形的面积来推导和验证.如图①,从边长为a的正方形中挖去一个边长为b的小正方形后,将其沿虚线裁剪,然后拼成一个矩形(如图②).(1)通过计算图①和图②中阴影部分的面积,可以验证的公式是:.(2)小明在计算(2+1)(22+1)(24+1)时利用了(1)中的公式:(2+1)(22﹣1)(24+1)=1•(2+1)(22+1)(24+1)=.(请你将以上过程补充完整.)(3)利用以上的结论和方法、计算:12+(3+1)(32+1)(34+1)(38+1)(316+1).【解析】(1)解:图①中阴影部分的面积可以看作两个正方形的面积差,即a2−b2,图②是长为(a+b),宽为(a−b)的长方形,因此面积为(a+b)(a−b),由图①、图②面积相等可得:(a+b)(a −b)=a2−b2,故答案为:(a+b)(a−b)=a2−b2;(2)解:原式=(2−1)•(2+1)(22+1)(24+1)=(22−1)(22+1)(24+1)=(24−1)(24+1)=28−1,故答案为:28−1;(3)解:原式=12+12(3−1)(3+1)(32+1)(34+1)(38+1)(316+1)=12+12(32−1)(32+1)(34+1)(38+1)(316+1)=12+12(34−1)(34+1)(38+1)(316+1)=12+12(38−1)(38+1)(316+1)=12+12(316−1)(316+1)=12+12(332−1)=12+3232−12=3232. 【点睛】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是正确解答的前提,用代数式表示图形中阴影部分的面积是正确解答的关键.23.先阅读,再解答.例:222450x y x y +-++=,求x y +的值.解:∵222450x y x y +-++=∴()2221)440x x y y -++++=( 即()221)20x y -++=( 221)0,(20x y -≥+≥()221020x y ∴-=+=(),()1,2x y ∴==- 1x y ∴+=-(1)已知22464100x y x y +-++=,求xy 的值;(2)已知c a b 、、为ΔABC 的三边,且满足()222220,a b c b a c ++-+=判断ΔABC 的形状,并说明理由.【解析】(1)解:∵22464100x y x y +-++=∴()2269)4410x x y y -++++=( 即()223)210x y -++=( ∵()223)0,210x y -≥+≥( ∴()()2230,210x y -=+= ∴13,2x y ==- ∴32xy =-.(2)解:ΔABC 是等边三角形,理由∵()222220,a b c b a c ++-+=∴()()2222220a ab b b bc c -++-+=∴()()220a b b c +-=-∵()()220,0a b b c -≥-≥∴()()220,0a b b c -=-=∴,a b b c ==即a b c ==∴ΔABC 是等边三角形.【点睛】本题考查了配方法的应用以及非负数的性质,等边三角形的判定,熟练掌握完全平方公式是解题的关键.24.(1)请用两种不同的方法表示图中阴影部分的面积和.方法1:____________________________;方法2:____________________________.(2)请你直接写出三个代数式:()2a b +,22a b +,ab 之间的等量关系.(3)根据(2)中的等量关系,解决如下问题:①已知5m n +=,2220m n +=,求mn 和()2m n -的值;②已知()()222021202374x x -+-=,求()22022x -的值.【解析】解:(1)方法1:两个阴影部分的面积和就是边长为a 的正方形,与边长为b 的正方形的面积和,即22a b +;方法2:两个阴影部分的面积和也可以看作从边长为a b +的正方形面积中减去两个长为a ,宽为b 的长方形面积,即2()2a b ab +-;故答案为:22a b +,2()2a b ab +-;(2)由(1)得,222()2a b a b ab +=+-;(3)①5m n +=,222()252m n m mn n ∴+==++,2220m n +=,25mn ∴=, 即52mn =;222()220515m n m mn n -=-+=-=,答:52mn =,2()15m n -=;②设2021a x =-,2023b x =-,则2a b -=,2222(2021)(2023)74a b x x +=-+-=, 所以2222()7423522a b a b ab +---===, 即(2021)(2023)35x x --=,所以2[(2022)1][(2022)1](2022)135x x x -+--=--=,即2(2022)36x -=.【点睛】本题考查完全平方公式的几何背景,解题的关键是用不同的代数式表示阴影部分的面积.25.在求代数式值的问题中,有时通过观察式子的特点,可以找到较为简单的解法. 例如,若x 满足()()2510x x --=,求()()2225x x ---的值,可以按下列的方法来解: 解:设()2x a -=,()5x b -=,则()()2510ab x x =--=,()()253a b x x -=---=,∴()()22449a b a b ab +=-+=,∴7a b +=±,∴()()()()2222257321x x a b a b a b ---=-=+-=±⨯=±.请仿照上面的方法求解下面的问题:(1)若x 满足()()496x x --=,求()()2249x x -+-的值; (2)将正方形ABCD 和正方形EFGH 按如图所示摆放,点F 在BC 边上,EH 与CD 交于点I ,且1ID =,2CG =,长方形EFCI 的面积为24,以CF 为边作正方形CFMN .设AD x =,①用含x 的代数式直接表示EF 和CF 的长;②求图中阴影部分的面积.【解析】(1)解:设()4x a -=,()9x b -=,则()()496ab x x =--=,()()495a b x x -=---=, ∴()()()22222249252637x x a b a b ab -+-=+=-+=+⨯=;(2)①∵四边形ABCD 是正方形,四边形EFGH 是正方形,四边形EFCI 是长方形,1ID =,2CG =, ∴CD =AD =x ,∴1EF IC x ==-,∴FG =1EF x =-,∴123CF x x =--=-;②∵长方形EFCI 的面积为24,∴()()1324x x --=,设1x a -=,3x b -=,则24ab =,2a b -=,∴()()224100a b a b ab +=-+=,∵0a >,0b >,∴10a b +=,∴()()()()22221320S x x a b a b a b =---=-=+-=阴影.【点睛】本题主要考查了完全平方公式和平分差公式的应用,牢记完全平方公式和平方差公式以及变形公式(a +b )2=(a −b )2+4ab 是解题关键.祝福语祝你考试成功!。
解题技巧专题:整式乘法及乘法公式中公式的巧用◆类型一利用公式求值一、逆用幂的相关公式求值1.已知5x=3,5y=4,则5x+y的结果为【方法7①】( )A.7 B.12 C.13 D.142.如果(9n)2=312,则n的值是( )A.4 B.3 C.2 D.13.若x2n=3,则x6n=________.4.(湘潭期末)已知a x=3,a y=2,求a x+2y的值.5.计算:-82015×(-0.125)2016+0.253×26.【方法7③】二、多项式乘法中求字母系数的值6.如果(x +m)(x -3)中不含x 的项,则m 的值是( )A .2B .-2C .3D .-37.(邵阳县期中)若(x -5)(2x -n)=2x 2+mx -15,则m ,n 的值分别是 ( )A .m =-7,n =3B .m =7,n =-3C .m =7,n =3D .m =-7,n =-38.已知6x 2-7xy -3y 2+14x +y +a =(2x -3y +b)(3x +y +c),试确定a ,b ,c 的值.三、逆用乘法公式求值9.若x =1,y =12,则x 2+4xy +4y 2的值是( )A .2B .4C .32D .1210.已知a +b =3,则a 2-b 2+6b 的值为( )A .6B .9C .12D .1511.(衡阳中考)已知a +b =3,a -b =-1,则a 2-b 2的值为9.【方法9①】 12.已知x +y =3,x 2-y 2=21,求x 3+12y 3的值.四、利用整体思想求值13.若x +y =m ,xy =-3,则化简(x -3)(y -3)的结果是( )A .12B .3m +6C .-3m -12D .-3m +614.先化简,再求值:(1)(菏泽中考)已知4x =3y ,求代数式(x -2y)2-(x -y)(x +y)-2y 2的值;(2)已知2a2+3a-6=0,求代数式3a(2a+1)-(2a+1)(2a-1)的值.◆类型二利用乘法公式进行简便运算15.计算2672-266×268得( )A.2008 B.1 C.2006 D.-116.已知a=7202,b=719×721,则( )A.a=b B.a>bC.a<b D.a≤b17.计算:(1)99.8×100.2; (2)1022;(3)5012+4992; (4)19992-1992×2008.◆类型三 利用乘法公式的变形公式进行化简求值 18.如果x +y =-5,x 2+y 2=13,则xy 的值是( ) A .1 B .17 C .6 D .2519.若a +b =-4,ab =12,则a 2+b 2=________.20.(永州模拟)已知a =2005x +2004,b =2005x +2005,c =2005x +2006,则多项式a 2+b 2+c 2-ab -bc -ac 的值为________.21.已知(x +y)2=5,(x -y)2=3,求3xy -1的值.◆类型四整式乘法中的拼图问题22.根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是( )A.(a+b)(a+2b)=a2+3ab+2b2B.(3a+b)(a+b)=3a2+4ab+b2C.(2a+b)(a+b)=2a2+3ab+b2D.(3a+2b)(a+b)=3a2+5ab+2b223.如图,边长为(m+2)的正方形纸片剪出一个边长为m的正方形之后余下部分又剪开拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为2,其面积是( )A.2m+4 B.4m+4 C.m+4 D.2m+224.★如图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.(1)你认为图②中阴影部分的正方形的边长是多少?(2)请你用两种不同的方法求图②中阴影部分的面积;(3)观察图②,你能写出下列三个代数式(m+n)2,(m-n)2,mn之间的等量关系吗?(4)根据(3)中的结论,解决下列问题:若a+b=9,a-b=7,求ab的值.参考答案与解析1.B2.B 解析:∵(9n )2=[(32)n ]2=34n ,∴34n =312,∴4n =12,∴n =3.故选B. 3.274.解:∵a x =3,a y =2,∴a x +2y =a x ·a 2y =3×22=12.5.解:原式=-82015×(-0.125)2015×(-0.125)+(0.25)3×23×23=-[8×(-0.125)]2015×(-0.125)+(0.25×2×2)3=1×(-0.125)+1=0.875.6.C 7.D8.解:∵(2x -3y +b )(3x +y +c )=6x 2-7xy -3y 2+(2c +3b )x +(b -3c )y +bc =6x 2-7xy -3y 2+14x +y +a ,∴2c +3b =14,b -3c =1,bc =a .联立以上三式,可得a =4,b =4,c =1.9.B10.B 解析:a 2-b 2+6b =(a +b )(a -b )+6b =3(a -b )+6b =3a +3b =3(a +b )=9.故选B. 11.-312.解:∵x +y =3,x 2-y 2=21,∴x -y =21÷3=7.联立方程组得⎩⎪⎨⎪⎧x +y =3,x -y =7,解得⎩⎪⎨⎪⎧x =5,y =-2.当x =5,y =-2时,x 3+12y 3=53+12×(-2)3=125-96=29.13.D14.解:(1)(x -2y )2-(x -y )(x +y )-2y 2=x 2-4xy +4y 2-(x 2-y 2)-2y 2=-4xy +3y 2.∵4x =3y ,∴原式=-3y ·y +3y 2=0.(2)∵2a 2+3a -6=0,即2a 2+3a =6,∴3a (2a +1)-(2a +1)(2a -1)=6a 2+3a -4a 2+1=2a 2+3a +1=6+1=7.15.B 解析:2672-266×268=2672-(267-1)(267+1)=2672-2672+1=1.故选B. 16.B17.解:(1)原式=(100-0.2)(100+0.2)=1002-0.22=9999.96. (2)原式=(100+2)2=10000+4+400=10404.(3)原式=(500+1)2+(500-1)2=5002+2×500×1+12+5002-2×500×1+12=2×5002+2=500002. (4)原式=(2000-1)2-(2000-8)(2000+8)=20002-2×2000×1+1-(20002-82)=-4000+1+64=-3935.18.C 19.1520.3 解析:由题意知b -a =1,c -b =1,c -a =2.∵a 2+b 2+c 2-ab -bc -ac =12(a 2-2ab +b 2+a 2-2ac +c 2+b 2-2bc +c 2)=12[(b -a )2+(c -a )2+(c -b )2]=12×(1+4+1)=3.21.解:∵(x +y )2-(x -y )2=4xy =2,即xy =12,∴3xy -1=3×12-1=12.22.D23.B 解析:依题意得剩余部分的面积为(m +2)2-m 2=m 2+4m +4-m 2=4m +4.故选B. 24.解:(1)m -n .(2)方法一:(m -n )2=m 2-2mn +n 2; 方法二:(m +n )2-4mn =m 2-2mn +n 2. (3)(m +n )2-4mn =(m -n )2.(4)∵(a +b )2-(a -b )2=4ab ,∴4ab =32,∴ab =8.。
知识总结典型例题1已知2若3当4已知知识总结典型例题5若6若7若8填空:9已知10请回答下列各题:1112若13如果我相信,要完整地理解这个问题的来龙去脉,对于初中数学水平的人,大概也就需要半个小时而已~当然,需要 3 个很简单的前提条件:你知道质数(素数)的概念:只能被 1 和自身整除的数;也知道互质的含义(最大公约数为1);你会竖式计算;你已经知道:142857*7=999999;那么,下面我们开始吧~一、竖式计算的奥秘既然你已经知道了 142857*7=999999,那么你一定很容易联想到 1/7 会有 142857 的循环节.毕竟1000000 除以 7 余 1 嘛!竖式计算告诉我们,产生循环几乎是显然的:仔细观察一下竖式计算,你会发现一个很有趣的现象:前 6 次相减,余数分别 3、2、6、4、5、1,恰好遍历了比 7 小的 1~6,这就意味着,下一个余数无论是几,都必然会和前面的重复,从而必须产生循环.这个现象揭示了一个简单的定理:定理 1.1:1/n 的小数展开,其循环节长度不超过 n-1.如果循环节恰好为 n-1 ,在竖式计算的每一步中,余数一定遍历了 1,2,…,n-1,那么显然,1/n, 2/ n,…, (n-1)/n 的竖式计算,一定能和 1/n 的竖式计算中的某一步衔接起来,循环节会形成 “走马灯” 的效果.14已知15已知16已知实数17已知18当19已知20关于多项式21当22已知23阅读材料:把形如。
八年级数学上册乘法公式的综合应用与拓展 (学生版)•、基本公式1. 平方差公式:(a+b)(a-b)=a 2-b 22例:计算 1999 -2000 X 199822 22. 完全平方公式(a+b) =a +2ab+b (a-b)例:运用公式简便计算3. 完全平方公式a+b(或a-b)、ab 、a 2+b 2这三者任意知道两项就可以求出第三项(a+b)2、(a-b) 2、ab 这三者任意知道两项就可以求出第三项① a 2 b 2 = (a b)2 - 2aba 2b 2 = (a-b) 2+2ab2 2 2 2② (a-b) =(a+b) -4ab(a+b) =(a-b) +4ab(2)完全平方公式变用 2:两个完全平方公式之和的整合2 2 2 2(a+b) + (a-b) =2 (a+b)例1 •已知a b 2 , ab =1,求a 2 b 2的值。
2例 2.已知 a • b = 8 , ab = 2,求(a - b)的值。
例3.已知a - b = 4, ab = 5,求a 2 b 2的值。
2 2例 4 .已知 m +n =7, mn= —18,求 m — mr+ n 的值.例 5 (3)已知:x+2y=7 , xy=6,求(x-2y)2 的值.例6.已知a +丄=5,求(1) a 2+W , (2) (a —丄)2的值.a a a(1)完全平方公式变用 1:利用已知的两项求第三项2 2 2=a -2ab+b (1) 1032(2) 19821 1例7.已知x -― =3,求x4■ ~4的值。
x x3=a -b二、公式的灵活运用1. 对公式的基本变用 _ 2 2(1)位置变化,x y -y x =x_y(2 )符号变化,(彳勺片—x j_y 2= x 2-y 22. 整体思想的应用(1 )应用整体思想,首先要能识别公式中的“两数”2 2例1计算(-a +4b )分析:运用公式(a +b )2=a 2+2ab +b 2时, ______ 就是公式中的a, _____ 就是公式中的b ;若将题目变形为(4b -a 2)2时,则 ________ 是公式中的a ,而 _______ 就是公式中的b .(解略)练习 1•计算:5x 23y 25x 2-3y 2练习2•计算: x -y z x -y —z 练习 3.计算:Ixy z m Jlxy- z m 1练习 4.计算:x ■ y -2z x y 6z(2 )应用应用整体思想,其次能正确选取负号和减号 例计算:(-2 x 2-5)(2 x 2-5)分析:本题两个因式中“-5 ”相同,“2x 2”符号相反,因而 ______ 是公式(a +b )( a -b )= a 2-b 2中的a,而 _____ 则是公式中的b .解:原式=(3 )应用整体思想,要善于分组加括号例&解下列各式(1) (2) (3) 已知 a 24b 2=i3, ab=6,求(a^bj ,(a_b j 的值。
乘法公式概念总汇1、平方差公式平方差公式:两个数的和与这两个数的差的乘积等于这两个数的平方差,即 (a+b )(a-b )=a 2-b 2说明:(1)几何解释平方差公式如右图所示:边长a 的大正方形中有一个边长为b 的小正方形。
第一种:用正方形的面积公式计算:a 2-b 2;第二种:将阴影部分拼成一个长方形,这个长方形长为(a +b ),宽为(a -b ), 它的面积是:(a +b )(a -b )结论:第一种和第二种相等,因为表示的是同一块阴影部分的面积。
所以:a 2-b 2=(a +b )(a -b )。
(2)在进行运算时,关键是要观察所给多项式的特点,是否符合平方差公式的形式,即只有当这两个多项式它们的一部分完全相同,而另一部分只有符合不同,才能够运用平方差公式。
平方差公式的a 和b ,可以表示单项式,也可以表示多项式,还可以表示数。
应用平方差公式可以进行简便的多项式乘法运算,同时也可以简化一些数字乘法的运算 2、完全平方公式完全平方公式:两个数和(或差)的平方,等于它们的平方和,加上(或减去)它们积的两倍,即(a+b )2=a 2+2ab+b 2,(a-b )2=a 2-2ab+b 2这两个公式叫做完全平方公式。
平方差公式和完全平方公式也叫做乘法公式 说明:(1)几何解释完全平方(和)公式 如图用多种形式计算右图的面积 第一种:把图形当做一个正方形来看,所以 它的面积就是:(a +b )2第二种:把图形分割成由2个正方形和2个相同的长方形来看,其中大正方形的的边长是a ,小正方形 的边长是b ,长方形的长是a ,宽是b ,所以它的面积就是:a 2+ab +ab +b 2=a 2+2ab +b 2结论:第一种和第二种相等,因为表示的是同一个图形的面积 所以:(a +b )2=a 2+2ab +b2 (2)几何解释完全平方(差)公式 如图用多种形式计算阴影部分的面积 第一种:把阴影部分当做一个正方形来看,所以 它的面积就是:(a-b )2第二种:把图形分割成由2个正方形和2个相同的 长方形来看,长方形小正方形大正方形阴影S S S S ⨯=2--其中大正方形的的边长是a ,小正方形的边长是b ,长方形的长是(a-b ),宽是b ,所以 它的面积就是:()222222b ab a b b a b a +-=⋅-⋅--结论:第一种和第二种相等,因为表示的是同一个图形的面积所以:()2222bab a b a +-=-(3)在进行运算时,防止出现以下错误:(a+b )2=a 2+b 2,(a-b )2=a 2-b 2。
乘法公式的应用(人教版)一、单选题(共10道,每道10分)1.已知,,则( )A.10B.6C.5D.3答案:C解题思路:解:,将,代入,得∴故选C.试题难度:三颗星知识点:完全平方公式知二求二问题2.若均为正数,,,则( )A.-3B.3C.±3D.9答案:B解题思路:解:,将,代入,得∴,又∵若均为正数,∴,故选B.试题难度:三颗星知识点:完全平方公式知二求二问题3.若,则的值为( )A. B.C. D.答案:C解题思路:解:∵,由题可知:,∴,∴,∴,故选C.试题难度:三颗星知识点:平方差公式4.若一个正方形的边长增加3cm,它的面积增加,则此正方形原来的边长为( )A.6cmB.9cmC.10cmD.12cm答案:A解题思路:解:设此正方形原来的边长为,则,∴,∴,故选A.试题难度:三颗星知识点:完全平方式5.某学校改造一个边长为5x米的正方形花坛,经规划后,南北方向要缩短3米,东西方向要加长3米,则改造后花坛的面积与原来的花坛面积相比( )A.增加了9平方米B.减少了9平方米C.保持不变D.增加了平方米答案:B解题思路:解:根据题意改造后花坛为长方形,其长为米,宽为米,所以矩形花坛的面积为平方米,而原正方形面积为平方米,所以改造后花坛的面积减少了9平方米.故选B.试题难度:三颗星知识点:整式乘除的几何表示6.若是一个完全平方式,则的值是( )A.±30B.33C.32或-28D.33或-27答案:D解题思路:解:∵,∴,∴,∴或,故选D试题难度:三颗星知识点:完全平方式7.若是一个完全平方式,则的值是( )A.4B.±4C.16D.±16答案:A解题思路:解,∵是一个完全平方式,∴,∴,∴,故选A.试题难度:三颗星知识点:完全平方式8.加上下列单项式后,仍不能使成为一个整式的完全平方式的是( )A. B.C. D.答案:D解题思路:解:根据完全平方公式的结构可知,当是中间项时,那么,第三项为;组成的完全平方式为;当是平方项时,那么,中间项为,组成的完全平方式为;当多项式加上的一个单项式是-1或时,同样成立.共有5个,分别为,,-1,,故可知此题答案应选择D.试题难度:三颗星知识点:完全平方式9.如图是用四个相同的矩形和一个正方形拼成的图案,已知此图案的总面积是49,小正方形的面积是4,x,y分别表示矩形的长和宽,那么下面式子中不正确的是( )A. B.C. D.答案:D解题思路:解:选项A:∵此图案的总面积是49,∴,∴,正确,不符合题意;选项B:∵小正方形的面积是4,∴,∴,正确,不符合题意;选项C:由题意可知,四个矩形的面积为,即:,将数据代入,得:∴,正确,不符合题意;选项D:,代入数据得:,∴,错误,符合题意.故选D.试题难度:三颗星知识点:整式乘除的几何表示10.大家已经知道,完全平方公式和平方差公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如:就可以用图1的面积表示,则图2表示的代数恒等式为( )A. B.C. D.答案:C解题思路:解:设此长方形的面积为,则分别用公式法及割补法表示其面积:公式法:;割补法:;∴,故选C.试题难度:三颗星知识点:整式乘除的几何表示。
平方差公式专项练习题A卷:基础题一、选择题1.平方差公式()(a-b)2-b2中字母a,b表示()A.只能是数 B.只能是单项式 C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是() A.()() B.(-)(a-b)C.(13)(b-13a) D.(a2-b)(b2)3.下列计算中,错误的有()①(34)(3a-4)=9a2-4;②(2a2-b)(2a2)=4a2-b2;③(3-x)(3)2-9;④(-)·()=-(x-y)()=-x2-y2.A.1个 B.2个 C.3个 D.4个4.若x2-y2=30,且x--5,则的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2)(-2x-y).6.(-3x2+2y2)()=9x4-4y4.7.(-1)(a-1)=()2-()2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是. 三、计算题9.利用平方差公式计算:2023×2113.10.计算:(2)(a 2+4)(a 4+16)(a -2).B 卷:提高题一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(221)+1(n 是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007200820061⨯+.二、知识交叉题3.(科内交叉题)解方程:x (2)+(21)(2x -1)=5(x 2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.(2007,泰安,3分)下列运算正确的是()A.a33=3a6 B.(-a)3·(-a)5=-a8C.(-2a2b)·4-24a6b3 D.(-13a-4b)(13a-4b)=16b2-19a26.(2008,海南,3分)计算:(1)(a-1).C卷:课标新型题1.(规律探究题)已知x≠1,计算(1)(1-x)=1-x2,(1-x)(12)=1-x3,(1-x)(•123)=1-x4.(1)观察以上各式并猜想:(1-x)(12+…).(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25).②2+22+23+…+2(n为正整数).③(x-1)(x999897+…21).(3)通过以上规律请你进行下面的探索:①(a-b)().②(a-b)(a22).③(a-b)(a3223).2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++1、已知m 22-61034=0,求的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
3.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
练一练 A 组:1.已知()5,3a b ab -==求2()a b +与223()a b +的值。
2.已知6,4a b a b +=-=求ab 与22a b +的值。
3、已知224,4a b a b +=+=求22a b 与2()a b -的值。
4、已知()2=60,()2=80,求a 22及的值B 组:5.已知6,4a b ab +==,求22223a b a b ab ++的值。
6.已知222450x y x y +--+=,求21(1)2x xy --的值。
7.已知16x x -=,求221x x+的值。
8、0132=++x x ,求(1)221x x +(2)441x x +9、试说明不论取何值,代数式226415x y x y ++-+的值总是正数。
C 组:10、已知三角形 的三边长分别为且满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?整式的乘法、平方差公式、完全平方公式、整式的除法(B 卷)综合运用题 姓名:一、请准确填空 1、若a 22-222=0,则a .2、一个长方形的长为(23b ),宽为(2a -3b ),则长方形的面积为.3、5-(a -b )2的最大值是,当5-(a -b )2取最大值时,a 与b的关系是. 4.要使式子0.36x 2412成为一个完全平方式,则应加上. 5.(41-6)÷2-1. 6.29×31×(302+1). 7.已知x 2-51=0,则x221x . 8.已知(2005-a )(2003-a )=1000,请你猜想(2005-a )2+(2003-a )2.二、相信你的选择9.若x 2-x -(x -m )(1)且x ≠0,则m 等于A.-1B.0C.1D.210.()与(51)的积不含x 的一次项,猜测q 应是A.5B.51C.-51 D.-511.下列四个算式:①4x 2y 4÷413;②16a 6b 4c ÷8a 3b 2=2a 2b 2c ;③9x 8y2÷3x 33x 5y ; ④(12m 3+8m 2-4m )÷(-2m )=-6m 2+42,其中正确的有A.0个B.1个C.2个D.3个 12.设(-12)·(x 5-2)5y 3,则的值为A.1B.-1C.3D.-313.计算[(a 2-b 2)(a 22)]2等于4-2a 2b24 6+2a 4b46 6-2a 4b46 8-2a 4b4814.已知()2=112,则(a -b )2的值是A.11B.3C.5D.1915.若x 2-7是一个完全平方式,那么M 是27224924492D.49y 216.若互为不等于0的相反数,n 为正整数,你认为正确的是 、一定是互为相反数 B.(x1)n、(y1)n一定是互为相反数2n、y 2n 一定是互为相反数2n -1、-y2n -1一定相等三、考查你的基本功17.计算(1)(a -23c )2-(2b -3c )2;(2)[(3-b )-2a (b -21b 2)](-3a 2b 3);(3)-2100×0.5100×(-1)2005÷(-1)-5;(4)[(2y)(x-2y)+4(x-y)2-6x]÷6x.18.(6分)解方程x(9x-5)-(3x-1)(31)=5.四、生活中的数学19.(6分)如果运载人造星球的火箭的速度超过11.2 (俗称第二宇宙速度),则人造星球将会挣脱地球的束缚,成为绕太阳运行的恒星.一架喷气式飞机的速度为1.8×106,请你推算一下第二宇宙速度是飞机速度的多少倍?五、探究拓展与应用20.计算.(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1)=(24-1)(24+1)=(28-1).根据上式的计算方法,请计算(3+1)(32+1)(34+1)…(332+1)-2364的值.“整体思想”在整式运算中的运用“整体思想”是中学数学中的一种重要思想,贯穿于中学数学的全过程,有些问题局部求解各个击破,无法解决,而从全局着眼,整体思考,会使问题化繁为简,化难为易,思路清淅,演算简单,复杂问题迎刃而解,现就“整体思想”在整式运算中的运用,略举几例解析如下,供同学们参考:1、当代数式532++x x 的值为7时,求代数式2932-+x x 的值.2、已知2083-=x a ,1883-=x b ,1683-=x c ,求:代数式bc ac ab c b a ---++222的值。
3、已知4=+y x ,1=xy ,求代数式)1)(1(22++y x 的值4、已知2=x 时,代数式10835=-++cx bx ax ,求当2-=x 时,代数式835-++cx bx ax 的值5、若123456786123456789⨯=M ,123456787123456788⨯=N试比较M 与N 的大小6、已知012=-+a a ,求2007223++a a 的值.。